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\\Ovew’ew

© Motivation

® Basic principles of Kalman Filter
— example

o Application to particle tracking

No big deal



walman

® Born 1930 in Hungary
o Studied at MIT / Columbia
® Developed filter in 1960/61



lllustration example

Measuring parameters of a particle track in 2D

parameters:
y, k

measurement;
m




Kalman filter — KF

When and where?

noise
S}j[sttem model
state:
unknown
system
parameters — measurement

T

noise



When and where?

Tracking and navigation

— Tracking missiles, aircrafts and spacecrafts
— GPS technology

— Visual reality

Tracking 1n

HEP experiments




KF assumptions

Linear system

— System parameters are linear
function of parameters at
some previous time

— Measurements are linear

function of parameters

— KF is the

White Gaussian noise )
optimal filter

— White: uncorrelated in time

— Gaussian: noise amplitude



parameters

A\

KF description

using vectors and matrices

estimation
of



KF description: example

. Y
System parameters: v —> RS ( l

System model:

linear motion y =k x

V. =AV, 4
Measurement model:

m;=Hy,




Noise

Noise: e Gaussian = E(e?) = 62
Noise covariance matrix

V=E(ee')=| E(e,e,) E(e,e,)

E(ee,) E(ee,) - }

System noise: v; = A v;_;+q. = Q=E(qq")
Measurement noise: m ; =H v, + r;
= R=E(r!)



KF algorithm

Vi =AvV,_1tq ' A
: O-

—— m.=Hv, +r

L minimize the difference v - v <—|

Prediction: v."=AvV,_
Correction: V.=V," @mi —~H V.~

Kalman gain matrix



Kalman gain matrix

It 1s easy to show
K =VH!'(H V' H! +R)!,
where V. = AV AT+ Q
Minimize the expected error

E(elel) E(eleZ)

AN

e=v-v; V=E(ee')=| E(e,e,) E(e,e,)

Limaits:

. . A
— System noise << measurement noise = v, = V.

— system noise >> measurement noise = V.= H' m,



Error on parameters

® Predictor: V., = AV. AT+ Q
— Q: system noise
® Corrector: V.= (I - KH) V.~

— error reduced




Example

Simulation
y=kXx
Implemented
KF

— prediction

— correction

Kalman filter
Least squares

Compare with
LS method




System noise

Kalman filter
Least squares




KF overview

Matrix description of system state, model
and measurement

Progressive method

prediction

correction

Proper dealing with noise



Application to particle tracking

Detector:

— Silicon vertex detector
— Central drift

chamber
Description
of track:

S parameters



Advantages of using KF

In particle tracking

Progressive method

— No large matrices has to be inverted
Proper dealing with system noise
Track finding and track fitting
Detection of outliers
Merging track from different segments



Modifications of KF

(1) Non - linear
system — extended v
Kalman filter ‘

Full precision only
after the last step

— Prediction

Kalman filter
Least squares

— Correction

— Smoothing



Tosumisipn.

We have demonstrated the principles
predictor — corrector method
combining model and measurement
Very useful 1n tracking
For given assumptions, KF 1s the optimal filter
Extensions for non-linear systems

Extensive application



Tracking in BELLE detector

Track finding

Track fitting

Track managing




Notation overview

v: vector of parameters
— v: our estimation
— v : predicted value

m: vector of measurements

A: matrix describing linear system - v, = A v,
H: matrix describing measurements > m ;= H'v;
V: error (on parameter) covariance matrix

Q: system noise covariance matrix

R: measurement noise covariance matrix

K: Kalman gain matrix



