

CKM Workshop, Warwick, September 7, 2010

Plans for future B factories

Peter Križan University of Ljubljana and J. Stefan Institute

University of Ljubljana "Jožef Stefan" Institute

- Physics case for a Super B factory
- •SuperKEKB/Belle-II@KEK and SuperB@Frascati
- •Accellerators
- Detectors
- •Status and prospects of the projects

B factories: CP violation in the B system

CP violation in B system: from the discovery (2001) to a precision measurement (2006)

 $sin2\phi_1/sin2\beta$ from b \rightarrow ccs

World average 2008: $sin2\phi_1 = 0.681 \pm 0.025$

Constraints from measurements of angles and sides of the unitarity triangle → Remarkable agreement

B factories: a success story

- Measurements of CKM matrix elements and angles of the unitarity triangle
- Observation of direct CP violation in B decays
- Measurements of rare decay modes (e.g., $B \rightarrow \tau v$, $D \tau v$)
- b→s transitions: probe for new sources of CPV and constraints from the b→sγ branching fraction
- Forward-backward asymmetry (A_{FB}) in $b \rightarrow sl^+l^-$ has become a powerfull tool to search for physics beyond SM.
- Observation of D mixing
- Searches for rare τ decays
- Observation of new hadrons

Luminosity at B factories

Fantastic performance much beyond design values!

What next?

B factories \rightarrow is SM with CKM right?

Next generation: Super B factories \rightarrow in which way is the SM wrong?

→ Need much more data (two orders!) because the SM worked so well until now → Super B factory

However: it will be a different world in four years, there will be serious competition from LHCb and BESIII

Still, e⁺e⁻ machines running at (or near) Y(4s) will have considerable advantages in several classes of measurements, and will be complementary in many more

Power of e⁺e⁻, example: Full Reconstruction Method

- Fully reconstruct one of the B's to
 - Tag B flavor/charge
 - Determine B momentum
 - Exclude decay products of one B from further analysis

 \rightarrow Offline B meson beam!

Powerful tool for B decays with neutrinos

Event candidate $B^- \rightarrow \tau^- \nu_{\tau}$

Charged Higgs limits from $B^- \rightarrow \tau^- \nu_{\tau}$

$$r_{H} = \frac{BF(B \to \tau \nu)}{BF(B \to \tau \nu)_{SM}} = \left(1 - \frac{m_{B}^{2}}{m_{H}^{2}} \tan^{2}\beta\right)^{2}$$

\rightarrow limit on charged Higgs mass vs. tan β

$B {\rightarrow} D^{(*)} \tau \nu$

Semileptonic decay sensitive to charged Higgs

Ratio of τ to μ ,e could be reduced/enhanced significantly

$$R(D)\equiv rac{\mathcal{B}(B o D au
u)}{\mathcal{B}(B o D\ell
u)}$$

3. Differential distributions can be used to discriminate W⁺ and H⁺ -4. Sensitive to different vertex $B \rightarrow \tau v$: H-b-u, $B \rightarrow D\tau v$: H-b-c (LHC experiments sensitive to H-b-t) $B \rightarrow D\tau v$

500 400 Exclusion plots for tan β and H⁺ mass H⁻ Mass (GeV/c⁻) 002 50ab for 5ab⁻¹ and 50ab⁻¹ 100 Tevatron Run I Excluded (95% C.L.) LEP Excluded (95% C.L.) 20 40 60 80 100 0 $\tan \beta$

$B \rightarrow D^* \tau v - similar constraints on H^+$

[PRL 99, 191807 (2007)]

 $B \rightarrow K^{(*)}vv$

 $\begin{array}{l} B \to K_{VV}, \ \mathcal{B} \sim 4.10^{-6} \\ B \to K^* vv, \ \mathcal{B} \sim 6.8.10^{-6} \end{array}$

SM: penguin+box

Look for departure from the expected value \rightarrow information on couplings C_R^v and C_L^v compared to $(C_L^v)^{SM}$

Again: fully reconstruct one of the B mesons, look for signal (+nothing else) in the rest of the event.

arXiv:1002.5012

not possible @ LHCb

CP violation in $B \rightarrow K_S \pi^0 \gamma$

CP violation in $B \rightarrow K_S \pi^0 \gamma$ decays: Search for right-handed currents

 $B \rightarrow K^* \gamma, \mathcal{B} \sim 4.0 \cdot 10^{-5}$

 $\delta S \sim 0.2$ (present) $\rightarrow \sim a$ few % at 50 ab^{-1}

not possible @ LHCb

LFV and New Physics

Rare τ decays

LF violating τ decay?

R Physics @	$V(\Lambda S)$				
D I Hysics (a)			Observable	B Factories (2 ab^{-1})	Super B (75 ab^{-1})
Observable	B Factories (2 ab^{-1})	Super B (75 ab^{-1})	$ V_{cb} $ (exclusive)	4% (*)	1.0% (*)
$\sin(2eta)~(J/\psiK^0)$	0.018	0.005 (†)	$ V_{cb} $ (inclusive)	1% (*)	0.5%~(*)
$\cos(2eta)~(J/\psiK^{*0})$	0.30	0.05	$ V_{ub} $ (exclusive)	8% (*)	3.0%~(*)
$\sin(2eta)~(Dh^0)$	0.10	0.02	$ V_{ub} $ (inclusive)	8% (*)	2.0% (*)
$\cos(2eta)~(Dh^0)$	0.20	0.04	•		
$Sig(J/\psi\pi^0ig)$	0.10	0.02	$\mathcal{B}(B \to \tau \nu)$	20%	4% (†)
$S(D^+D^-)$	0.20	0.03	$\mathcal{B}(B \to \mu \nu)$	visible	5%
$S(\phi K^0)$	0.13	0.02 (*)	$\mathcal{B}(B \to D\tau\nu)$	10%	2%
$S(\eta'K^0)$	0.05	0.01 (*)	-(2 2 2 11)	10/0	270
$Sig(K^0_gK^0_gK^0_gig)$	0.15	0.02 (*)	$\mathcal{B}(\mathcal{B} \to \infty)$	1 50%	2% (+)
$S(K_{S}^{0}\pi^{0})$	0.15	0.02(*)	$\mathcal{B}(D \to p_{1})$	1070	570 () E07
$S(\omega K_s^0)$	0.17	0.03~(*)	$B(B \rightarrow \omega \gamma)$	5U70	370 0.001 (L_)
$S(f_0K_s^0)$	0.12	$0.02 \; (*)$	$A_{CP}(B \to K^*\gamma)$	0.007 (†)	0.004 († *)
			$A_{CP}(B o ho\gamma)$	~ 0.20	0.05
$\gamma \ (B \to DK, D \to CP \text{ eigenstates})$) ~ 15°	2.5°	$A_{CP}(b ightarrow s \gamma)$	$0.012(\dagger)$	$0.004(\dagger)$
$\gamma~(B \rightarrow DK, D \rightarrow \text{suppressed stat})$	(es) $\sim 12^{\circ}$	2.0°	$A_{CP}(b ightarrow (s+d)\gamma)$	0.03	0.006(†)
$\gamma \ (B ightarrow DK, D ightarrow$ multibody stat	es) $\sim 9^{\circ}$	1.5°	$S(K^0_s\pi^0\gamma)$	0.15	0.02 (*)
$\gamma \ (B \to DK, \text{ combined})$	$\sim 6^{\circ}$	1-2°	$S(ho^0\gamma)$	possible	0.10
$lpha \; (B ightarrow \pi \pi)$	$\sim 16^{\circ}$	3°	$A_{CP}(B o K^*\ell\ell)$	7%	1%
$lpha \; (B ightarrow ho ho)$	$\sim 7^{\circ}$	1-2° (*)	$A^{FB}(B \to K^*\ell\ell)s_0$	25%	9%
$lpha \; (B ightarrow ho \pi)$	$\sim 12^{\circ}$	2°	$A^{FB}(B \to X \ell \ell) s_0$	35%	5%
$\alpha \ (\text{combined})$	$\sim 6^{\circ}$	1-2° (*)	$\mathcal{B}(B \to K_{1}\overline{w})$	visible	20%
			$\mathcal{B}(B \to \pi \nu \bar{\nu})$	413101G	2070
$2\beta + \gamma \ (D^{(*)\pm}\pi^{\mp}, D^{\pm}K_{s}^{0}\pi^{\mp})$	20°	5°	$D(D \rightarrow \pi \nu \nu)$	_	possible

τ-Physics	Sensitivity
${\cal B}(au o \mu \gamma)$	2×10^{-9}
${\cal B}(au o e \gamma)$	$2 imes 10^{-9}$
${\cal B}(au o \mu \mu \mu)$	$2 imes 10^{-10}$
$\mathcal{B}(au ightarrow eee)$	$2 imes 10^{-10}$
${\cal B}(au o \mu \eta)$	$4 imes 10^{-10}$
${\cal B}(au o e\eta)$	$6 imes 10^{-10}$
${\cal B}(au o \ell K^0_s)$	$2 imes 10^{-10}$

B _s Physics @ Y	(5S)	
Observable	Error with 1 ab^{-1}	Error with 30 ab^{-1}
$\Delta\Gamma$	$0.16 \ {\rm ps^{-1}}$	$0.03 \ {\rm ps}^{-1}$
Γ	$0.07 \ {\rm ps^{-1}}$	$0.01 \ {\rm ps}^{-1}$
β_s from angular analysis	20°	8°
$A^s_{ m SL}$	0.006	0.004
$A_{\rm CH}$	0.004	0.004
${\cal B}(B_s o \mu^+ \mu^-)$	-	$< 8 imes 10^{-9}$
$\left V_{td}/V_{ts} ight $	0.08	0.017
${\cal B}(B_s o \gamma \gamma)$	38%	7%
β_s from $J/\psi\phi$	10°	3°
β_s from $B_s \to K^0 \bar{K}^0$	24°	11°

Charm n	nixing	and C	P
Mode	Observable	$\Upsilon(4S)$	$\psi(3770)$
	-	(75 ab^{-1})	(300 fb^{-1})
$D^0 \rightarrow K^+ \pi^-$	$x^{\prime 2}$	3×10^{-5}	
$D^0 x + x -$	y'	7×10^{-4}	
$D^{\circ} \rightarrow K^{+}K$ $D^{0} \rightarrow K^{\circ} - +$	y_{CP}	5×10^{-4}	
$D \rightarrow K_S \pi^+ \pi$	x	4.9×10 3.5×10^{-4}	
	$\left a/p \right $	3×10^{-2}	
	ϕ	2°	
$\psi(3770) \rightarrow D^0 \overline{D}^0$	x^2		$(1-2) \times 10^{-5}$
	y		$(1-2) \times 10^{-3}$
	$\cos \delta$		(0.01 - 0.02)
Charm F	CNC -		
Charmi			Sensitivity
$D^0 \rightarrow e^+ e^-, L$	$D^0 o \mu^+ \mu^-$	_	$1 imes 10^{-8}$
$D^0 ightarrow \pi^0 e^+ e^-$, $D^0 \to \pi^0$	$\mu^+\mu^-$	$2 imes 10^{-8}$
$D^0 \rightarrow \eta e^+ e^-,$	$D^0 \to \eta \mu^+$	μ^{-}	$3 imes 10^{-8}$
$D^0 ightarrow K^0_s e^+ e^-$	$T, D^0 \to K$	$\Gamma_s^0 \mu^+ \mu^-$	$3 imes 10^{-8}$
$D^+ ightarrow \pi^+ e^+ e^-$	$, D^+ \to \pi$	$^+\mu^+\mu^-$	$1 imes 10^{-8}$
$D^0 ightarrow e^\pm \mu^\mp$			$1 imes 10^{-8}$
$D^+ ightarrow \pi^+ e^\pm \mu^\mp$	F		$1 imes 10^{-8}$
$D^0 \to \pi^0 e^\pm \mu^\mp$			$2 imes 10^{-8}$
$D^0 o \eta e^\pm \mu^\mp$			$3 imes 10^{-8}$
$D^0 ightarrow K^0_{\scriptscriptstyle S} e^\pm \mu^\mp$	F		$3 imes 10^{-8}$
$D^+ ightarrow \pi^- e^+ e^+$	$, D^+ \rightarrow P$	$K^-e^+e^+$	$1 imes 10^{-8}$
$D^+ \to \pi^- \mu^+ \mu^-$	$^{+}, D^{+} \rightarrow D^{+}$	$K^-\mu^+\mu^+$	$1 imes 10^{-8}$
$D^+ o \pi^- e^\pm \mu^\pm$	$F, D^+ \rightarrow D^+$	$K^-e^{\pm}\mu^{\mp}$	$1 imes 10^{-8}$

M. Giorgi, ICHEP2010

Physics with 50ab⁻¹ / 75ab⁻¹

 \rightarrow More during this workshop

 \rightarrow Two recent publications:

- Physics at Super B Factory (Belle II authors + guests)
 <u>hep-ex</u> > arXiv:1002.5012
- SuperB Progress Reports: Physics (SuperB authors + guests)
 <u>hep-ex</u> > arXiv:1008.1541

Physics at a Super B Factory

- There is a good chance to see new phenomena;
 - CPV in B decays from the new physics (non KM).
 - Lepton flavor violations in τ decays.
- They will help to diagnose (if found) or constrain (if not found) new physics models.
- $B \rightarrow \tau \nu$, $D \tau \nu$ can probe the charged Higgs in large tan β region.
- Physics motivation is independent of LHC.
 - If LHC finds NP, precision flavour physics is compulsory.
 - If LHC finds no NP, high statistics B/τ decays would be a unique way to search for the >TeV scale physics (=TeV scale in case of MFV).

There are many more topics: CPV in charm, new hadrons, ...

Super B Factory Motivation 2

• Lessons from history: the top quark

Physics of top quark		b	<i>u, c, t</i>	d	(V_{ud})	V_{us}	V_{ub}
First estimate of mass: BB mixing Direct production, Mass, width etc. Off-diagonal couplings, phase	→ ARGUS → CDF/D0 → BaBar/Belle	<u>ā</u> (vw− vw + <u>u, c, ī</u>	<u>Б</u>	V_{cd} V_{td}	$V_{cs} onumber V_{ts}$	$egin{array}{c} V_{cb} \ V_{tb} \end{array} ight)$

• Even before that: prediction of charm quark from the GIM mechanism, and its mass from K⁰ mixing

Accelerators

Need O(100x) more data \rightarrow Next generation **B**-factories **SuperKEKB** Peak Luminosity Trends (e⁺e⁻ collider) +SuperB 10³⁶ 40 times higher 10³⁵ luminosity **KEKB** 10³⁴ **PEP-II** Luminosity 10³³ CESR DAΦNE BEPC-II FP I 10^{32} PEP TRISTAN SPEAR 10^{31} LEP I

The KEKB Collider & Belle Detector

The last beam abort of KEKB on June 30, 2010

→ Can start construction of SuperKEKB and Belle II

Strategies for increasing luminosity

Collision with very small spot-size beams

Invented by Pantaleo Raimondi for SuperB

Machine design parameters

parameters		KE	KEKB		SuperKEKB		
		LER	HER	LER	HER	units	
Beam energy	Eb	3.5	8	4	7	GeV	
Half crossing angle	φ	11		41	.5	mrad	
Horizontal emittance	٤x	18	24	3.2	5.0	nm	
Emittance ratio	κ	0.88	0.66	0.27	0.25	%	
Beta functions at IP	β_x^*/β_y^*	1200/5.9		32/0.27	25/0.31	mm	
Beam currents	l _b	1.64	1.19	3.60	2.60	А	
beam-beam parameter	ξy	0.129	0.090	0.0886	0.0830		
Luminosity	L	2.1 x 10 ³⁴		8 x	10 ³⁵	cm ⁻² s ⁻¹	

• Small beam size & high current to increase luminosity

- Large crossing angle
- Change beam energies to solve the problem of LER short lifetime

M. Iwasaki, ICHEP2010

Nano-beam collisions with crab waist

Crab waist scheme: successfully tested in the DA Φ NE ring

Parameters for 1×10^{36} Lumi (max 4×10^{36})

		Base Line		Low Emittance		High Current		Tau/Charm (prelim.)	
Parameter	Units	HER (e+)	LER (e-)	HER (e+)	LER (e-)	HER (e+)	LER (e-)	HER (p+)	LER (e-)
LUMINOSITY	cm ⁻² s ⁻¹	1.00	E+36	1.00	E+36	1.00	E+36	1.005	+35
Energy	GeV	6.7	4.18	6.7	4.18	6.7	4.18	2.58	1.61
Circumference	m	125	8,4	125	i8.4	125	8.4	1258.4	
X-Angle (full)	mrad	6	6	6	6	6	6	6	6
Piwinski angle	rad	22.88	18.60	32.36	26.30	14.43	11.74	8.80	7.15
β _x @ IP	cm	2.6	3.2	2.6	3.2	5.06	6.22	6.76	8.32
β _v @ IP	cm	0.0253	0.0205	0.0179	0.0145	0.0292	0.0237	0.0658	0.0533
Coupling (full current)	%	0.25	0.25	0.25	0.25	0.5	0.5	0.25	0.25
ɛ _x (without IBS)	nm	1.97	1.82	1.00	0.91	1.97	1.82	1.97	1.82
e _x (with IBS)	nm	2.00	2.46	1.00	1.23	2.00	2.46	5.20	6.4
ε _y	pm	5	6.15	2.5	3.075	10	12.3	13	16
σ _x @ IP	μm	7.244	6.872	5.999	6.274	10.060	12.370	18.749	23.076
σ _y @IP	μm	0.036	0.036	0.021	0.021	0.054	0.054	0.092	0.092
Σx	μm	11.4	433	8.0	185	15.	944	29.7	'32
Σ _γ	μm	0.0	50	0.0	130	0.076		0.131	
σ _L (0 current)	mm	4.69	4.29	4.73	4.34	4.03	3.65	4.75	4.36
σ∟ (full current)	mm	5	5	5	5	4.4	4.4	5	5
Beam current	mA	1892	244)	1460	1888	3094	4000	1365	1766
Buckets distance	#	2			2			1	
lon gap	%	2	2		2		2	2	
RF frequency	Hz	4.76	E+08	4.76	E+08	4.76	E+08	4.768	+08
Harmonic number		19	98	19	98	19	98	19	98
Number of bunches		97	'8	93	78	19	56	19	56
N. Particle/bunch		5.08E+10	6.56E+10	3.92E+10	5.06E+10	4.15E+10	5.36E+10	1.83E+10	2.37E+10
Tune shift x		0.0021	0.0033	0.0017	0.0025	0.0044	0.0067	0.0052	0.0080
Tune shift y		0.0970	0.0971	0.0891	0.0892	0.0684	0.0687	0.0909	0.0910
Long. damping time	msec	13.4	20.3	13.4	20.3	13.4	20.3	26.8	40.6
Energy Loss/turn	MeV	2.11	0.865	2.11	0.865	2.11	0.865	0.4	0.166
σ _E (full current)	dE/E	6.43E-04	7.34E-04	6.43E-04	7.34E-04	6.43E-04	7.34E-04	6.94E-04	7.34E-04
CM oe	dE/E	5.00	E-04	5.00	E-04	5.00	E-04	5.26	E-04
Total lifetime	min	4.23	4.48	3.05	3.00	7.08	7.73	11.41	6.79
Total RF Power	MW	(17.	08	<u> </u>	.72	30,	.48	3.1	

Tau/charm threshold running at 10³⁵

SuperB

Baseline + other 2 options: •Lower y-emittance •Higher currents (twice bunches)

Baseline:Higher emittance due to IBSAsymmetric beam currents

RF power includes SR and HOM

M. Giorgi, ICHEP2010

• 3 months of running will give 500fb⁻¹: 50x BES-III

- Precision charm mixing,
- CPT Violation, rare decays, CPV using quantum correlations, decay constants, ...

A. Bevan, Capri Workshop July 2010

Polarized beam helps to reduce irreducible background in tau decays (e.g. $\tau \rightarrow \mu \gamma$)

Machine layout

Polarization is understood and feasible! Parameter flexibility allows 10³⁶ peak lumi without stressing limits! No impediment caused by the photon operation is seen so far to prevent design operations of SuperB for HEP. M. Giorgi, ICHEP2010

Detectors

Requirements for the Belle II detector

Critical issues at L= 8 x 10^{35} /cm²/sec

- Higher background (×10-20)
 - radiation damage and occupancy
 - fake hits and pile-up noise in the EM
- Higher event rate (×10)
 - higher rate trigger, DAQ and computing
- Require special features
 - low $p \mu$ identification \leftarrow s $\mu\mu$ recon. eff.
 - hermeticity $\leftarrow v$ "reconstruction"

Solutions:

- Replace inner layers of the vertex detector with a pixel detector.
- Replace inner part of the central tracker with a silicon strip detector.
- Better particle identification device
- Replace endcap calorimeter crystals
- Faster readout electronics and computing system.

Very similar reasoning also for SuperB

Vertex Detector

DEPFET: http://aldebaran.hll.mpg.de/twiki/bin/view/DEPFET/WebHome

Beam Pipe DEPFET		r = 10mm
	Layer 1	r = 14mm
	Layer 2	r = 22mm
DSSD	-	
	Layer 3	r = 38mm
	Layer 4	r = 80mm
	Layer 5	r = 115mm
	Layer 6	r = 140mm

Mechanical mockup of pixel detector

Prototype DEPFET pixel sensor and readout

A prototype ladder using the first 6 inch DSSD from Hamamatsu has been assembled and tested.

TOP (Barrel PID)

- Quartz radiator
 - 2.6m^L x 45cm^W x 2cm^T
 - Excellent surface accuracy
- MCP-PMT
 - Hamamatsu 16ch MCP-PMT
 - Good TTS (<35ps) & enough lifetime
 - Multialkali photo-cathode \rightarrow SBA
- Beam test in 2009
 - # of photons consistent
 - Time resolution OK

photon detector.

Aerogel RICH (endcap PID)

SuperB Detector (with options)

M. Giorgi, ICHEP2010

Background Issue: sources

SuperB

		Cross section Evt/bunch xing		Rate		
	Beam Strahlung	~340 mbarn (Εγ/Ebeam > 1%)	~850	0.3THz		
	e⁺e⁻ pair production	~7.3 mbarn	~18	7GHz		
	e⁺e⁻ pair (seen by L0 @ 1.5 cm)	~0.07 mbarn	~0.2	70 MHz		
	Elastic Bhabha	O(10 ⁻⁴) mbarn (Det. acceptance)	~250/Million	100KHz		
	Y(4S)	O(10 ⁻⁶) mbarn	~2.5/Million	1 KHz		
		Loss rate	Loss/bunch pass	Rate		
	Touschek (LER)	4.1kHz / bunch (+/- 2 m from IP)	~3/100	~5 MHz		
radiative Bhabha \rightarrow dominant effect on lifetingTwo colliding beams : $e+e-e+e-$ production \rightarrow important source for			effect on lifetime tant source for SV1	<i>□ layer-0</i>		
	Single beam :	synchrotron radiation → <i>strictly connected to IR design</i> Touschek → <i>negligible in BaBar, important in SuperB</i> beam-gas intra-beam scattering				

Collimators, dynamic aperture and energy acceptance optimization solve the problem of Touschek background in LER

M. Giorgi, ICHEP2010

KEKB upgrade has been approved

- 5.8 oku yen (~MUSD) for Damping Ring (FY2010)
- 100 oku yen for machine -- Very Advanced Research Support Program (FY2010-2012)

Continue efforts to obtain additional funds to complete construction as scheduled.

Several non-Japanese funding agencies have already allocated sizable funds for the upgrade.

Construction Schedule of SuperKEKB/Belle II

Luminosity upgrade projection

Towards green light

- The project is the first "flagship project" of the new national research plan
- The project has been mentioned as a reciprocity condition in a Russian-Italian agreement on ignitor (nuclear fusion)

•A formal commitment with INFN for the project with the declaration of some available budget in the current year is expected.

•This commitment will set the start of the project.

PNR on newspapers & Minister press release

Mer 14/04/2010

4 ORE

Innovazione. Più spazio all'industria

Gelmini aggiorna il piano nazionale

Eugenio Bruno ROMA

Un acceleratore di particelle complementare a quello del Cern di Ginevra. Un network dei laboratori di nanotecnologia. Una «fabbrica del futuro» per rilanciare il manifatturiero. Uno studio approfondito nell'epigenetica. Sono alcuni dei «progetti bandiera» che il ministro dell'Istruzione Maristella Gelmini punta a inserire tra le priorità del programma nazionale della ricerca (Pnr) 2010-2012.

La lista degli interventi su cui il Miur vuole dirottare le prime risorse che il Pnr intercetterà contiene 14 voci. Fermo restando che da qui alla sua ufficializzazione potrebbe anche subire delle modifiche, l'elenco si presenta estremamente variegato. Alle azioni sulla formazione nel campo del nucleare, sull'approfondimento dei rapporti tra invecchiamento e Dna e alle misure per l'agroalimentare e i beni culturali - anticipati dallo stesso ministro al Sole 24 Ore il 26 marzo scorso - si è aggiunta

Gli interventi

Progetto	Settore	Valore stimato (milioni)
Super B Factory	Física	650
Cosmo - Skymed II generation	Aerospazio	N.D.
Epigenomica	Medicina	N.D.
3N - Network nazionale delle nanotecnologie	Industria	300
Ritmare - Ricerca ita. per il mare	Industria	795
Sintonia - Sistema integrato di telecomunicazioni	Aerospazio	671
Ipi - Invecchiamento e pop. isolate	Medicina	90
Agro Alimentare	Agricoltura	100
L'ambito nucleare	Energia	53,5
Recupero e rilancio della Villa dei Papiri	Beni cluturali	20
Elettra-Fermi-Eurofel	Industria	191
Astri - Astrofisica con specchi a tecnologia replicante italiana	Aerospazio	
Controllo delle crisi nei sistemi complessi socio-economici	Economica	30
La fabbrica del futuro	Industria	30

ras: «Cosmo-Skymed II generation», «Sintonia» e «Astri». Con i primi due orientati a potenziare i metodi di osservazione della terra dallo spazio e il terzo che, quasi fosse un controcampo, si concentra sull'osserSe ne dovrebbe sapere di più tra fine aprile e i primi di maggio quando ministri e governatori si siederanno allo stesso tavolo. Dopodiché il Pnr sarà pronto per andare a Palazzo Chigi, prima, e al Cipe, poi. Estratto da pag. 25

Comunicato stampa del 26 Aprile 2010 - Miur

UI Ministero dell'Istruzione, dell'Università e della Ricerca

Home » Ministero » II Ministro » Comunicati Stampa » 2010 » 260410

Ministero

Istruzione

Ufficio Stampa

Roma, 26 Aprile 2010

RICERCA, VERTICE ITALIA-RUSSIA, GELMINI FIRMA ACCORDO SU RICERCA NUCLEARE

Oggi, il ministro Mariastella Gelmini, in occasione del vertice italo-russo di Lesmo, ha firmato una dichiarazione dintenti tra il MIUR e il Ministero della ricerca scientifica russo per la realizzazione di due importanti progetti per la promozione della ricerca nel settore della fusione nucleare.

L'intesa riguarda i programmi di ricerca denominati "IGNITOR" e "SUPER B". Il programma "IGNITOR" prevede la realizzazione in Russia di un innovativo reattore sperimentale a fusione nucleare che verrà utilizzato come fonte di energia.

Il programma "SUPER B" riguarda la realizzazione in Italia di un acceleratore di particelle di nuova generazione che consentirà una più alta intensità di collisioni tra particelle, permettendo la produzione di "quark pesanti".

M. Giorgi, ICHEP2010

Summary

- B factories have proven to be an excellent tool for flavour physics, with reliable long term operation, constant improvement of the performance, achieving and surpasing design perfomance
- Major upgrade at KEK in 2010-14 → SuperKEKB+Belle II, L x40, construction started
- SuperB in Frascati: build a new tunnel, reuse (+ugrade) PEP-II and BaBar, waiting for approval
- Physics reach updates available
- Expect a new, exciting era of discoveries, complementary to the LHC

Additional slides

Beam Background

Luminosity term Touschek Beam-Gas Synchrotron Radiation Background composition derived from background study data, which is then scaled by Luminosity, beam current etc.

x10 to x20 as large background as that of 2003 conditions (~worst during Belle running)

Aim for similar or better detector performance even under x20 bkg

Barrel PID: Time of propagation (TOP) counter

