Flavorful Ways to New Physics Waldhotel Zollernblick, Oct 28-31, 2014

Flavor Physics at Belle and Belle II

Peter Križan

University of Ljubljana and J. Stefan Institute

University of Ljubljana "Jožef Stefan" Institute

•Introduction with a little bit of B factory primer

- •B factories: recent results
- •Super B factory: status and outlook
- •Summary

Flavour physics at the luminosity frontier with asymmetric B factories

Advantages of B factories in the LHC era

$$egin{array}{lll} B^+ &
ightarrow D^0 \pi^+ \ &(
ightarrow K \pi^- \pi^+ \pi^-) \ B^- &
ightarrow au(
ightarrow e
u ar
u)
u \end{array}$$

Unique capabilities of B factories:

- \rightarrow Exactly two B mesons produced (at Y(4S))
- \rightarrow High flavour tagging efficiency
- \rightarrow Detection of gammas, π^0 s, K_Ls
- → Very clean detector environment (can observe decays with several neutrinos in the final state!)
- → Well understood apparatus, with known systematics, checked on control channels

Integrated luminosity at B factories

1998/1 2000/1 2002/1 2004/1 2006/1 2008/1 2010/1 2012/1

CP violation in the B system and unitarity triangle

B factories: CP violation in the B system

CP violation in the B system: from the discovery (2001) to a precision measurement (2011).

Comparison of energy /intensity frontiers To observe a large ship far away one can either use strong binoculars or observe carefully the direction and the speed of waves produced by the vessel.

The unitarity triangle – new/final measurements

Constraints from measurements of angles and sides of the unitarity triangle \rightarrow Remarkable agreement, but still 10-20% NP allowed

Selected results:

- \rightarrow sin2 ϕ_1 (=sin2 β): final measurements
- $\rightarrow \phi_2(=\alpha)$: final measurements
- $\rightarrow \phi_3$ (= γ): new model-independ. method
- \rightarrow Rare decays

CP violation measurement

Want to measure the asymmetry between B and anti-B mesons,

$$P(B^{0}(\overline{B}^{0}) \to f_{CP}, t) = e^{-\Gamma t} \left(1 \mp \sin(2\phi_{1}) \sin(\Delta m t) \right)$$

→Want to distinguish the decay rate of B
(dotted) from the decay rate of anti-B (full).

Integrals are equal, time information mandatory! (true at Y(4s), but not for incoherent production)

Resolution ~B lifetime

B meson production at Y(4s)

CP violation measurement

Measure the difference in time evolution in B^0 and anti- B^0 decays to a CP eigenstate

CMS should be boosted!

Experimental considerations

Detector form: symmetric for symmetric energy beams; slightly extended in the boost direction for an asymmetric collider.

Belle spectrometer at KEK-B

Reconstruction of rare B meson decays

Continuum suppression

CP violation measurement

Want to measure the asymmetry between B and anti-B mesons,

$$P(B^{0}(\overline{B}^{0}) \to f_{CP}, t) = e^{-\Gamma t} \left(1 \mp \sin(2\phi_{1}) \sin(\Delta m t) \right)$$

→Want to distinguish the decay rate of B
(dotted) from the decay rate of anti-B (full).

Integrals are equal, time information mandatory! (true at Y(4s), but not for incoherent production)

Resolution ~B lifetime

Final measurement of $sin2\phi_1$ (= $sin2\beta$)

 ϕ_1 from CP violation measurements in $B^0 \rightarrow c\overline{c} K^0$

Final measurement: with improved tracking, more data, improved systematics (50% more statistics than last result with 492 fb⁻¹); $cc = J/\psi, \psi(2S), \chi_{c1} \rightarrow 25k$ events

Detector effects: wrong tagging, finite Δt resolution \rightarrow determined using control data samples

100 symmetry 0.6 0.6 0. 0.2 0.2 -0.2 -0.2 -0.4 -0.4 -0.6 -0.6 -2 -2 2 -6 -4 -6 -4 0 4 0 6 ∆t (ps) ∆t (ps)

Events / 0.5

Asymmetry

350

300

250 200

150

Belle, final, 710 fb⁻¹, PRL 108, 171802 (2012)

K_L detection

Important cross check:

Measure CP violation for $B \rightarrow CP=+1$ eigenstate

 \rightarrow B \rightarrow J/ ψ K_L

Need a detector for $K_L s$ – muon detections system acts as a hadron calorimeter

Measure only the $\rm K_L$ interaction point coordinate, not the $\rm K_L$ energy.

Final measurements of $sin2\phi_1$ (= $sin2\beta$)

 ϕ_1 from $B^0 \to c \overline{c} K^0$

Final results for $sin2\phi_1$

Belle:	0.668 ± 0.023 ± 0.012
BaBar:	0.687 ± 0.028 ± 0.012

Belle, PRL 108, 171802 (2012)
BaBar, PRD 79, 072009 (2009)

with a single experiment precision of ~4%!

Comparison with LHCb:

•The power of tagging at B factories: 33% vs ~2-3% at LHCb

•LHCb: with 8k tagged $B_d \rightarrow J/\psi K_S$ events from 1/fb measured $sin 2\beta = 0.73 \pm 0.07(stat.) \pm 0.04(syst.)$

 Uncertainties at B factories - e.g., Belle final result sin2β = 0.668 ± 0.023(stat.) ± 0.012(syst.) - are 3x smaller than at LHCb

Final measurement of $\phi_2(\alpha)$ in $B \rightarrow \pi^+\pi^-$ decays

ϕ_2 from CP violation measurements in B⁰ $\rightarrow \pi^+\pi^-$

Measurement of $B \rightarrow \pi^0 \pi^0$ decays

How the penguin distorts the tree level measurement

Pit Vanhoefer, CKM2014

 ϕ_2 from CP violation measurements in B⁰ $\rightarrow \pi^+\pi^-$ Extraction not easy because of the penguin contribution

BR for the B $\rightarrow \pi^0 \pi^0$ decay important to resolve this issue.

Hard channel to measure: four gammas, continuum ($ee \rightarrow qq$) background

- Theory: BR<1x10-6 (Phys.Rev.D83:034023,2011)
- Belle, 1/3 of data PRL 94, 181803(2005) = (2.32 +0.4-0.5 +0.2-0.3) 10⁻⁶
- BaBar PR D87 052009 (1.83 ± 0.21 ± 0.13) 10⁻⁶

Belle new result with full data set: Improved rejection of out-of-time electromagnetic calorimeter hits (some of which contribute to a peaking background).

Measurement of $B \rightarrow \pi^0 \pi^0$ decays

 A_{CP} under preparation \rightarrow stay tuned

Improved measurement of $\phi_2(\alpha)$ in $B \rightarrow \pi\pi$, $\rho\rho$, $\rho\pi$ decays

 ϕ_2 (α) from CP violation and branching fraction measurements in B $\rightarrow \pi\pi$, ρρ, ρπ

$\phi_3(=\gamma)$ with Dalitz analysis

$\phi_3(=\gamma)$ from model-independent/binned Dalitz method

GGSZ method: How to avoid the model dependence?

→ Suitably subdivide the Dalitz space into bins

$$M_{i}^{\pm} = h\{K_{i} + r_{B}^{2}K_{-i} + 2\sqrt{K_{i}K_{-i}}(x_{\pm}c_{i} + y_{\pm}s_{i})\}$$

 $x_{\pm} = r_B \cos(\delta_B \pm \phi_3)$ $y_{\pm} = r_B \sin(\delta_B \pm \phi_3)$

 M_i : # *B* decays in bins of *D* Dalitz plane, K_i : # D^0 ($\overline{D^0}$) decays in bins of *D* Dalitz plane ($D^* \rightarrow D\pi$), c_i , s_i : strong ph. difference between symm. Dalitz points \leftarrow Cleo, PRD82, 112006 (2010)

ϕ_3 measurement

Combined ϕ_3 value:

 $\phi_3 = (67 \pm 11)$ degrees

Note that at B factories the measurement of ϕ_3 finally turned out to be much better than expected!

This is not the last word from B factories, analyses still to be finalized...

Rare B decays

CP violation in penguin dominated b \rightarrow qqs transitions

CP violation given by the same parameter sin2 ϕ 1 as in J/ ψ K decays \rightarrow to be publisehd in JHEP

 $\mathcal{B}(B \to X_s \gamma; 1.7 \, GeV < E_{\gamma} < 2.8 \, GeV) = (3.47 \pm 0.15 \pm 0.40) \cdot 10^{-4}$

$B \rightarrow X_s \gamma$ inclusive

Branching fraction, world average $\mathcal{B}(B \to X_{s}\gamma; E_{\gamma} > 1.6 \, GeV) = \text{HFAG, ICHEP'10}$ = (3.55 ± 0.24(*stat.* + *syst.*) ± 0.09(*shape f.*)·10⁻⁴

Decay rate sensitive to charged Higgs

→ tight constraints on models of new physics, two-Higgs-doublet model II mass limit at ~300 GeV/c²

Measurements systematics dominated

Systematics can be reduced by stronger tagging (e.g. full reconstruction of the other B) on the account of stat. uncertainty \Rightarrow need a larger sample \rightarrow Super B factory

$B \rightarrow X_s \gamma$, semi-inclusive

Sum of 38 exclusive channels

Mode ID	Final State	Mode ID	Final State
1	$K^+\pi^-$	20	$K_S^0 \pi^+ \pi^0 \pi^0$
2	$K_S^0 \pi^+$	21	$K^+\pi^+\pi^-\pi^0\pi^0$
3	$K^+\pi^0$	22	$K_{S}^{0}\pi^{+}\pi^{-}\pi^{0}\pi^{0}$
4	$K_S^0 \pi^0$	23	$K^+\eta$
5	$K^+\pi^+\pi^-$	24	$K_S^0 \eta$
6	$K_S^0 \pi^+ \pi^-$	25	$K^+\eta\pi^-$
7	$K^+\pi^+\pi^0$	26	$K_S^0 \eta \pi^+$
8	$K_S^0 \pi^+ \pi^0$	27	$K^+\eta\pi^0$
9	$K^+\pi^+\pi^-\pi^-$	28	$K_S^0 \eta \pi^0$
10	$K^0_S \pi^+ \pi^+ \pi^-$	29	$K^+\eta\pi^+\pi^-$
11	$K^+\pi^+\pi^-\pi^0$	30	$K_S^0 \eta \pi^+ \pi^-$
12	$K_S^0 \pi^+ \pi^- \pi^0$	31	$K^+\eta\pi^-\pi^0$
13	$K^+\pi^+\pi^+\pi^-\pi^-$	32	$K_S^0 \eta \pi^+ \pi^0$
14	$K_{S}^{0}\pi^{+}\pi^{+}\pi^{-}\pi^{-}$	33	$K^+K^+K^-$
15	$K^+\pi^+\pi^-\pi^-\pi^0$	34	$K^+K^-K^0_S$
16	$K_{S}^{0}\pi^{+}\pi^{+}\pi^{-}\pi^{0}$	35	$K^+K^+K^-\pi^-$
17	$K^+\pi^0\pi^0$	36	$K^+K^-K^0_S\pi^+$
18	$K^0_S \pi^0 \pi^0$	37	$K^+K^+K^-\pi^0$
19	$K^+\pi^-\pi^0\pi^0$	38	$K^+ K^+ K^0_S \pi^0$

Branching fraction, (corresponding to a minimum photon energy of 1.9 GeV)

 $\mathcal{B}(B \to X_s \gamma; M_{Xs} < 2.8 GeV/c^2) =$ = (3.51±0.17(*stat.*)±0.33(*syst*))·10⁻⁴

To be submitted to PRD

$$B^{\scriptscriptstyle -} \not \to \tau^{\scriptscriptstyle -} \, \nu_\tau$$

Example of a missing energy decay

$$egin{array}{lll} B^+ &
ightarrow D^0 \pi^+ \ &(
ightarrow K \pi^- \pi^+ \pi^- \ B^- &
ightarrow au (
ightarrow e
u ar
u)
u \end{array}$$

Full reconstruction tagging

Idea: fully reconstruct one of the B's to tag B flavor/charge, determine its momentum, and exclude decay products of this B from further analysis (exactly two B's produced in Y(4S) decays)

Powerful tool for B decays with neutrinos, used in several analyses in this talk

 \rightarrow unique feature at B factories

 $B^{-} \rightarrow \tau^{-} \nu_{\tau}$ Method: tag one B with full reconstruction, look for the $B^- \rightarrow \tau^- \nu_{\tau}$ in the rest of the event. 120 (Projected in all M_{miss}² regior Events / 0.05 GeV 0 8 09 00 0 8 00 Main discriminating variable on the signal side: remaining energy in the calorimeter, not associated with any charged track or photon \rightarrow Signal at E_{FCI} = 0 signal (3.0σ) 20 $Br(B \rightarrow \tau \nu) = [0.72^{+0.27}_{-0.25} \pm 0.11] \times 10^{-4}$ 0.8 1.2 0.6 Belle E_{ECL} (GeV) PRL 110, 131801 (2013) ≥ 300 (a) $Br(B \rightarrow \tau v) = [1.83^{+0.53}_{-0.49} \pm 0.24] \times 10^{-4}$ BaBar e 250 200 Z Phys. Rev. D 88, 031102(R) (2013) Signal (3.8σ 150 All measurements combined 100 $BF(B \to \tau \nu) = (1.15 \pm 0.23) \cdot 10^{-1}$ 0.2 0.4 0.6 0.8 E_{extra} [GeV] $r_{H} = \frac{BF(B \to \tau \nu)_{meas}}{BF(B \to \tau \nu)_{SM}} = 1.14 \pm 0.40$ Peter Križan, Ljubljana

Charged Higgs limits from $B\to \tau^-\,\nu_\tau$

$$r_{H} = \frac{BF(B \to \tau \nu)}{BF(B \to \tau \nu)_{SM}} = \left(1 - \frac{m_{B}^{2}}{m_{H}^{2}} \tan^{2}\beta\right)^{2}$$

 \rightarrow limit on charged Higgs mass vs. tanβ (for type II 2HDM)

Tension between $\mathcal{B}(B \rightarrow \tau \nu)$ and $\sin 2\phi_1$ very much reduced (from ~2.5 σ)

Belle update $B^- \rightarrow \tau^- \nu_{\tau}$

Method: tag with a semileptonic B decay, look for the $B^- \rightarrow \tau^- \nu_{\tau}$ in the rest of the event.

Again: Main discriminating variable on the signal side: remaining energy in the calorimeter, not associated with any charged track or photon

 \rightarrow Signal at E_{ECL} = 0

Peter Križan, Ljubljana

Belle update $B^- \rightarrow \tau^- \nu_{\tau'}$ tag with a semileptonic B

Belle-CONF-1401

BaBar semileptonic tagging

 $(1.7 \pm 0.8 \pm 0.2) \ 10^{-4}$

- > B(B → τv) = [1.25 ± 0.28 (stat) ± 0.27 (syst)] x 10⁻⁴
- Signal significance of 3.4σ including systematics

Decay Mode	$N_{\rm sig}$	$\mathcal{B}(10^{-4})$			
$\tau^- o \mu^- \nu_\tau \bar{\nu}_\mu$	13 ± 21	$0.34 {\pm} 0.55$			
$\tau^- \to e^- \nu_\tau \bar{\nu}_e$	47 ± 25	$0.90 {\pm} 0.47$			
$\tau^- \to \pi^- \nu_{\tau}$	57 ± 21	$1.82 {\pm} 0.68$			
$\tau^- \to \rho^- \nu_\tau$	119 ± 33	$2.16 {\pm} 0.60$		⊢ —	•
Combined	222 ± 50	1.25 ± 0.28			
statistical errors only					

 Consistent results among tau channels

- Central value shifted towards SM
- Combination with Belle hadronic tag result in progress

$B \rightarrow D^{(*)} \tau \nu$ decays

Semileptonic decay sensitive to charged Higgs

Ratio of τ to μ ,e could be reduced/enhanced significantly Kamenik, Mescia arXiv:0802.3790

$$R(D)\equiv rac{\mathcal{B}(B o D au
u)}{\mathcal{B}(B o D\ell
u)}$$

Complementary and competitive with $B \rightarrow \tau v$ $\widehat{\underline{A}}_{\mathbf{R}}$ 1.Smaller theoretical uncertainty of R(D)

For $B \rightarrow \tau \nu$, There is O(10%) f_B uncertainty from lattice QCD

2.Large Brs (~1%) in SM (Ulrich Nierste arXiv:0801.4938.)

3. Differential distributions can be used to discriminate W⁺ and H⁺ 4. Sensitive to different vertex $B \rightarrow \tau v$: H-b-u, $B \rightarrow D\tau v$: H-b-c (LHC experiments sensitive to H-b-t)

First observation of $B \rightarrow D^{*-}\tau v$ by Belle (2007)

$B \to D^{\,(*)} \, \tau \nu \,$ decays

Exclusive hadron tag data

\rightarrow Combined result: 3σ away from SM.

Blue: this result, red: Type-II 2HDM.

→ Combined result: Type II 2HDM excluded at 99.8% C.L. for any values of tan β and charged Higgs mass

More discussion of the implications: BaBar, Phys. Rev. Lett. 109, 101802 (2012) Peter Križan, Ljubljana

$B \to h \nu \overline{\nu} \ decays$

Events/0.1 GeV

14

 $B^+ \rightarrow K^+ \nu \overline{\nu}$

Method: again tag one B with full reconstruction, search for signal in the remaining energy in the calorimeter, at $E_{ECL} = 0$

Present status: recent update from Belle

$B \longrightarrow K^{(*)} \nu \bar{\nu}$

arXiv:1002.5012

Charm and τ physics

B factories = charm and τ factories

Charm and τ can be found in any "Y(nS) samples"

- → the integrated luminosity of the samples used for charm and τ studies is larger than for the B physics studies (Belle ~ 1 ab⁻¹, BaBar ~0.550 ab⁻¹)
- \rightarrow This will of course remain true for the super B factory

A few examples of the strengths of B factories:

- CP violation in charm at B factories (and super B factories) \rightarrow can measure CPV separately in individual decay channels, $\pi^+\pi^-$, K^+K^- , $K_S\pi$,...
- DD pairs produced with very few light hadrons
- Full reconstruction of events

Rare charm decays: tag with the other D

Again make use of the hermeticity of the apparatus! Example: leptonic decays of D_s

$$e^+e^- \to c\overline{c} \to \overline{D}_{tag}KX_{frag}D_s^{*+}$$

Recoil method in charm events:

- Reconstruct D_{tag} to tag charm, kaon to tag strangeness
- Additional light mesons (X_{frag}) can be produced in the fragmentation process (π , $\pi\pi$, ...)
- 2 step reconstruction:
- Inclusive reconstruction of D_s mesons for normalization (without any requirements upon D_s decay products)
- Within the inclusive D_s sample search for D_s decays

• $D_s \rightarrow \mu \nu$: peak at $m_{\nu}^2 = 0$ in $M_{\rm miss}^2(D_{\rm tag}KX_{\rm frag}\gamma\mu)$

• $D_s \rightarrow \tau \nu$: peak towards 0 in extra energy in calorimeter

$D_s^+ \to \mu^+ \nu_\mu$

Charm: last but not least...

Peter Križan, Ljubljana

Rare τ decays

Example: lepton flavour violating decay $\tau \to \mu \, \gamma$

LFV in tau decays: present status

Lepton flavour violation (LFV) in tau decays: would be a clear sign of new physics

Peter Križan, Ljubljana

LFV and New Physics

- $\tau \rightarrow 3I, I\eta$
 - Neutral Higgs mediated decay.
 - Important when Msusy >> EW scale. $Br(\tau \rightarrow 3\mu) =$

$$4 \times 10^{-7} \times \left(\frac{\left(m_{\tilde{L}}^2\right)_{32}}{\overline{m}_{\tilde{L}}^2}\right) \left(\frac{\tan\beta}{60}\right)^6 \left(\frac{100GeV}{m_A}\right)^4$$

model	Br(τ→μγ)	Br(τ→III)
mSUGRA+seesaw	10 ⁻⁷	10 ⁻⁹
SUSY+SO(10)	10 ⁻⁸	10 ⁻¹⁰
SM+seesaw	10 -9	10 ⁻¹⁰
Non-Universal Z'	10 -9	10 ⁻⁸
SUSY+Higgs	10 ⁻¹⁰	10 ⁻⁷

Peter Križan, Ljubljana

New hadrons at B-factories

Look at $M(h_b\pi^+) = MM(\pi^-)$ measure $\Upsilon(5S) \rightarrow h_b\pi\pi$ yield in bins of $MM(\pi)$

Z_b(10610)

M = 10608.1 ± 1.7 MeV Γ = 15.5± 2.4 MeV

 $Z_b(10650)$ M = 10653.3 \pm 1.5 MeV Γ = 14.0 \pm 2.8 MeV

Exclusive searches:

Observed in $\Upsilon(5S) \rightarrow \Upsilon(1S) \pi + \pi$ -, $\Upsilon(2S) \pi + \pi$ - and $\Upsilon(3S) \pi + \pi$ -

Seen in 5 different final states, parameters are consistent

 $J^{P}=1^{+}$ in agreement with data; other J^{P} are disfavored

 \rightarrow What is the nature of Z_b⁺? Molecules, tetraquarks, cusps, ... ?

Charged charmonium in Y(4260) \rightarrow J/ $\psi \pi^+ \pi^-$

Y(4260) produced via ISR (Initial State Radiation)

Found! \rightarrow Z_c⁺(3895)

Observed also by BES III. They also recently found a peak in (DD*)⁺ at 3885 MeV PRL110, 252001 (2013) PRL112, 022001 (2014)

PRL110, 252002 (2013)

very similar to $\Upsilon(5S) \rightarrow Z_b^+ \pi^- \rightarrow \Upsilon(1S) \pi^+ \pi^-$

B factories: a success story

- Measurements of CKM matrix elements and angles of the unitarity triangle
- Observation of direct CP violation in B decays
- Measurements of rare decay modes (e.g., $B \rightarrow \tau v$, $D \tau v$)
- b→s transitions: probe for new sources of CPV and constraints from the b→sγ branching fraction
- Forward-backward asymmetry (A_{FB}) in $b \rightarrow sl^+l^-$
- Observation of D mixing
- Searches for rare τ decays
- Discovery of exotic hadrons including charged charmonium- and bottomonium-like states

B factories remain competitive in many measurements because of their unique capabilities.

What next?

Next generation: Super B factories \rightarrow Looking for NP

 \rightarrow Need much more data (almost two orders!)

However: it will be a different world in three years, there is a hard competition from LHCb and BESIII

Still, e⁺e⁻ machines running at (or near) Y(4s) will have considerable advantages in several classes of measurements, and will be complementary in many more

→ Physics at Super B Factory, arXiv:1002.5012 (Belle II)
→ SuperB Progress Reports: Physics, arXiv:1008.1541 (SuperB)

Need O(100x) more data →Next generation B-factories

How to increase the luminosity?

Collision with very small spot-size beams

Invented by Pantaleo Raimondi for SuperB

How big is a nano-beam ?

How to go from an excellent accelerator with world record performance – KEKB – to a 40x times better, more intense facility?

In KEKB, colliding electron and positron beams were already much thinner than a human hair...

... For a 40x increase in intensity you have to make the beam as thin as a few x100 atomic layers!

Installation of 100 new long LER bending magnets done Installation of HER wiggler chambers in Oho straight section is done.

Low emittance positrons to inject

Damping ring tunnel: built!

South a Alt

Low emittance gun

Low emittance electrons to inject Add / modify RF systems for higher beam current

Entirely new LER beam pipe with ante-chamber and Ti-N coating

Fabrication of the LER arc beam pipe section is completed

Al ante-chamber before coating

After TiN coating before baking

After baking

All 100 4 m long dipole magnets have been successfully installed in the low energy ring (LER)!

Three magnets per day !

Installing the 4 m long LER dipole **over** the 6 m long HER dipole (remains in place).

Magnet installation

field measurement

Installation of 100 new LER bending magnets done

move into tunnel

carry on an air-pallet

SuperKEKB Status, 7th BPAC, Mar. 11, 2013, K. Akai

carry over existing HER dipole

Requirements for the Belle II detector

Critical issues at L= 8 x 10³⁵/cm²/sec

- Higher background (×10-20)
 - radiation damage and occupancy
 - fake hits and pile-up noise in the EM
- Higher event rate (×10)
 - higher rate trigger, DAQ and computing
- Require special features
 - low $p \mu$ identification \leftarrow s $\mu\mu$ recon. eff.
 - hermeticity $\leftarrow v$ "reconstruction"

Solutions:

- Replace inner layers of the vertex detector with a pixel detector.
- Replace inner part of the central tracker with a silicon strip detector.
- Better particle identification device
- Replace endcap calorimeter crystals
- Faster readout electronics and computing system.

Belle II TDR, arxiv:1011.0352v1[physics.ins-det]

Belle II Detector

Belle II Detector (in comparison with Belle)

Belle II Detector – vertex region

Belle II CDC

Much bigger than in Belle!

Wire stringing in a clean room

- thousands of wires,
- 1 year of work...

Peter Križan, Ljubljana

Aerogel RICH (endcap PID)

Photons : 41339.7 +- 227.3

Photon/track: 15.31 +- 0.08 BG / track : 2.00 +- 0.03

run048

Peter Križan, Ljubljana

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

6.6 σ π/K at 4GeV/c !

RICH with a novel "focusing" radiator – a two layer radiator

Employ multiple layers with different refractive indices \rightarrow Cherenkov images from individual layers overlap on the photon detector.

2000

1000

°0

Radiator with multiple refractive indices

How to increase the number of photons without degrading the resolution?

Focusing configuration – data

Increases the number of photons without degrading the resolution

DIRC (@BaBar) - detector of internally reflected Cherenkov light

Belle II Barrel PID: Time of propagation (TOP) counter

- Cherenkov ring imaging with precise time measurement.
- Uses internal reflection of Cherenkov ring images from quartz like the BaBar DIRC.
- Reconstruct Cherenkov angle from two hit coordinates and the time of propagation of the photon
 - Quartz radiator (2cm thick)
 - Photon detector (MCP-PMT)
 - Excellent time resolution ~ 40 ps
 - Single photon sensitivity in 1.5

er Križan, Ljubljana

Barrel PID: Time of propagation (TOP) counter

Example of Cherenkov-photon paths for 2 GeV/c π^{\pm} and K^{\pm} .

Peter Križan, Ljubljana

TOP image

Pattern in the coordinate-time space ('ring') of a pion hitting a quartz bar with ~80 MAPMT channels

Time distribution of signals recorded by one of the PMT channels: different for π and K (~shifted in time)

Peter Križan, Ljubljana

The Belle II Collaboration

A very strong group of ~600 highly motivated scientists!

SuperKEKB/Belle II Status

Funding

- ~100 MUS for machine approved in 2009 -- Very Advanced Research Support Program (FY2010-2012)
- Full approval by the Japanese government in December 2010; the project was finally in the JFY2011 budget as approved by the Japanese Diet in 2011
- Non-Japanese funding agencies have also allocated sizable funds for the upgrade of the detector.

SuperKEKB and Belle II construction proceeding, nearly on schedule.

Commissioning start delayed 9 months from original plan, now scheduled for October 2015.

SuperKEKB luminosity projection

Peter Križan, Ljubljana

- B factories have proven to be an excellent tool for flavour physics, with reliable long term operation, constant improvement of the performance, achieving and surpassing design perfomance
- Super B factory at KEK under construction 2010-15 → SuperKEKB+Belle II, L x40, construction at full speed – the biggest particle physics project under preparation
- Expect a new, exciting era of discoveries, complementary to the LHC

