

SuperKEKB and SuperB: flavor physics

Peter Križan University of Ljubljana and J. Stefan Institute

University of Ljubljana "Jožef Stefan" Institute

Contents

- •Physics case for a Super B factory
- •SuperKEKB/Belle-II@KEK and SuperB@Italy
- Accellerators
- •Detectors
- •Status and prospects of the projects

Peter Križan, Ljubljana

B factories: CP violation in the B system

CP violation in the B system: from the discovery (2001) to a precision measurement (2011).

B factories: a success story

- Measurements of CKM matrix elements and angles of the unitarity triangle
- Observation of direct CP violation in B decays
- Measurements of rare decay modes (e.g., $B \rightarrow \tau \nu$, $D \tau \nu$)
- $b \rightarrow s$ transitions: probe for new sources of CPV and constraints from the $b \rightarrow s\gamma$ branching fraction
- Forward-backward asymmetry (A_{FB}) in b→sl⁺l⁻ has become a powerfull tool to search for physics beyond SM.
- Observation of D mixing
- Searches for rare τ decays
- Observation of new hadrons

Possible also because of unique capabilities of B factories: detection of neutrals, neutrinos, clean event environment.

Luminosity at B factories

Fantastic performance much beyond design values!

What next?

Next generation: Super B factories \rightarrow Looking for NP

 \rightarrow Need much more data (two orders!)

However: it will be a different world in four years, we will face a serious competition from LHCb and BESIII

Still, e⁺e⁻ machines running at (or near) Y(4s) will have considerable advantages in several classes of measurements, and will be complementary in many more

Two projects: SuperKEKB+Belle-II in Japan, SuperB in Italy

Power of e⁺e⁻, example: Full Reconstruction Method

- Fully reconstruct one of the B mesons to
 - Tag B flavor/charge
 - Determine B momentum
 - Exclude decay products of one B from further analysis

 \rightarrow Offline B meson beam!

Powerful tool for B decays with neutrinos

$$B^{\scriptscriptstyle -} \not \to \tau^{\scriptscriptstyle -} \nu_\tau$$

$$b \qquad W/H^{\pm} \qquad \tau_{V_{\tau}}$$

$$r_{H} = \frac{BF(B \to \tau \nu)}{BF(B \to \tau \nu)_{SM}} = \left(1 - \frac{m_{B}^{2}}{m_{H}^{2}} \tan^{2}\beta\right)^{2}$$

 \rightarrow limit on charged Higgs mass vs. tan β

$B \rightarrow D^{(*)} \tau v$

Semileptonic decay sensitive to charged Higgs

Ratio of τ to μ,e could be reduced/enhanced significantly

$$R(D) \equiv \frac{\mathcal{B}(B \to D\tau\nu)}{\mathcal{B}(B \to D\ell\nu)}$$

Sensitive to different vertex $B \rightarrow \tau v$: H-b-u, $B \rightarrow D \tau v$: H-b-c (LHC experiments sensitive to H-b-t)

N.B. BABAR sees a 3.4 σ evidence for an excess of B \rightarrow D(*)TV decays compared to SM expectations.

In addition: this result kills Type II 2HDM...

Peter Križan, Ljubljana

 $B \rightarrow K^{(*)}\nu\nu$

arXiv:1002.5012

 $\begin{array}{l} B \to K \nu \nu, \ \mathcal{B} \sim 4.10^{-6} \\ B \to K^* \nu \nu, \ \mathcal{B} \sim 6.8.10^{-6} \end{array}$

SM: penguin+box

Look for departure from the expected value \rightarrow information on couplings C_R^v and C_L^v compared to $(C_L^v)^{SM}$

Again: fully reconstruct one of the B mesons, look for signal kaon (+nothing else) in the rest of the event.

CP violation in $B \rightarrow K_S \pi^0 \gamma$

adopted from HFAG

not possible @ LHCb

Peter Križan, Ljubljana

0.8 S_{CP}

τ physics: LFV and New Physics

- Neutral Higgs mediated decay.
- Important when Msusy >> EW scale. $Br(\tau \rightarrow 3\mu) =$

$$4 \times 10^{-7} \times \left(\frac{\left(m_{\tilde{L}}^2\right)_{32}}{\overline{m}_{\tilde{L}}^2}\right) \left(\frac{\tan\beta}{60}\right)^6 \left(\frac{100GeV}{m_A}\right)^4$$

model	Br(τ→μγ)	Br(τ→III)
mSUGRA+seesaw	10 ⁻⁷	10 -9
SUSY+SO(10)	10 ⁻⁸ 10 ⁻¹	.0
SM+seesaw	10 ⁻⁹	10 ⁻¹⁰
Non-Universal Z'	10 ⁻⁹	10 -8
SUSY+Higgs	10 ⁻¹⁰	10 ⁻⁷

B Physics @ Y	(4S)		Observable	B Factories (2 ab^{-1}) Super B (75 ab^{-1})	M. Giorgi, ICHEP2010		
Observable B	Factories (2 ab^{-1})	SuperB (75 ab^{-1})	$ V_{cb} $ (exclusive)	4% (*)	1.0% (*)	<u> </u>		
$\sin(2\beta) (J/\psi K^0)$	0.018	0.005 (†)	$ V_{cb} $ (inclusive)	1% (*)	0.5% (*)	Charm mixing and CP		
$\cos(2eta)~(J/\psi~K^{*0})$	0.30	0.05	$ V_{ub} $ (exclusive)	8% (*)	3.0% (*)			
$\sin(2eta)~(Dh^0)$	0.10	0.02	$ V_{ub} $ (inclusive)	8% (*)	2.0% (*)	Mode Observable $\Upsilon(4S)$ $\psi(3770)$		
$\cos(2eta)~(Dh^0)$	0.20	0.04				(75 ab^{-1}) (300 fb^{-1})		
$S(J/\psi \pi^0)$	0.10	0.02	$\mathcal{B}(B \to \tau \nu)$	20%	4% (†)	$D^0 \rightarrow K^+ \pi^ x^{\prime 2}$ 3×10^{-5}		
$S(D^+D^-)$	0.20	0.03	${\cal B}(B o \mu u)$	visible	5%	$y' = 7 imes 10^{-4}$		
$S(\phi K^0)$	0.13	0.02 (*)	${\cal B}(B o D au u)$	10%	2%	$D^0 \rightarrow K^+ K^ y_{CP}$ 5×10^{-4}		
$S(\eta' K^0)$	0.05	0.01 (*)				$D^0 \to K_S^0 \pi^+ \pi^-$ x 4.9×10^{-4}		
$S(K_g^*K_g^*K_g^*)$	0.15	0.02 (*)	$\mathcal{B}(B ightarrow ho \gamma)$	15%	3% (†)	$y = 3.5 imes 10^{-4}$		
$S(K_g^*\pi^*)$	0.15	U.U2 (*)	$\mathcal{B}(B ightarrow \omega \gamma)$	30%	5%	$ q/p $ $3 imes 10^{-2}$		
$S(\omega \mathbf{R}_g)$	0.12	0.03 (*)	$A_{CP}(B \to K^* \gamma)$	0.007 (†)	0.004 († *)	ϕ 2°		
$S(j_0 \Pi_g)$	0.12	0.02 (*)	$A_{CP}(B ightarrow ho \gamma)$	~ 0.20	0.05	$\psi(3770) \to D^0 \overline{D}^0 \qquad x^2 \qquad (1-2) \times 10^-$		
$\gamma \ (B \to DK, D \to CP \text{ eigenstates})$	$\sim 15^{\circ}$	2.5°	$A_{CP}(b ightarrow s \gamma)$	$0.012(\dagger)$	0.004 (†)	y $(1-2) imes 10^{-1}$		
$\gamma \ (B \to DK, D \to \text{suppressed states})$	$\sim 12^{\circ}$	2.0°	$A_{CP}(b \rightarrow (s+d)\gamma)$	0.03	0.006 (†)	$\cos \delta$ (0.01-0.02)		
$\gamma \ (B \to DK, D \to \text{multibody states})$) ~ 9°	1.5°	$S(K_g^0\pi^0\gamma)$	0.15	0.02(*)			
$\gamma \ (B \to DK, \text{ combined})$	$\sim 6^{\circ}$	1-2°	$S(ho^0\gamma)$	possible	0.10	Charm FCNC		
						Sensitivi		
$lpha \; (B ightarrow \pi \pi)$	$\sim 16^{\circ}$	3°	$A_{CP}(B o K^*\ell\ell)$	7%	1%	$D^0 ightarrow e^+e^-, D^0 ightarrow \mu^+\mu^ 1 imes 10^{-1}$		
$lpha \; (B o ho ho)$	$\sim 7^{\circ}$	$1-2^{\circ}$ (*)	$A^{FB}(B o K^*\ell\ell)s_0$	25%	9%	$D^0 \to \pi^0 e^+ e^-, D^0 \to \pi^0 \mu^+ \mu^- \qquad 2 \times 10^{-7}$		
$\alpha \ (B \to \rho \pi)$	~ 12°	2°	$A^{FB}(B o X_s \ell \ell) s_0$	35%	5%	$D_{1}^{0} = D_{1}^{0} = D_{1$		
$\alpha \text{ (combined)}$	$\sim 6^{\circ}$	1-2" (*)	$\mathcal{B}(B \to K \nu \overline{\nu})$	visible	20%	$D^2 \rightarrow \eta e^+ e^-, D^2 \rightarrow \eta \mu^+ \mu^- 3 \times 10^{-1}$		
$D_{2} + - (D^{(*)} \pm - \mp D \pm V^{0} - \mp)$	200	EO	$\mathcal{B}(B \to \pi \nu \bar{\nu})$	_	possible	$D^0 o K^0_s e^+ e^-, D^0 o K^0_s \mu^+ \mu^- \qquad 3 imes 10^{-5}$		
$2p+\gamma (D^{*}, h^{*}, D^{*}, n_{s}h^{*})$	20	J				$D^+ \rightarrow \pi^+ e^+ e^-, D^+ \rightarrow \pi^+ \mu^+ \mu^- \qquad 1 \times 10^{-1}$		
	Songitiv	ity BF	Physics @ Y	(5S)				
τ Physics	Sensitiv				E ::1 00 1 -1			
$\mathcal{B}(\pi \rightarrow \mu \alpha)$	2×10^{-1}	9 <u>Obsei</u>	rvable	Error with 1 ab	Error with 30 ab	$D^0 \to e^{\pm} \mu^+$ 1×10^{-5}		
$D(I \rightarrow \mu^{*}I)$	2×10	$\Delta \Gamma$		0.16 ps^{-1}	0.03 ps^{-1}	$D^+ \to \pi^+ e^\pm \mu^\mp$ 1×10^{-7}		
$\mathcal{B}(\tau \rightarrow e \gamma)$	2×10^{-1}	9 ^Г		$0.07 \ {\rm ps^{-1}}$	$0.01 \ {\rm ps^{-1}}$	$D^0 \rightarrow \pi^0 e^{\pm} u^{\mp}$ 2×10^{-1}		
$\mathcal{D}(i \rightarrow e_{ij})$	2×10	eta_s from	om angular analysis	20°	8°	$D \rightarrow \pi \ e \ \mu^{-1} \qquad 2 \times 10$		
$\mathcal{B}(\tau \rightarrow \mu \mu \mu)$	2×10^{-1}	$10 \qquad A_{SL}^s$		0.006	0.004	$D^0 o \eta e^{\pm} \mu^{\mp}$ $3 imes 10^{-5}$		
$\mathcal{L}(i + \mu \mu \mu)$	2 / 10	$A_{ m CH}$		0.004	0.004	$D^0 \to K^0_{\nu} e^{\pm} \mu^{\mp} \qquad 3 imes 10^{-4}$		
$\mathcal{B}(au ightarrow eee)$	2×10^{-1}	10 $\mathcal{B}(B_s)$	$ ightarrow \mu^+\mu^-)$	-	$< 8 \times 10^{-9}$	5 1		
p(-)	1 10-	10 $ V_{td}/V_{td} $	Vts	U.U8	0.017	$D^+ \rightarrow \pi^- e^+ e^+, D^+ \rightarrow K^- e^+ e^+ = 1 \times 10^-$		
$\mathcal{B}(au o \mu \eta)$	4 X 10	$\mathcal{B}(B_s)$	$\rightarrow \gamma \gamma$)	38%	7%	$D + \dots + \dots + D + \dots + \dots + \dots + \dots + \dots + \dots + $		
\rightarrow Physics at Super B Factory, arXiv:1002.5012 (Belle II)								

 $\Box \rightarrow$ SuperB Progress Reports: Physics, arXiv:1008.1541 (SuperB)

Physics at a Super B Factory

- There is a good chance to see new phenomena;
 - CPV in B decays from the new physics (non KM).
 - Lepton flavor violations in τ decays.
- They will help to diagnose (if found) or constrain (if not found) new physics models.
- $B \rightarrow \tau \nu$, $D \tau \nu$ can probe the charged Higgs in large tan β region.
- Physics motivation is independent of LHC.
 - If LHC finds NP, precision flavour physics is compulsory.
 - If LHC finds no NP, high statistics B/τ decays would be a unique way to search for the >TeV scale physics (=TeV scale in case of MFV).

There are many more topics: CPV in charm, new hadrons, ...

Complementary to LHCb

Observable	Expected th.	Expected exp.	Facility	
	accuracy	uncertainty		
CKM matrix				
$ V_{us} [K \rightarrow \pi \ell \nu]$	**	0.1%	K-factory	
$ V_{cb} [B \rightarrow X_c \ell \nu]$	**	1%	Belle II	
$ V_{ub} [B_d \rightarrow \pi \ell \nu]$	*	4%	Belle II	
$\sin(2\phi_1) [c\bar{c}K_S^0]$	***	$8 \cdot 10^{-3}$	Belle II/LHCb	
ϕ_2		1.5°	Belle II	
ϕ_3	***	3°	LHCb	
CPV				
$S(B_s \rightarrow \psi \phi)$	**	0.01	LHCb	
$S(B_s o \phi \phi)$	**	0.05	LHCb	\rightarrow Nood both I HCb an
$S(B_d \rightarrow \phi K)$	***	0.05	Belle II/LHCb	
$S(B_d \rightarrow \eta' K)$	***	0.02	Belle II	aupor D factorios to a
$S(B_d \rightarrow K^*(\rightarrow K^0_S \pi^0)\gamma))$	***	0.03	Belle II	
$S(B_s \rightarrow \phi \gamma))$	***	0.05	LHCb	
$S(B_d \rightarrow \rho \gamma))$		0.15	Belle II	all aspects of precisio
A_{SL}^d	***	0.001	LHCb	
A_{SL}^s	***	0.001	LHCb	flavour nhysics
$A_{CP}(B_d \rightarrow s\gamma)$	*	0.005	Belle II	
rare decays				
$\mathcal{B}(B \rightarrow \tau \nu)$	**	3%	Belle II	
$\mathcal{B}(B \rightarrow D\tau\nu)$		3%	Belle II	
$\mathcal{B}(B_d \to \mu\nu)$	**	6%	Belle II	
${\cal B}(B_s o \mu \mu)$	***	10%	LHCb	
zero of $A_{FB}(B \rightarrow K^* \mu \mu)$	**	0.05	LHCb	
$\mathcal{B}(B \to K^{(*)} \nu \nu)$	***	30%	Belle II	
$\mathcal{B}(B \to s\gamma)$		4%	Belle II	
$\mathcal{B}(B_s \to \gamma \gamma)$		$0.25 \cdot 10^{-6}$	Belle II (with 5 ab ⁻¹)	
$\mathcal{B}(K \rightarrow \pi \nu \nu)$	**	10%	K-factory	
$\mathcal{B}(K \to e \pi \nu) / \mathcal{B}(K \to \mu \pi \nu)$	***	0.1%	K-factory	
charm and τ				
$B(\tau \rightarrow \mu \gamma)$	***	$3 \cdot 10^{-9}$	Belle II	B. Golob, KEK FE Workshop,
$ q/p _D$	***	0.03	Belle II	
$arg(q/p)_D$	***	1.5°	Belle II	Feb. 2012

ooth LHCb and factories to cover ts of precision hysics

Accelerators

Peter Križan, Ljubljana

The KEKB Collider & Belle Detector

Peter Križan, Ljubljana

Strategies for increasing luminosity

Collision with very small spot-size beams

Invented by Pantaleo Raimondi for SuperB

Machine design parameters

noromotoro		KE	KB	Super	unita	
parameters	LER	HER	LER	HER	unito	
Beam energy	Eb	3.5 8		4	7	GeV
Half crossing angle	φ	1	1	41	mrad	
Horizontal emittance	٤x	18 24		3.2	4.6	nm
Emittance ratio	κ	0.88 0.66		0.37	0.40	%
Beta functions at IP	β_x^*/β_y^*	1200/5.9		32/0.27	25/0.30	mm
Beam currents	l _b	1.64	1.19	3.60	2.60	А
beam-beam parameter	ξy	0.129	0.090	0.0881	0.0807	
Luminosity	L	2.1 x 10 ³⁴		8 x 10 ³⁵		cm ⁻² s ⁻¹

• Nano-beams and a factor of two more beam current to increase luminosity

- Large crossing angle
- Change beam energies to solve the problem of short lifetime for the LER

To obtain x40 higher luminosity

[SR Channel]

[Beam Channel]

All 100 4 m long dipole magnets have been successfully installed in the low energy ring (LER)!

Three magnets per day !

Installing the 4 m long LER dipole **over** the 6 m long HER dipole (remains in place).

Entirely new LER beam pipe with ante-chamber and Ti-N coating

Fabrication of the LER arc beam pipe section is completed

Damping ring: construction started in Jan 2012

- Fabrication of accelerator components ongoing.
- Buildings will be constructed in JFY2012-13 after the tunnel is completed
- Damping ring will be completed by the end of JFY2014.

How to do it?

SLAC/LBL/LLNL SLAC-Based B Factory: PEP-II and BABAR

Both Rings Housed in Current PEP Tunnel

High Energy Ring

- → Construct a new tunnel near Frascati, Italy
- \rightarrow Move magnets from PEP-II
- \rightarrow Move BaBar, upgrade

SuperB

(2)

Nano-beam collisions with crab waist

Crab waist scheme: successfully tested in the DA Φ NE ring

Parameters for 1×10^{36} Lumi (max 4×10^{36})

		Base Line		Low Emittance		High Current		Tau/Charm (prelim.)		
Parameter	Units	HER (e+)	LER (e-)	HER (e+)	LER (e-)	HER (e+)	LER (e-)	HER (p+)	LER (e-)	
LUMINOSITY	cm ⁻² s ⁻¹	1.00	E +36	1.00	E+36	1.00	E+36	1.00E	+35	
Energy	GeV	6.7	4.18	6.7	4.18	6.7	4.18	2.58	1.61	
Circumference	m	1258.4		1258.4		1258.4		1258.4		
X-Angle (full)	mrad	6	6	66		66		66		
Piwinski angle	rad	22.88	18.60	32.36	26.30	14.43	11.74	8.80	7.15	
β _x @ IP	cm	2.6	3.2	2.6	3.2	5.06	6.22	6.76	8.32	
β _v @ IP	cm	0.0253	0.0205	0.0179	0.0145	0.0292	0.0237	0.0658	0.0533	
Coupling (full current)	%	0.25	0.25	0.25	0.25	0.5	0.5	0.25	0.25	
e _x (without IBS)	nm	1.97	1.82	1 00	0.91	1.97	1.82	1.97	1.82	
e _x (with IBS)	nm	2.00	2.46	1.00	1.23	2.00	2.46	5.20	6.4	
ε _y	pm	5	6.19	2.5	3.075	10	12.3	13	16	
σ _x @ IP	μm	7.244	6.872	5.899	6.274	10.060	12.370	18.749	23.076	
σ _y @IP	μm	0.036	0.036	0.021	0.021	0.054	0.054	0.092	0.092	
Σ _x	μm	11.4	11.433		8.085		15.944		29.732	
Σ _y	μm	0.050		0.030		0.076		0.131		
σ∟ (0 current)	mm	4.69	4.29	4.73	4.34	4.03	3.65	4.75	4.36	
σ∟ (full current)	mm	5	5	5	5	4.4	4.4	5	5	
Beam current	mA	1892	244)	1460	1888	3094	4000	1365	1766	
Buckets distance	#	2		2				1		
lon gap	%	2	2		2		2		2	
RF frequency	Hz	4.761	4.76E+08		4.76E+08		4.76E+08		4.76E+08	
Harmonic number		1998		1998		1998		1998		
Number of bunches		978		978		1956		1956		
N. Particle/bunch		5.08E+10	6.56E+10	3.92E+10	5.06E+10	4.15E+10	5.36E+10	1.83E+10	2.37E+10	
Tune shift x		0.0021	0.0033	0.0017	0.0025	0.0044	0.0067	0.0052	0.0080	
Tune shift y		0.0970	0.0971	0.0891	0.0892	0.0684	0.0687	0.0909	0.0910	
Long. damping time	msec	13.4	20.3	13.4	20.3	13.4	20.3	26.8	40.6	
Energy Loss/turn	MeV	2.11	0.865	2.11	0.865	2.11	0.865	0.4	0.166	
σ _E (full current)	dE/E	6.43E-04	7.34E-04	6.43E-04	7.34E-04	6.43E-04	7.34E-04	6.94E-04	7.34E-04	
CM o _E	dE/E	5.00E-04		5.00E-04		5.00E-04		5.26E-04		
Total lifetime	min	4.23	4.48	3.05	3.00	7.08	7.73	11.41	6.79	
Total RF Power	MW	1 7.	08 🔿	1 2	.72	30.	.48 🔿	3.1		

Tau/charm threshold running at 10³⁵

SuperB

Baseline + other 2 options: •Lower y-emittance •Higher currents (twice bunches)

Baseline:Higher emittance due to IBSAsymmetric beam currents

RF power includes SR and HOM

> M. Giorgi, ICHEP2010

• 3 months of running will give 500fb⁻¹: 50x BES-III

- Precision charm mixing,
- CPT Violation, rare decays, CPV using quantum correlations, decay constants, ...

A. Bevan, Capri Workshop July 2010

Polarized beam helps to reduce irreducible background in tau decays (e.g. $\tau \rightarrow \mu \gamma$)

Detectors

Peter Križan, Ljubljana

Release Need to build a new detector to handle higher backgrounds

Critical issues at L= 8 x 10³⁵/cm²/sec

- Higher background (×10-20)
 - radiation damage and occupancy
 - fake hits and pile-up noise in the EM
- Higher event rate (×10)
 - higher rate trigger, DAQ and computing
- Require special features
 - low $p \mu$ identification \leftarrow s $\mu\mu$ recon. eff.
 - hermeticity $\leftarrow v$ "reconstruction"

Have to employ and develop new technologies to make such an apparatus work!

ExpMC 2 Exp 25 Run 1886 Event Eher 8.00 Eler 3.50 Dote 1031120 Time 90351 1886 Event 25 Run Eler 3.50 Date 1031120 Time 90922 tVer 1 MagID 21 BField 1.50 DspVer 7.50 0.0 Etot(gm) 0.0 SVD-M 1 CDC-M 2 KLM-M

TDR published arXiv:1011.0352v1 [physics.ins-det]

 \rightarrow

Peter Križan, Ljubljana

Belle II Detector

Belle II Detector (in comparison with Belle) Belle II

Belle II Detector – vertex region

Vertex Detector

DEPFET: http://aldebaran.hll.mpg.de/twiki/bin/view/DEPFET/WebHome

36

Peter Križan, Ljubljana

Barrel PID: Time of propagation (TOP) counter

Aerogel RICH (endcap PID)

RICH with a novel "focusing" radiator – a two layer radiator

Employ multiple layers with different refractive indices \rightarrow Cherenkov images from individual layers overlap on the photon detector.

Peter Križan, Ljubljana

43.24

42 500

400

300

200

64801

RICH with a focusing radiator

Increases the number of photons without degrading the resolution

EM calorimeter: upgrade needede because of higher rates (barrel: electronics, endcap: electronics and $CsI(TI) \rightarrow pure CsI$) and radiation load (endcap: $CsI(TI) \rightarrow pure CsI$)

Detection of muons and KLs: Parts of the present RPC system have to be replaced to handle higher backgrounds (mainly from neutrons).

SuperB Detector

Reuse BaBar components: magnet, DIRC bars, barrel CsI calorimeter.

New silicon; add Layer 0
with smaller beam pipe
New way to read out DIRC:
focusing DIRC
New forward calorimeter
Possible forward PID
Likely backward EMC
Cluster counting in DC:
significant improvement of dE/dx resolution

11

Status of the projects

Peter Križan, Ljubljana

The Belle II Collaboration

A very strong group of ~400 highly motivated scientists!

SuperKEKB/Belle II Status

7

Funding

- ~100 MUS for machine approved in 2009 -- Very Advanced Research Support Program (FY2010-2012)
- Full approval by the Japanese government in December 2010; the project was finally in the JFY2011 budget as approved by the Japanese Diet end of March 2011
- Most of non-Japanese funding agencies have also already allocated sizable funds for the upgrade of the detector.

 \rightarrow construction started in 2010!

Fortunately little damage during the March 2011 earthquake \rightarrow no delay

Ground breaking ceremony in November 2011

SuperKEKB and Belle II construction proceeds according to the schedule.

Schedule

The schedule is likely to shift by a few months because of a new construction/commissioning strategy for the final quads.

SuperB approved as the first in a list of 14 "flagship" projects within the Italian National Research Plan

- National Research Plan endorsed by "CIPE" (institution responsible for infrastructure long term plans)
- A financial allocation of 256M EUR over six years approved for the "SuperB Flavour Factory" (total cost and request ~twice that, assuming PEP-II equipment re-use)
- Cabibbo Lab created on Oct 7, 2011

 Major step forward: first major particle physics accelerator lab to be created in a generation

- Iegal structure needed in order to spend funds, sign MOUs
- MOUs with various institutions and labs completed or nearing completion
- most recently completed MOU with Budker Institute

- SuperB Collaboration formally in place since March 2012
- Cabibbo Lab management in place April 2012
- First hires in May/June 2012
- International Review Committee set up by Italian Ministry of Science (MIUR) to examine the Cost and Schedule of the SuperB project
- Report of the committee expected this autumn
- Ministerial review for all Flagship projects in autumn 2012, SuperB review on Nov. 19-20.

Plan:

- Machine and Detector TDR end 2012
- Start civil engineering 2013
- Start machine installation early 2014
- First collisions 2018

Summary

- B factories have proven to be an excellent tool for flavour physics, with reliable long term operation, constant improvement of the performance, achieving and surpasing design values
- Major upgrade at KEK in 2010-14 → SuperKEKB+Belle II, L x40, construction started, final approval by the Japanese government end of 2010, included in the JFY2011 budget
- SuperB in Italy: build a new tunnel, reuse (+ugrade) PEP-II and BaBar, approval by INFN end of 2010
- Physics reach updates available
- Expect a new, exciting era of discoveries, complementary to the LHC

