University of Ljubljana Faculty of Mathematics and Physics

MEASUREMENT OF CP VIOLATION IN WEAK DECAYS OF $B^0 \rightarrow K^+\pi^-\pi^0$ WITH THE BELLE DETECTOR

PhD thesis defense

Marko Petrič

Advisor: Assoc. Prof. Dr. Marko Starič

8 May 2014

The Standard Model

- Theory of electromagnetism, the weak and the strong interaction
- In 2012 the last missing particle (Higgs) discovered.
 - Experimentally exceptionally well confirmed theory 0

The Standard Model

- Theory of electromagnetism, the weak and the strong interaction
- In 2012 the last missing particle (Higgs) discovered.
 - Experimentally exceptionally well confirmed theory

What is CP Violation?

$$\mathcal{P} - \mathbf{Parity}$$

 $\mathcal{P}e_L^-
ightarrow e_R^-$

- Till 1957 believed that ${\mathcal C}$ and ${\mathcal P}$ are conserved
 - $\circ~\mathcal{P}$ violation discovered (C.S .Wu 1957)
- The product \mathcal{CP} is conserved (Landau 1957)
 - CP violation measured; $K_L \rightarrow \pi^+\pi^-$ (Cronin & Fitch 1964)
 - $\circ \ {\cal CP}$ violation measured in B^0 (Belle & BABAR 2001)
- + \mathcal{CP} violation distinguishes matter from antimatter

\mathcal{CP} Violation in the SM

- Described by the CKM matrix (Kobayashi & Maskawa 1973)
 - relative misalignment of the Yukawa matrices for the up- and down-type quarks

 $V_{CKM} = V_u V_d$

V matrices from diagonalisation of mass matrices

- + 3 \times 3 unitary matrix (3 angles, 1 complex phase $\rightarrow {\cal CP}$ Viol.)
- weak interaction couplings differ for quarks and antiquarks

\mathcal{CP} Violation in the SM

• CKM matrix very hierarchical \rightarrow Wolfenstein parametrization

$$V_{CKM} = \begin{pmatrix} 1 - \frac{1}{2}\lambda^2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{1}{2}\lambda^2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4)$$

 $\lambda = 0.225, \qquad A = 0.823, \qquad \rho = 0.132, \qquad \eta = 0.357$

- Unitarity \rightarrow six relations represented as triangles in the complex plane

$$V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$$

- Parameter η describes size of \mathcal{CP} violation in the SM

CP Violation an Open Issue?

- Sakharov conditions (1967) for Baryogenesis
 - 1. Baryon number violating interaction $H_{ ext{eff}}(\Delta \mathcal{B}
 eq 0)
 eq 0$
 - 2. Existence of \mathcal{CP} violating interactions
 - 3. Departure from thermodynamic equilibrium ($\mathcal{CPT} \rightarrow \mathcal{CP}$)
- Baryon asymmetry of the Universe by KM \mathcal{CP} violation

CP Violation an Open Issue?

- Sakharov conditions (1967) for Baryogenesis
 - 1. Baryon number violating interaction $H_{ ext{eff}}(\Delta \mathcal{B}
 eq 0)
 eq 0$
 - 2. Existence of \mathcal{CP} violating interactions
 - 3. Departure from thermodynamic equilibrium ($\mathcal{CPT} \rightarrow \mathcal{CP}$)
- Baryon asymmetry of the Universe by KM \mathcal{CP} violation

${\cal CP}$ Violation in $B^0 o K^+ \pi^- \pi^0$

- $B^0 \to K^* \pi \to K^+ \pi^- \pi^0$ source of information of ϕ_3
- B^0 decays via $\overline{b} \rightarrow \overline{u}u\overline{s}$ tree carry the phase ϕ_3
 - But tree doubly-Cabibbo-suppressed

- Tree sensitive to $V_{ub}^*V_{us}=A\lambda^4(
 ho+i\eta)$
- Measure \mathcal{CP} violation through interference of tree and penguin

Caveat emptor

Cabibbo-allowed EWP/QCD penguin contributions \rightarrow large dynamical enhancement Model-independent determination of ϕ_3 impossible

Marko Petrič

Measurement of ${\cal CP}$ violation in decays of ${\cal B}^0 o {\cal K}^+ \pi^- \pi^0$

${\cal CP}$ Violation in $B^0 \to K^+\pi^-\pi^0$

What can we do?

- Isospin symmetry of QCD
 - \circ Penguin $\rightarrow \Delta I = 0$
 - Eliminate QCD penguins $(\Delta I = 1 \rightarrow \text{no QCD})$
 - Nir 1991
- Linear combination $\Delta I = 1$: $A_{3/2} = -A(K^{*0}\pi^+) + \sqrt{2}A(K^{*+}\pi^0)$
- Phase difference between $K^{*-}\pi^+$ and $K^{*+}\pi^-$ from $B^0 \to K_S \pi^+ \pi^-$
- EWP estimated from (Gronau 2006)

KEKB Accelerator

 Operated in Tsukuba, Japan (1999–2010)

- KEKB took data mostly on $\Upsilon(4S)$
- $\circ \ \Upsilon(4S)$ decays almost entirely to $B\overline{B}$
- $\circ~(772\pm11) imes10^{6}~B\overline{B}$ pairs recorded
- Very clean environment for physics studies

Measurement of ${\cal CP}$ violation in decays of ${\cal B}^0 o {\cal K}^+ \pi^- \pi^0$

Central Drift Chamber (CDC) – B = 1.5 T

- Momentum measurement
- Particle identification

$$rac{\sigma_{p_T}}{p_T}\sim 0.5\%\sqrt{1+p_T^2[{
m GeV}/c]}$$

Electromagnetic Calorimeter (ECL)

- Identification of γ and e^-

Measurement technique

- $B^0 \to K^+ \pi^+ \pi^0$ receives contributions from intermediate states
- Measure phases and amplitudes from interference over the available phase-space (Dalitz Plot Analysis)
 - $\circ~$ Three-body pseudoscalar decay \rightarrow 2 free parameters

Measurement of ${\cal CP}$ violation in decays of $B^0 o {K^+ \pi^- \pi^0}$

Measurement technique

- Intermediate states: $\rho(770)^-K^+$, $\rho(1450)^-K^+$, $\rho(1700)^-K^+$, $K^*(892)^+\pi^-$, $K^*(892)^0\pi^0$, $(K\pi)^{*+}_0\pi^-$, $(K\pi)^{*0}_0\pi^0$ and non-resonant
 - $\circ~$ Need to parametrize their distribution in the Dalitz Plot

				l k
Resonance	Line shape	Parameters		n
	Spin-J = I			
$\rho(770)^{-}$	RBW	$m = 775.26 \pm 0.25 \text{ MeV}/c^2$	•	Spin-I \rightarrow Relativistic Breit-Wigner
		$\Gamma = 147.8 \pm 0.9 \text{ MeV}$		
		$R = 5.3 \text{ GeV}^{-1}$		
$\rho(1450)^{-}$	RBW	$m = 1465 \pm 25 \text{ MeV}/c^2$		
		$\Gamma = 400 \pm 60 \text{ MeV}$		o.si- / / -i= / -i=
		$R = 5.3 \text{ GeV}^{-1}$		g Vietning in
$\rho(1700)^{-}$	RBW	$m = 1720 \pm 20 \text{ MeV}/c^2$		
		$\Gamma = 250 \pm 100 \text{ MeV}$		₹₀₄⊑ / \
		$R = 5.3 \text{ GeV}^{-1}$		
				02
$K^{*}(892)^{+}$	RBW	$m = 891.66 \pm 0.26 \text{ MeV}/c^2$		700 750 800 850 900 950 1000 1050 1100
		$\Gamma = 50.8 \pm 0.9$ MeV		$m_{K'\pi}$ (MeV/c ²)
		$R = 3.4 \text{ GeV}^{-1}$		Spin 0 VIASS parametrization
K*(892) ⁰	RBW	$m = 895.81 \pm 0.19 \text{ MeV}/c^2$		spin- $0 \rightarrow LASS$ parametrization
		$I = 47.4 \pm 0.6 \text{ MeV}$		htereteretereteretereteretereteretereter
		$R = 3.4 \text{ GeV}^{-1}$		
··· ···	Spin-] = 0		
$(K\pi)_0^{++}$ or $(K\pi)_0^{+0}$	LASS	$m = 1425 \pm 50 \text{ MeV}/c^2$		2 as 1
		$1 = 270 \pm 80$ MeV		Ē.
		cutoff $m_{K\pi} = 1800 \text{ MeV/}c^2$		
		$a = 2.07 \pm 0.10 \text{ GeV}$		
	NI	$r = 3.32 \pm 0.34 \text{ GeV}$		0.2
0	INON-INT	ertering		
D° D+	Gaussian	$m = 1804.80 \pm 0.13 \text{ MeV/c}^2$		600 800 1000 1200 1400 1600 1800 2000 m _{e1e} (MeV/c ²)
D+	Gaussian	$m = 1009.02 \pm 0.15 \text{MeV}/c^2$		Non reconant VElat
				$rom resonant \rightarrow riat$

£

Event reconstruction and selection

• Branching fraction ${\cal B}r(B^0 o K^+\pi^-\pi^0) \sim 4 imes 10^{-5}$ (PDG)

- Reconstruct $\pi^0 \to \gamma \gamma$ and combine 4-momentum vectors to final state particle
- Reconstruction criteria to reduce background:
 - $\circ \pi^0$ invariant mass & quality of vertex fix
 - Energy difference

$$\Delta E = E_B^* - E_{ ext{beam}}^*$$

• Modified beam energy constrained mass (use only direction of π^0)

 \rightarrow less correlation to ΔE

$$M_{bc}' = \sqrt{E_{ ext{beam}}^2 - \left(ec{p}_{\mathcal{K}^+} + ec{p}_{\pi^+} + \left(rac{ec{p}_{\pi^0}}{ec{p}_{\pi^0}}
ight) \cdot \sqrt{\left(E_{ ext{beam}} - E_{\mathcal{K}^+} - E_{\pi^+}
ight)^2 - m_{\pi^0}^2}
ight)^2}$$

- Best candidate selection:
 - $\circ~1^{
 m st}$ stage: photon asymmetry $A_{\gamma}=rac{|E_{\gamma}^{1}-E_{\gamma}^{2}|}{E_{z}^{1}+E_{z}^{2}}$
 - $\circ~2^{\rm nd}$ stage: best χ^2 from the B^0 vertex fit

Continuum Suppression

• $e^+e^- o q\overline{q}~(q\in\{u,d,s,c\})$ background outweighs signal

Topological variables to discriminate signal and background

Continuum Suppression

- $e^+e^- \rightarrow q\overline{q} \ (q \in \{u, d, s, c\})$ background outweighs signal
 - Topological variables to discriminate signal and background

Marko Petrič

Continuum Suppression Performance

$\mathcal{F} + R_2 + \Delta z + qr + |\cos\theta_B|$

- Background

- Signal

24

Continuum Suppression Performance

• Transform and use for fit $C'_{NB} = \log \frac{C_{NB}}{1 - C_{NB}}$

Marko Petrič

24

Background Studies

• $C_{NB}>0$ rejects 92% of $e^+e^-
ightarrow q\overline{q}$ and 20% of $B\overline{B}$

Туре	Fraction (%)	
Signal	2.3	
Continuum	87.0	
Combinatoric	5.9	
Wrong mass hypothesis	0.5	
Wrong π^0 hypothesis	0.5	
$B^+/B^0 ightarrow c/s$	3.1	
Non-interfering	0.8	A. V. S. A.

Background Studies

• $C_{NB}>0$ rejects 92% of $e^+e^-
ightarrow q\overline{q}$ and 20% of $B\overline{B}$

• Signal region: 5.274 GeV/ $c^2 < M_{bc}' <$ 5.285 GeV/ c^2 , $|\Delta E| <$ 0.08 GeV, $C_{NB}' >$ 1

Туре	Fraction (%)	Fraction in the signal region (%)
Signal	2.3	27.6
Continuum	87.0	45.1
Combinatoric	5.9	10.8
Wrong mass hypothesis	0.5	4.4
Wrong π^0 hypothesis	0.5	1.7
$B^+/B^0 ightarrow c/s$	3.1	1.4
Non-interfering	0.8	9.1

 $B^0 \rightarrow K^+ \pi^- \pi^0 - \text{Fit}$

- Two step fit
 - $\circ~$ 3D fit: determine Continuum, Combinatoric, $B^+/B^0
 ightarrow c/s$
 - 6D fit: fix results from 3D fit.
 - \circ 6D fit: determine Signal, Wrong mass, Wrong π^0 , Non-interfering, Dalitz parameters $a_i, \phi_i \to A_{CP}, FF_i$

S/B separation

Dalitz

8

charge of primary kaon from B^0

Measurement of CP violation in decays of $B^0 \to K^+ \pi^- \pi^0$

Marko Petrič

$B^0 \rightarrow K^+ \pi^- \pi^0 - Fit$ (Dalitz plot)

24

$B^0 \rightarrow K^+ \pi^- \pi^0$ – Fit (Multiple Solutions)

- High dimensionality of parameter space ightarrow no single minimum
- Solution:
 - $\circ~$ Repeated 100 times with different starting values of parameters
 - Chosen one order of magnitude smaller and one order of magnitude bigger than expected value and $\phi_i \in [-\pi, \pi]$
- Three solutions found (2D χ^2):

- Most likely separated 3.8σ from second best, and 4.5σ from third best
- Most likely solution taken as result

$B^0 \rightarrow K^+ \pi^- \pi^0$ – Systematic Uncertainties

- General Branching Fraction uncertainties:
 - \circ Track Reconstruction Efficiency ($\pm 0.35\%$ per charged track)
 - PID Selection ($\pm 2.6\%$ measured from $D^{*+} \rightarrow D^0 \pi^+ \rightarrow (K_{\rm S} \pi^+ \pi^-) \pi^+$)
 - C'_{NB} Dependence
 - MC Statistics and Number of $B\overline{B}$ (±0.4%)
- Dalitz model and PDF related uncertainties:
 - $\circ~$ Line Shapes (vary parameters $\pm\sigma$)
 - Dalitz Model $(K_2^*(1430)^0, K_2^*(1430)^+, K^*(1680)^0, K^*(1680)^+)$
 - $\circ B\overline{B}$ Background
 - Continuum Background
 - Asymmetry in the Reconstruction of Charged Tracks

 $B^0 \rightarrow K^+ \pi^- \pi^0 - \text{Results}$ (1/2)

• Measured branching fraction (no $B^0 o D^- K^+$ or $B^0 o D^0 \pi^0$)

 $\mathcal{B}r\left(B^{0} o \mathcal{K}^{+}\pi^{-}\pi^{0}
ight) = (3.65 \pm 0.05(\text{stat.}) \pm 0.18(\text{syst.})) imes 10^{-5}$

• Signal yield: $5593 \pm 82(\text{stat.}) \pm 285(\text{syst.})$

Br _i	$= FF_i$	FF.	×	N _{sig}
		II į		$\overline{N_{B\overline{B}}}\varepsilon$

Amplitude	$Br[10^{-6}]$	A_{CP}	$\Delta \phi$
$K^{*}(892)^{+}\pi^{-}$	$2.69{\pm}0.32{\pm}0.41$	$-0.34{\pm}0.10{\pm}0.026$	$-0.12{\pm}0.22{\pm}0.20$
$(K\pi)_{0}^{*+}\pi^{-}$	$10.5\!\pm\!0.54\!\pm\!0.73$	$0.00{\pm}0.12{\pm}0.016$	$-0.25{\pm}0.24{\pm}0.21$
$ ho$ (770) $^{-}K^{+}$	$5.56{\pm}0.33{\pm}0.43$	$-0.14{\pm}0.10{\pm}0.095$	0.0 (fixed)
$ ho$ (1450) $^{-}K^{+}$	$2.89{\pm}0.69{\pm}0.63$	$0.30{\pm}0.27{\pm}0.123$	$0.72{\pm}0.27{\pm}0.12$
$ ho(1700)^{-}K^{+}$	$1.14{\pm}0.58{\pm}0.45$	$-0.28{\pm}0.36{\pm}0.126$	$0.52{\pm}0.25{\pm}0.19$
$K^{*}(892)^{0}\pi^{0}$	$2.12{\pm}0.24{\pm}0.46$	$-0.15{\pm}0.11{\pm}0.022$	$0.30{\pm}0.22{\pm}0.30$
$(K\pi)_{0}^{*0}\pi^{0}$	$4.46{\pm}0.58{\pm}0.50$	$-0.16{\pm}0.10{\pm}0.014$	$-0.06 \pm 0.26 \pm 0.13$
non-resonant	$2.80{\pm}0.36{\pm}0.51$	$0.08{\pm}0.15{\pm}0.123$	$0.65{\pm}0.28{\pm}0.19$

- All $\Delta\phi$ parameters consistent with zero
- Evidence for \mathcal{CP} violation in $B^0 \to K^*(892)^+\pi^-$ (3.3 σ)

Marko Petrič

Measurement of ${\cal CP}$ violation in decays of $B^0 o {\cal K}^+ \pi^- \pi^0$

$$B^0
ightarrow K^+ \pi^- \pi^0$$
 – Results (2/2)

• Measured resonance weights and phases of individual resonances

Amplitude	а	ā	ϕ	$\overline{\phi}$
$K^{*}(892)^{+}\pi^{-}$	$1.16\!\pm\!0.05\!\pm\!0.048$	$0.80\!\pm\!0.05\!\pm\!0.064$	$0.35 \pm 0.16 \pm 0.26$	$0.47 \pm 0.15 \pm 0.14$
$(K\pi)_{0}^{*+}\pi^{-}$	$45.91 \pm 1.65 \pm 1.59$	$45.81 \!\pm\! 1.74 \!\pm\! 1.018$	$-2.43 \pm 0.14 \pm 0.19$	$-2.19 \pm 0.13 \pm 0.12$
$\rho(770)^{-}K^{+}$	1.57 (fixed)	$1.35\!\pm\!0.09\!\pm\!0.178$	0.0 (fixed)	0.0 (fixed)
$ ho(1450)^{-}K^{+}$	$1.65\!\pm\!0.20\!\pm\!0.126$	$2.31\!\pm\!0.18\!\pm\!0.164$	$2.17 \pm 0.15 \pm 0.29$	$1.13 \pm 0.11 \pm 0.20$
$\rho(1700)^{-}K^{+}$	$1.20\!\pm\!0.16\!\pm\!0.221$	$0.92\!\pm\!0.14\!\pm\!0.205$	$0.59 \pm 0.15 \pm 0.19$	$0.00 \pm 0.17 \pm 0.19$
$K^{*}(892)^{0}\pi^{0}$	$0.93\!\pm\!0.04\!\pm\!0.065$	$0.82\!\pm\!0.04\!\pm\!0.060$	$0.03 \pm 0.14 \pm 0.16$	$0.21 \pm 0.13 \pm 0.36$
$(K\pi)_{0}^{*0}\pi^{0}$	$30.31 \pm 1.32 \pm 1.62$	$25.67 \!\pm\! 1.16 \!\pm\! 1.197$	$0.04 \pm 0.13 \pm 0.20$	$0.08 \pm 0.14 \pm 0.36$
non-resonant	$14.68\!\pm\!0.93\!\pm\!0.667$	$16.12\!\pm\!0.97\!\pm\!0.620$	$1.44 \pm 0.12 \pm 0.18$	$0.69 \pm 0.11 \pm 0.15$

- All complex weights have a significance of at least 3σ
 - Dalitz model was chosen adequately
- Data serving as partial input for ϕ_3 determination

Summary

- Perfomed Dalitz analysis of $B^0 \to K^+ \pi^- \pi^0$ on full Belle data sample
- Dalitz model used: $\rho(770)^-K^+$, $\rho(1450)^-K^+$, $\rho(1700)^-K^+$, $K^*(892)^+\pi^-$, $K^{*0}(892)\pi^0$, $(K\pi)_0^{*+}\pi^-$, $(K\pi)_0^{*0}\pi^0$ and non-resonant
- Measured branching fraction (no $B^0 \rightarrow D^- K^+$ or $B^0 \rightarrow D^0 \pi^0$) $\mathcal{B}r\left(B^0 \rightarrow K^+ \pi^- \pi^0\right) = (3.65 \pm 0.05(\text{stat.}) \pm 0.18(\text{syst.})) \times 10^{-5}$
- First evidence for \mathcal{CP} violation

 $A_{\mathcal{CP}}(K^*(892)^+\pi^-) = -0.34 \pm 0.10 \pm 0.026$

• BABAR measurement of $B^0 o K^+ \pi^- \pi^0$

$$A_{\mathcal{CP}}(K^*(892)^+\pi^-) = -0.29 \pm 0.11 \pm 0.02$$

• Measure resonance weights and phases of individual resonances (partial input for ϕ_3 determination)

BACKUP

Background Composition

- Continuum random $e^+e^- \rightarrow q\overline{q} \ (q \in \{u, d, s, c\})$
- Combinatoric tracks from B and \overline{B}
- Wrong mass hypothesis

• 50.0%
$$B^0 \to \rho^{\pm} (\to \pi^{\pm} \pi^0) \pi^{\mp}$$

• 15.7%
$$B^0 o D^- (o \pi^0 \pi^-) \pi^+$$

- **6.0%** $B^0 \to K^+ K^- \pi^0$
- Wrong π^0 hypothesis

• 9.0%
$$B^0 \rightarrow \rho^{\pm} (\rightarrow \pi^{\pm} \pi^0) \pi^{\mp}$$

• **7.6*%**
$$B^0 \to \rho^- (\to \pi^- \pi^0) K^+$$

• 5.2%
$$B^- \to \rho(1450)^0 (\to \pi^+\pi^-) K^-$$

○ **3.6***%
$$B^0 \to K^*(892)^+ (\to K^+ \pi^0) \pi^-$$

•
$$B^+/B^0 \rightarrow c/s$$

• 60.0% $B^+ \rightarrow \rho^+ (\rightarrow \pi^+ \pi^0) \overline{D}{}^0 (\rightarrow K^+ \pi^-)$
• 2.7% $B^0 \rightarrow \overline{D}{}^{*0} (\rightarrow \overline{D}{}^0 (\rightarrow K^+ \pi^-) \pi^0) \pi^0$

Non-interfering

$$\circ$$
 97.6% $B^0
ightarrow D^0 (
ightarrow K^+ \pi^-) \pi^0$

• 2.4%
$$B^0 \to D^- (\to \pi^- \pi^0) K^-$$

Marko Petrič

Measurement of ${\cal CP}$ violation in decays of ${\cal B}^0 o {\cal K}^+ \pi^- \pi^0$