Search for new physics in semitauonic B decays at B factories

Karol M. Adamczyk¹

¹Henryk Niewodniczański Institute of Nuclear Physics Polish Academy of Sciences

Kraków / Ljubljana, 26/03/2021

<ロ> < 団> < 豆> < 豆> < 豆> < 豆 > < 豆 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Outline

(ロ) (日) (日) (日) (日) (日) (100 - 100 -

- Hints of anomalies and NP scenarios in semileptonic B decays
- Polarization measurements in semitauonic B decays
- Summary and prospects

Experimental puzzles at semileptonic B decays

- Hint of violation of LFU in $R_{K^{(*)}} = \frac{\Gamma(B \to K^{(*)} \mu^- \mu^+)}{\Gamma(B \to K^{(*)} e^- e^+)} \text{ (LHCb)}$ $(R_{K^{(*)}} \text{ puzzle)}$
- Tension in $B \to K^* \mu^+ \mu^-$ angular observables
- Rare decays with good signatures can be measured precisely by LHCb

- Measurements by different experiment (BaBar, Belle, LHCb) favor larger than expected $R(D^{(*)}) = \frac{\mathcal{B}(B \rightarrow \bar{D}^{(*)}\tau^+\nu_{\tau})}{\mathcal{B}(B \rightarrow \bar{D}^{(*)}\ell^+\nu_{\ell})}$ $(R_{D^{(*)}} \text{ puzzle})$
- measurements of differential observables in semitauonic B decays with high precision on Belle II data
- methodology for new measurments can be prototyped and developed on Belle data

Semitauonic B decays

Arithmetic average of SM predictions from
HFLAV:

$$R(D^*)^{\text{SM}} = \frac{\mathcal{B}(B \to \bar{D}^* \tau^+ \nu_{\tau})}{\mathcal{B}(B \to \bar{D}^* \ell^+ \nu_{\ell})} = 0.258 \pm 0.005$$

 $R(D)^{\text{SM}} = \frac{\mathcal{B}(B \to \bar{D} \tau^+ \nu_{\tau})}{\mathcal{B}(B \to \bar{D} \ell^+ \nu_{\ell})} = 0.299 \pm 0.003$

New Physics scenarios

◆□ ▶ ◆ □ ▶ ◆ 三 ▶ ◆ 三 ● ⑦ � () ◆ 4/24

Experimental techniques @ B factories

Tagging techniques efficiency . Inclusive $B \rightarrow hadrons$ (inclusive modes) $\epsilon \approx O(1\%)$ A. Matyja: PRL 99, 191807, (2007), A. Bozek: PRD 82, 072005, (2010) Semileptonic $B \rightarrow D^{(*)} \ell \nu_{\ell}$ $\epsilon \approx O(0.3\%)$ Y. Sato: PRD 94, 072007, (2016) G. Caria: PRL 124, 161803, (2020) Hadronic $B \rightarrow hadrons$ (exclusive modes) purity $\epsilon \approx O(0.1\%)$ M. Huschle: PRD 92, 072014, (2015),

S. Hirose: PRL 118, 211801, (2017)

Contribution of Belle group from Kraków: BF measurments First observation of $B^0 \rightarrow D^{*-}\tau^+\nu_{\tau}$ Decay at Belle PRL 99, 191807, (2007). Observation of $B^+ \rightarrow \overline{D}^{*0}\tau^+\nu_{\tau}$ and evidence for $B^+ \rightarrow \overline{D}^0\tau^+\nu_{\tau}$ at Belle PRD 82, 072005, (2010).

 at least 2 neutrinos in final state → exclusive production of BB pairs at B factories; kinematical constrains from beam energy; B_{tag}direction;

Experimental situation

HFLAV

$$\begin{split} R_D &= 0.340 \pm 0.027_{stat} \pm 0.013_{syst} \\ R_{D^*} &= \\ 0.295 \pm 0.011_{stat} \pm 0.008_{syst} \end{split}$$

deviation from SM: $\sim 1.4\sigma$ for R(D) $\sim 2.5\sigma$ for $R(D^*)$ $\sim 3.08\sigma$ tension between SM and combined $R(D^{(*)})$ by BaBar, Belle and LHCb

 \rightarrow other observables not fully explored yet

Another observables

in semitauonic B decays D^* and τ polarizations sensitive probes of various NP scenarios

Kinematic variables describing $B ightarrow {\cal D}^{(*)} au u$

 $q^2 \equiv M_W^2$ - effective mass squared of the $\tau \nu$ system θ_{τ} - angle between $\tau \& B$ in W^* rest

frame

 χ - angle between the $\tau \nu$ and D^* decay planes

 $\begin{array}{l} \theta_{\rm hel}(D^*) \ \text{- angle between } D\&B \ \text{in } D^* \\ \text{rest frame} \\ \theta_{\rm hel}(\tau) \ \text{- angle between } \pi\& \ \text{direction} \\ \text{opposite to } W^* \ \text{in } \tau \ \text{rest frame} \end{array}$

$$\frac{d\Gamma}{d\cos\theta_{hel}(\tau)} = \frac{1}{2}(1 + \alpha P_{\tau}\cos\theta_{hel}(\tau))$$

$$\alpha = 1.0 \text{ for } \tau \to \pi\nu; \quad \alpha = 0.45 \text{ for } \tau \to \rho\nu$$

$$\frac{1}{\Gamma}\frac{d\Gamma}{d\cos\theta_{hel}(D^*)} = \frac{3}{4}[2F_L^{D^*}\cos^2(\theta_{hel}(D^*)) + (1 - F_L^{D^*})\sin^2(\theta_{hel}(D^*))]$$

 q^2 , M_M^2 and $\cos \theta_{\text{hel}}(\tau)$, $\cos \theta_{\text{hel}}(D^*)$ can be reconstructed at B-factories with hadronic decays of B_{tag}

First measurement of τ polarization in $B \rightarrow D^* \tau \nu$

PRL. 118, 211801 (2017); done by Nagoya group (S. Hirose, T. Ijima)

both $\bar{B^0}$ and B^- decays are used

Experimental challenges

- only 2 body au decays: $au o \pi
 u,
 ho
 u$
- distribution of $\cos \theta_{hel}(\tau)$ is modified by:
 - cross-feeds from other τ decays (contribute mainly in the region of $\cos \theta_{hel}(\tau) < 0$)
 - peaking background (concentrated around $\cos \theta_{hel}(\tau) \approx 1$)
- corrections for detector effects: acceptance, asymmetric $\cos\theta_{hel}$ bins, crosstalks between different τ decays
- for $\tau \to \pi(\rho)\nu$ modes combinatorial background from poorly known hadronic B decays

sample divided into two bins of $cos\theta_{hel}$: 1: -1 < $cos\theta_{hel} < 0$:

I:
$$0 < \cos\theta_{\text{hel}} < 0.8$$
 (for $\tau \to \pi \nu$)

$$P_{\tau} = \frac{2}{\alpha} \frac{\Gamma_{\cos\theta_{\rm hel} > 0} - \Gamma_{\cos\theta_{\rm hel} < 0}}{\Gamma_{\cos\theta_{\rm hel} > 0} + \Gamma_{\cos\theta_{\rm hel} < 0}}$$

Results

PRL 118, 211801 (2017); done by Nagoya group (S. Hirose, T. Ijima)

first measurement of P_τ(D^{*}); the result excludes P_τ(D^{*})> +0.5 at 90% C.L.

D* polarization studies

done by Kraków group

 $R(D^{(*)})$ systematically above the SM expectations, surprisingly large effect for $R(D^*)$ then for $R(D) \Rightarrow D^*$ polarization measurement

Measure $F_{l}^{D^{*}}$ from fit to $\cos \theta_{\text{hel}}(D^{*})$ distribution: $\frac{1}{\Gamma}\frac{d\Gamma}{d\cos\theta_{\rm hel}(D^*)} = \frac{3}{4}[2\boldsymbol{F}_L^{D^*}\cos^2(\theta_{\rm hel}(D^*)) + (1-\boldsymbol{F}_L^{D^*})\sin^2(\theta_{\rm hel}(D^*))]$ In comparison to τ polarization: + all τ decays are useful \rightarrow larger \mathbf{B}^0 W^{*+} \mathbf{D}^* statistic less affected by cross-feeds between different τ decays 1.2 theoretical papers on D^* polarization studies: Z.-R. Huang et al., PRD 98, 095018, (2018) 0.8 $((F_L^{D^*})_{\rm SM} = 0.441 \pm 0.006)$ 0.6 $F_{I}^{D^{*}}=0.5$ 0.4 Bhattacharya, S., Nandi, S., Patra, S.K., Eur. Phys. J. C SM 0.2 79, 268 (2019) 0_1 $((F_{L}^{D^{*}})_{\rm SM} = 0.457 \pm 0.010)$ $\cos\theta_{hel}(D$ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □

Experimental challenges

Main experimental problem:

strong acceptance effects for $\cos \theta_{\rm hel}(D^*) \geq 0.0$ for large q^2

relative efficiency

distribution of slow π^{\pm} from D^*

Effectively only $\cos \theta_{hel}(D^*) < 0$ is useful for $F_L^{D^*}$ measurement

Method of reconstruction

Reconstruct **inclusively** B_{tag} . First we find B_{sig} candidates: $(D^* + (\text{h or } \ell))$, from rest of event we reconstruct candidates for B_{tag} and calculate:

 $E_{tag} = \sum_{i} E_{i} \quad \mathbf{p}_{tag} = \sum_{i} \mathbf{p}_{i} \text{ variables to identify } B_{tag} : M_{tag} = \sqrt{E_{beam}^{2} - \mathbf{p}_{tag}^{2}},$ $\Delta E_{tag} = E_{beam} - E_{tag}$

Extract number of signal events by fitting M_{tag} distributions in bins of $\cos \theta_{hel}(D^*)$;

This approach allows for signal extraction using **known** PDF's (CrystalBall and Argus) parametrizations;

3 Measure $F_L^{D^*}$ from fit to obtained $\cos \theta_{hel}(D^*)$ distribution;

Signal extraction

≡ ∽੧ೕ 14/24

- the signal yields are extracted from a simultaneous, extended UML-fit to all 9 sub-channels in the *M_{tag}* distributions
- procedure is performed in 3 bins of $\cos \theta_{hel}(D^*)$ in the range [-1,0]; I: $-1.0 < \cos \theta_{hel}(D^*) < -0.67$ II: $-0.67 < \cos \theta_{hel}(D^*) < -0.33$ III: $-0.33 < \cos \theta_{hel}(D^*) < 0.0$
- example fit projection to M_{tag} distribution in the range $-1.0 < \cos \theta_{\text{hel}}(D^*) < -0.67$ on 2nd stream of **Monte Carlo** generic:

Preliminary results for $F_L^{D^*}$ measurement in $B^0 \rightarrow D^* \tau \nu$

- A. Abdesselam *et al.* [Belle], "Measurement of the D^{*} − polarization in the decay B⁰ → D^{*-}τ⁺ν_τ", arXiv:1903.03102 [hep-ex].
- K. Adamczyk [Belle and Belle-II], "Semitauonic B decays at Belle/Belle II," http://doi.org/10.5281/zenodo.2565845 arXiv:1901.06380 [hep-ex].
- agrees within 1.7 σ of the SM prediction
- dominant systematics from MC statistics (sig, peaking and comb. bkg. PDF shapes) = ±0.03
- the result obtained assuming the SM dynamics

≡ ∽ ९ € 15/24

 last step: uncertainty from signal model in NP scenarios

Prospects @ Belle

- combine charged and neutral B samples to measure D* polarization

Summary

- R(D), $R(D^*)$, $P_{\tau}(D^{(*)})$ and $F_L^{D^*}$ in $\overline{B} \to D^{(*)}\tau\nu$ are good probes for NP
- First measurement of τ polarization in $B \rightarrow D^* \tau \nu$: $P_{\tau}(D^*) = -0.38 \pm 0.51(stat.)^{+0.21}_{-0.16}(syst.)$
- First measurement of D^* polarization in $B^0(\overline{B}^0) \rightarrow D^* \tau \nu$ $F_L^{D^*} = 0.60 \pm 0.08(stat.) \pm 0.04(syst.)$
- measurements sensivity limited by the statistics

Prospects @ Belle II

The Belle II Physics Book, arXiv:1808.10567

- Belle: 0.772 x 10⁹ BB;
- Belle II: \sim 50 x 10⁹ $B\overline{B}$ (x 50 Belle statistic) (50 ^{-1}ab)
- expected number of events for $P_{\tau}(D^*)$ measurement:
 - ~ 4000 in $B^0(\overline{B^0})$ mode (hadronic B_{tag} reconstruction)
 - ~ 10000 in $B^+(B^-)$ mode (hadronic B_{tag} reconstruction)
- expected number of events for F_L^{D*} measurement:
 - ~ 15000 in $B^0(\overline{B^0})$ mode (inclusive B_{tag} reconstruction)

Room for improvements on Belle/Belle II data

- particle ID done by ML algorithm \rightarrow efficiency/fake rate improvement
- inclusive B_{tag} reconstruction based on BDT
- improved VXD resolution \rightarrow use vertices and IP to create topological discriminator
- higher statistics and better reconstruction efficiencies (i.a. slow π from D*) should allow for precise measurements of kinematic distributions, e.g. q², polarizations, F_L^{D*}(q²)

BACKUP

<ロト < @ ト < 主 > < 主 > 三 の < で 18/24

The Belle Experiment

KEKB B-factory - asymmetric e^+e^- collider $e^+e^- \rightarrow \Upsilon(4S) \rightarrow B\overline{B}$ (772 x 10⁶ $B\overline{B}$)

• clean source of *B* meson pairs

High Energy Ring (HER)

 reconstruction of one B meson (B_{tag}) provides information on momentum vector and other quantum numbers of another B (B_{sig})

•
$$E_B = E_{\text{beam}} = \frac{\sqrt{s}}{2}$$

KEKB

Interaction Region

SGeV

Low Energy Ring (LER

Modification of *D*^{*} polarization in NP scenarios

PRD 95 115038, (2017)

ク へ (~ 20/24

Differential observables to examine NP scenarios

PRD 94, 072007 (2016); semileptonic B_{tag}

- Measured distributions of p_{D*} and p_l consistent with SM but do not provide enough discriminating power due to statistical limitation
- More observables with more data needed to clarify the situation

The angular observables not yet (fully) explored experimentally

First au polarization measurement in semitauonic B decys

done by Nagoya group

 $\cos \theta_{hel}(\tau)$ can be measured if there is a single ν in τ decay $\tau \rightarrow h\nu_{\tau}, h = \pi, \rho, a_1$

Spin analysers: $\frac{d\Gamma}{d\cos\theta_{hel}(\tau)} = \frac{1}{2}(1 + \alpha P_{\tau}\cos\theta_{hel}(\tau))$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

$\cos \theta_{ m hel}(au)$ reconstruction

contribution from Kraków group

τ momentum vector is not fully determined

 $au
ightarrow \mathbf{h}
u_{ au}, \, \mathbf{h} = \pi, \rho$

$$\stackrel{\stackrel{\stackrel{}}{\to}}{} D^0 \pi \\ B \to D^* W^* (\to \tau \nu)$$

in CM of W*

•
$$E_{\tau} = rac{M_W^2 + M_{\tau}^2}{2M_W}; p_{\tau} = p_{\nu_1} = rac{M_W^2 - M_{\tau}^2}{2M_W};$$

•
$$E_h = \frac{M_W^2 + M_h^2 - M_M^2}{2M_W};$$

•
$$\cos \theta_{\tau h} = \frac{2E_{\tau}E_{h} - (M_{\tau}^{2} + M_{h}^{2})}{2E_{\nu_{1}}p_{h}}$$

• Lorentz transformation from the rest frame of the $\tau - \overline{\nu}$ to the rest frame of τ : $|\vec{p}_{d}^{\tau}|cos\theta_{hel} = -\gamma |\vec{\beta}|E_{d} + \gamma |\vec{p}_{d}^{\tau}|cos\theta_{\tau d}$

•
$$\Rightarrow \cos \theta_{hel}(\tau)$$

Validation of BSTD MC generator

contribution from Kraków group

- find disagreement between ISGW2 and BSTD \rightarrow lack of the interference terms important in certain angular distributions
- contribute to validate distributions from BtoSemiTauonicDecays (BSTD) MC generator

