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== Whatis DAEOALUS ?
Il ||| Search for CP violation in the neutrino
sector

Decay
At rest
Experiment
for 6., studies
At the
Laboratory for
Underground
Science

Use decay-at-rest neutrino beams,

& the planned 300 kton H,O detector (Gd doped) at
DUSEL
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II I- = The quark sector has “mixing”
quark mass eigenstates # quark weak eigenstates

Small effect, Vu v U

but clearly

seen 1n weak

Interactions...
.. and
QuickTime™ and a kaon decays
decompressor ’
are needed to see this picture. D meson decays,
etc.

Mixing shows up 1n processes with 2 diagrams to the same final
state => interference term in the decay probability
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Does the lepton sector show similar phenomena?

US Particle Accelerator School




II I- = Q(bservation of one type of neutrino
changing into another type would imply:

1. Neutrinos have mass with a mass difference, Am

2. Lepton number (electron, muon, tau) 1s not conserved

> (07,1 J9)

3. The Weak Eigenstate 1s a mixture of the Mass Eigenstates
with mixing angle 0

v, cosd smél| v,
mass eigenstates = flavor eigenstates — )
v,) \=sm@ cosO\v,
Vi II|||'| fll “f” ”| || l'l |'H1|r|-|1| |
+ || Illl I |I|||| W I|| Experimental parameters:
V2 [lll'fl"’," 1‘|"| l | | Propagation distance, L
i .'. WY |,| l' Neutrino energy, E
N | M ,1|! Fundamental parameters 6 & Am?
or | | | ||||Ir~'||||||| . :
N ||||" *'||||| |‘||u'I I|l|| P, =1 - sin’20 sin’(Am? L/E).
]

Source: M. Shaevitz
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II I- = Neutrino oscillations due to mixing was

Il observed in the Kamland experiment

QuickTime™ and a
decompressor
are needed to see this picture.

P, =1 - sin?20 sin’(Am?L/E).

Ratio of background & geo-neutrino subtracted anti-neutrino spectrum to expectation for no-oscillation as a function
of L/E.
L is the effective baseline taken as a flux-weighted average (L=180km).

Histogram & curve account for distances to 55 individual reactors, the time-dependent flux variations & efficiencies.
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THw In the Standard Model, neutrinos are
I I" part of three weak lepton doublets

Leptons \/ U—
~ | Ve Vu
11

r We identify the
CC neutrino flavor
~ S via the Charge Current interaction
Quarks
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Source: M. Shaevitz

TH= The three families of leptons: e, u, and 7,
I I" (101 3X3 neutrino mixing matrix

" Flavor \ o | [ Mass
l | | = (Mixing Matrix ) |
. Eigenstate } \ Eigenstate
N ' - i& " -»ﬁ
e U el U g2 U EJE 1#’1
I = U;el U;ez U i3 FI
r J U rl U T2 u r3 4 3

2 2 - R 2 3 2 -
Amy, =Am,,  =m —m; Jﬁmﬂmﬁmﬂ—ﬁm_{mmhm—ml
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Atmospheric neutrinos result from the interaction of cosmic rays with nuclei in the Earth's atmosphere

Solar neutrinos are v, originating from nuclear fusion in the Sun
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Il Ii I- Neutrino oscillations

0 = mixing angle

A = oscillation
frequency

Distance, x = ct

I Probability that v,, has become V, 1 Probability that v, is still v,,

NOTE: ME ~ 1/ Am?
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II II m The quark mixing matrix must be unitary, e

I I but it doesn’t have to be “simple”

Any 3 x 3 unitary matrix has
3 associated free parameters (Euler angles)

¢;=cosb; s;7=sinb;

& can have a complex phase

QuickTime™ and a A
decompressor ah
are needed to see this picture.

This “CP violating phase” 6 can lead to a different decay rate
for matter vs. antimatter
For example neutral kaon decays (factor of ~1000 in lifetime)
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Il Ii I- We can break the mixing matrix apart

Daya Bay
Super K, Double Chooz
K2K, MINOS, will measure
soon T2K...

cosf, smé, 0 cos 8, 0 e siné, 1 0 0
U=|—-smé&, cos#, 0|x 0 1 0 x| 0 cosdy; sindg
_ _
0 0 1 - Fsmf,; 0 cos &, 0 —smf,, cosé,
3-mixing . “Little mixing angle, 8,5 "
Eng'eﬁ Solar: BIE ~ 33 Sin'? 2913 = 0.2 at 0% CL AtmtﬁphEriEI BES - 45-:-

(or 845 < 13%) and 6 =77
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TH= Current knowledge of mixings & mass
o [T
differences

solar atmospheric

Current Measurements: Am3, =8x107 eV® | Am], ~ Amj, =2.5x107 eV?

mi m?
A - v, A
61 — Y
/ [ "v't
2 2

F Savy2
solar~-8x=10eV ——’”12

atmospheric
~3x10-%eV2

atmospheric
~3x10-3%eV?

3 solar~8x10-3eV?2
m?l

» Current eXpel'if ’ Mormal Hierarchy Inverted Hierarchy
» Measure 0,; mixing angle
» Determine mass hierarchy
» Search for CP violation & measure d.p
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II I. = Neutrino oscillations can reveal

Il the CP violation phase

<+ Muon neutrinos change to electron neutrinos as they propagate through
space

< CP Violation =

< Two next generation experiments [Prob(v, — v,)# Prob( v, — v,)

» Long baseline neutrino/antineutrino experiment (LBNE) — Conventional
Approach
Send beam from Fermilab to DUSEL (South Dakota)
LBNE has one beam with a near (1 km) and a far detector (1300 km)
Far detector is a very large (300 kton water Cerenkov detector with phototubes)

» Daedalus — A New Powerful Approach
One detector and multiple antineutrino sources at different distances
(1.5 km, 8 km, 20 km)
Use same large water detector (300 kton water with phototubes)

US Particle Accelerator School
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II I- = The conventional approach,
I I if you have the Tevatron

The Probability for Oscillations...

P, = sin® 20 sin*(1.27Am*L /E)

- =

P is maximized when Am?*(L/E) ~ 1

" The atmospheric Am? ~0.001 eV?2

v
E,,. from a convention beam 1s ~ 1 GeV
— | (m,)”
(Am)g,
()’
= "
normal hierarchy SO L 1000 km R
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Il Ii I- Both approaches use DUSEL

Shallow
Lab

Mid-level

Deep
Campus

6 Y3 Empire State
Buildings
for scale

4

1
1
:

Astrophysics

Deep Underground Science 3 e
DUSE and Engineering Laboratory at Homestake, SD (Tt ‘?5 £

Geoscience

US Particle Accelerator School
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Il Ii |- Conventional approach: LBNE @ DUSEL

DU SE Deep Underground Science
and Engineering Laboratory

Homestake mine

South Dakota

E Fel |.1||I.'|I:E_ Iires 60
- %
";7 S

’ L : vy
s g Yates !
T — a1 Yates Shafi

—p |
'
U

' Experimental comments:

— Large neutrino flux covering 1st and 2nd

§ oscillation max points (0.8 and 2.4 GeV)

Y — Fairly pure v, flux with small v, contamination

g8l — Minimize flux with energy above 5 GeV that
causes background

— But substantial neutral current n° events that

Neutrino Detectors s

mimic v, events

Source: M. Shaevitz US Particle Accelerator School




II I- = The LBNE search for CP violation
Il shoots neutrinos through 1300 km of matter

The easiest way to make a high-flux B
beam which switches from v to v:

p —_target | ) all
P magnetic N
field
“Conventional neutrino beam™ -- 100’s of MeV to a few GeV

The ground is made of matter (electrons) not antimatter (positrons) &
Forward scattering affects neutrinos differently than antineutrinos

All long-baseline experiments must introduce a model
for matter effects, before they can study CP-violation

US Particle Accelerator School
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— ()"

I smm  Qscillation of muon-flavor to electron-flavor at
I II I (Am?) may show CP-violation dependence

atmos

(!_‘hnz)aml

In vacuum...

[ I l(mZ}2
(Amz)s ol
—m— ()’

QuickTime™ and-e normal hierarchy

decompres o
— are needed to see thi$

We want to see terms depending on terms depending on QuickTime™ and a
. . o littin decompressor
lf 6 1S NONZCcro mixing angles mass SpUTHNES gre needed to see this picture.

The o-dependent terms arise from
interference between the Am,;? and Am,,* oscillations
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(m,)”
Il Il | Parameters are well known except fo@

(mnz)am

(1112)2
(ﬁln )sul
(m, :l2

QuickTime™ and a
decompressor QuickTime™ a Ng A

e N decompressor
are needed to see this picture. arslneeded DS GoINEITIE

s .

Therefore quote sensitivity
as allowed regions in both 0,; and o

US Particle Accelerator School

Source: J. Conrad



TH= Terms depending on o
I Il | change the oscillation wave L dependence.

QuickTime™ and a
decompressor
are needed to see this picture.

Measurement at 3 points constrains the CP violating contribution

US Particle Accelerator School




Il Ii I- The usual technique and matter effects

| >

e

| >

POSC (

&
v/ Q o"g
Qv
2
Q¢
3n/2
TT
A
6CP
>
Posc ( Ve Vu )

niversity of Linhliana

Unives
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[
/
”
<
A S
Q"
matter + P
— inverted  \3°
=1 L
| >
TCIJ
| >
o
(o]
a
>
—_
Posc ( Ve Vu )
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5 years of v Running

v, 30107 PaT, 1300km

normal hierarchy
sin” 28,,=0.04

Events/0.25 GeV
-5.1
=

signal + bkg:

— B,=t45"(702)
§ 5.=0 (807)
— B=-45" (934)

background:

60 all (415)
C % beam v, (196)
50—
a= |
A0
7 A R
1050 e
:“ e s warH
1 _ 10
neutrino energy [GeV]

Second maximum can help the 5.p
measurement since Am?,, terms bigger
but large backgrounds and low statistics

US Particle Accelerator School

Source: J. Conrad

Events/0.25 Gel/

Expected LBNE Events
in 300 kton Water Detector

5 years of v Running

v
n
s

. 30 107 PoT, 1300km

signal + T:f":“
ormal hierarchy — §..=+45" [36E)
in’ 26,,= 0.04 | 5.=0 (342

— =457 (311)

background:

all {201)

% beam v, {121)

L N LR

1 10
neutring energy [GeV)

Difficult to collect large antineutrino statistics

Normal Hierarchy

University of Linbljana

FACULTY OF
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H . . " Unive
I| Il ] Expectation for inverted hierarchy

(mz)z*

) (Am7)
(m,)

QuickTime™ and a
decompressor QuickTime™ and a (Anf)
are needed to see this picture. decompressor am
are needed to see this picture.

(n,)” e —

inverted hierarchy

US Particle Accelerator School

Source: J. Conrad



Il Ii I- What do we know about 8 vs 0, ?

The actual values could be

QuickTime™ and a,

anywhéremgsthis region!

US Particle Accelerator School
Source: J. Conrad



=== [f we observe a signal,
I'li

Source: J. Conrad

what would this plot look like?

DAY “jelly bean”

»

, Imagine the real values are:

/' 5= 80°
sin?20,;,=0.05

QuickTime™ and a
decompressor

1 Sigmaeded to see this picture.
CITOr

2 sigma
error

US Particle Accelerator School




THw “Jelly bean plots” identify hypothetical values of o
I I & 0,; & show the expected contours at 1o and 2o

vy, A, >0

30+30 10 2 PoT

pUme
hE®

o

*  trug value
— 68% CL
—— 95% CL

60

-ﬁD: /O
el
02 un4 Dﬂﬁ IZHJB 0.1 u12 014 ﬂ'1ﬁ

sin? 2913

120F

(D
@ A (M)A
AR IR

=

-180g

If we know the mass hierarchy, this 1s how well LBNE can
do in 10 years of running (e.g. without Project X)

US Particle Accelerator School
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New DAEOALUS Multi-Source Approach

“Eliminate” matter effects

Use a narrow spectrum neutrino beam

from decays at rest

US Particle Accelerator School




II I- = For a " decay at rest beam, shape is driven ==
by nature - only the normalization varies

QuickTime™ and a

p + C —> decompressor

are needed to see this picture.
vote S, +e

Vu =31, then ve + p— ¢ +n (IBD events)
|J'|:He? 035,(E,} =045E, %=1 0.8(1- ) | F Jﬂ,
: ;2_3__};;_-"'@ rate:0.32,(E, ) = 0.42E, d_.:r_ +1.2(1- J':Iﬁl

)

\Q\ T;._ o / No intrinsic ;e
r §‘ //

Perfect for a

Intensity -

||- - V % Ve

: ! L
3 \ search

vo+E =V tE

| _ . )
| | |rate:225.(E,} =049E, ;—5_“01“ e

’_r'_. v, + Oygen — & = Fluorine
| ( Electron goes mainly backward for this process!)

0.02 0.03 0.04 005 006
Energy, GeV

US Particle Accelerator School

Source: M. Shaevitz




. -
Ve /\ v€+p et
P n
Event range 1s
IBD signature:
g 20<E, <55 MeV
/ e* cherenkov ring L
_LE_) Q
P, n capture

T ol vy Towal
US Particle Accelerator School

Source: J. Conrad



Source: J. Conrad

Neutrino-electron scattering is critical

Provides the normalization of the flux
since the cross-section 1s known to 1%

Mostly from v s

QuicKTime™ and a
dgcompressor
are needed to see this picture.

about 20% from
muon flavor

US Particle Accelerator School
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Il Ii I- Measurement strategy

« Determine the v, flux from observed neutrino-electron elastic scatters
{ve+e-—:we+e}}
— Every decay-at-rest n~ gives one v, one v, and one ;u with an isotropic
distribution thus measuring the v_ constrains the other fluxes

Use events with visible energy = 10 MeV

— This assumes that other contributions such as n* decay-in-flight are
negligible (calculations put them at the 10 level)

— Qutgoing electron very forward peaked so easy to separate

— Well understood process with small cross section and experimental
uncertainties (largest uncertainty is 2% energy scale error.)

» Using this flux, determine the predicted number of signal inverse-beta
decay events ( v. + p — e* + n) (plus background)

— Well known cross section
— (Good expenmental handle for isolating this process

See energy signal from positron {use visible energy > 20 MeV cut to
reduce backgrounds)

See delayed coincidence with 8 MeV energy signal from capture of the
neutron on Gd

+ Compare observed and predicted events versus the physics parameters:

0,5, 6p iC.
US Particle Accelerator School

Source: M. Shaevitz



| mmm We need 3 distances &
I II I we cannot have three 300-kton detectors

Osc max (g/2) Off max (7/4) Constrains
at 40 MeV ™ at 40 MeV flux

A multiple-baseline,
single-detector
experiment

We take advantage of the fact that Nature assures
decay-at-rest beams will be identical in flavor & energy

US Particle Accelerator School
Source: J. Conrad



TH= But the neutrino cross section is small!
I I" How many neutrinos do we need?

< For phase 1 (five years) we need
» 4E+22 neutrinos per year from the near site
» 8E+22 neutrinos per year from the mid-site,
» 1.2E+23 neutrinos per year from the far site
» with each site having a 20% duty factor

< Recall the production reaction

p+CHo1"+X
vt
1 —e +v, +v,
<+ At 1 GeV, roughly 10 % of protons produce a n*

==> This means a lot of protons!

US Particle Accelerator School




TH= What proton energy? At “A plateau” one trades
I II I E, for current to get same rate of v/MW

<600 MeV
too little "
production

l “A Plateau?’ ~ 1240 events 1n 5 years

QuickTi a
decom

. >1500 MeV, energy goes
into producing other
particles besides " at a
significant level

These are NOT small beam powers per accelerator

US Particle Accelerator School

MARS calculations - A. Houlier
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I H N . . e
WIIT Determine distance for an event by timing

Beam Off Beam Off

1.5 km |1oous ) 400us >[100,s]< 200us ‘100;15
Accelerator.
8 km 100ps]« EEE— »[100ps|e—— —— [ 100us
Accelerators_____|
20 km 100ps|< 400us R 100us\ 00us ___ ,1100us
Accelerators

3 MW, 20% DF 3 MW, 20% DF 1 MV, 20% DF

US Particle Accelerator School




Il Ii I- Expected results from DAESALUS

decompressor

US Particle Accelerator School




Il Ii I- The DAESALUS accelerator complex

< Performance essentials
» Seven ~ 1 MW beam proton beams
~1 MW of protons with energy 600 MeV <E <1500 MeV

>
> Efficient acceleration
» High reliability (~95%)

s What we do not need

1. Fancy time structure

A Quasi-CW is fine (100 us on & 400 us off)

2. Ability to inject into another accelerator or ability to make clean
secondary beams.

3. Flexibility with respect to beam energy

And all this at a “reasonable’ price

US Particle Accelerator School




Il Ii I' DAEOALUS Needs vs. Existing Machines

(Average Power Needs)

¢ LAMPF (Linac): 800 MeV, 1 mA (12% DF)
% PSI (Cyclotron): 590 MeV, 2.2 mA (100% DF)
< SNS (Linac): 1 GeV, 1 mA (6% DF)

< DAEOALUS:
Near ~ 1 mA (20% DF)
Far ~ 5 mA (20% DF)

[n Current (Average)
[particle milliamps]

7
4,
TRIUMF [ \ W

In Energy [per nucleon]

US Particle Accelerator School




Il Ii I' DAEOALUS vs. Existing Machines

(Peak Power adjusting for duty factor)

< LAMPF (Linac): 800 MeV, 8 mA peak
% PSI (Cyclotron): 590 MeV, 2.2 mA
% SNS (Linac): 1 GeV, 17 mA peak el

< DAEOALUS
Near ~ 5 mA peak

Far ~ 25 mA peak . \
7
TRIUMF [ iy

[n Energy [per nucleon]

[particle milliamps]

[ Current (Peak)

US Particle Accelerator School




Il Ii I- Accelerator options

% Proton linac
» SNS made simple

< Rapid cycling synchrotron
» JPARC-like at lower energy and higher current

< Cyclotrons
> PSI-like (1 MW @ 650 MeV)
» Compact SC cyclotron
» H2" ring cyclotron
» Stacked cyclotrons

% FFAG
» Requires extensive R&D

US Particle Accelerator School




Il Ii I- The SC Linac Option

< Most conservative choice:
» Copy SNS as much as possible
> “Eliminate” re-engineering

< Performance parameters
> 800 MeV
» 70 mA of H" @ 6% duty factor
» 2 ms spills at 50 Hz

*

Other features
» One accelerator feeds three targets
» Conceptually straight-forward upgrade path for Phase II running

< Negatives
> Size
» Cost of conventional facility

US Particle Accelerator School




Il Ii I- Rapid cycling synchrotrons

<+ Characteristics
» Limit to ALS sized (~100 m circumference)
» Ignoring the extraction gap, ~ 200 bunches
» 20 nC/bunch ==> 2.4¢13 protons per fill
» Rapid cycling operation at ~100 Hz ==> 400 pA on target

> At 1.5 GeV ==> 0.6 MW on the target, significantly less than
required.

s Machine diameter is still ~ 30 m with at 10 m tail for the
injection linac.

< All features would be pushed to the technical limits,

» Moreover, there would be no head-room in overall performance.

Consequently, we have ruled out this design from further consideration.

US Particle Accelerator School




Il Ii I- 1 MW cyclotrons exist

< Why not copy the PSI design?
> Very large
» 580 MeV, 1.8 mA
» ~300 - 500 MS$ per copy (?)
» High efficiency (~40%)
> Very low losses (0.01%) S
» More complex than needed
« One 1s paying for flexibility

<+ Are there other cyclotron
approaches at the | MW
level? S

US Particle Accelerator School




Il Ii I- Why superconducting cyclotrons?

» Cyclotrons are efficient users of acceleration voltage (MV/m)
» High E-fields not required to reach high energy

< Cyclotrons have been around for 8 decades
» They are well characterized & quantitative

» Superconducting cyclotrons have been around for 3 decades

» They are robust, have established a scaling in which plant cost decreases
3X when the B field is approximately doubled

» Superconducting Cyclotrons have never required feasibility
demonstrations

» Beam dynamics & magnet designs are quantitative & predictive

One can again double the B field without increasing risk
or diminishing performance

US Particle Accelerator School




II I- = Compact SC Isochronous Cyclotrons:
I I Our initial motivation for DAEJALUS

< Potentially low-cost
> Single stage acceleration
» High magnetic field, isochronous design
» Small-footprint, single stage, mA-current
» under development at MIT for the Defense Threat Reduction Agency

< High current operation relatively insensitive to final beam energy.
Limiting intensity depends on
> 1) Ability to capture a high current beam at low energy into stable orbits at
the cyclotron center

> 2) Suppression of beam loss due to resonant instabilities during
acceleration

> 3) Ability to extract beam without high losses

< Can non-resonant self-extraction work at high energy & high

efficiency?
All relevant design issues will be addressed in DTRA-sponsored research at MIT
that is aimed at beam parameters very similar to DAEdALUS parameters.

US Particle Accelerator School




II I- = Example: MIT Designed Proton Cyclotron
for Proton Radiotherapy

» Cost of PBRT is reduced an
order of magnitude ($150M to
N $20M)
—t - \ed! B2 | » First system goes into Hospital
: : e ' June 2010

» 5 are in various stages of
production simultaneously

» 15 are on order

)

Still River Monarch 250 MeV

US Particle Accelerator School




Ili1°- DTRA sponsored demo: 250 MeV, 1mA
1

< 4 Sector, Superconducting Isochronous cyclotron

<+ By=5.6T, B=7T

< Rpole =0.4m ; 37 tons

<+ 84.5 MHz, h=1, 2 dees 1n valleys, VO = 160 kV; 450 kW
< External ECR and axial injection

< Non-resonant extraction; passive magnetic channels

US Particle Accelerator School




== Are we done?
o

Il 2010 workshop identified issues

< Injection

» For axial injection inflection may be problem

- lose factor of 10; heat dissipation

» Longitudinal phase space acceptance depends on extraction strategies
< Magnet questions

» Isochronicity requirements, control of field variations & control — flutter
< Extraction

» Self-extraction, IBA, 14 MeV H+, mA beam (is this energy the limit)
Turn separation is much lower at higher energies,
RF manipulation could induce resonances? Relating to beam energy?
Need tune close to gamma (~2 for 1 GeV)
Can one get 1 cm/turn?

Septum placement, definition of extraction channel?

YV V. V V V V

Beam loss specification for component survival & maintainability?

Is controlled extraction possible?

US Particle Accelerator School




Il Ii I- Non-Liouvillian extraction is possible

< An SC H2" ring cyclotron originally for Accelerator driven
reactors 1s being designed by INFN, Catania

% 800 Mev/n, 1 mA

< Stripper foil dissociates the H2", changing the rigidity.

(34 MeV/n

QuickTime™ and a
decompressor
are needed to see this picture.

+«— 15m >

Superconducting Ring Cyclotron

Einj 34 MeV/n Eraz 800 MeV/n
Ripj 1.4 m R 4.5 m
(B) at Rip; 1.2 T (B) at R 217 T
sectors 9 Accel. Cavities 6
RF 53.7 MHz Harmonic 6th
V-peak 220 kV AFE /turn 1.950 MeV
AR at Rip; 15 m AR at Rey 2.7 mm
Injector Cyclotron
Einj 50 keV/n E oz 34 MeV/n
s 5.5 cm R 1.4 m
(B) at Rinj 12T (B) at Ry 217T
sectors 3 Accel. Cavities 3
RF 26.85 MHz Harmonic 3rd
V-inj 70 kV V-ext 180 keV
AFE /turn 1080 keV AR at R, 11 mm

US Particle Accelerator School
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H
II Il | RIKEN Superconducting Ring Cyclotron (SRC)

Side Shield Control Dewar Superconducting
(Open for mainte.) Bending Magnet

y

K,=2600 , =) . I\
R, —5.36m gy
<B>=38T i .
S
[ron weight
8000 tons
SC Main Coll

rf-Cavity

SC Trim Coll
Lower Shield

US Particle Accelerator School




II I- = And then there is the beam dump
I I Deposition of a 2 GeV, 4 MW beam in C

QuickTime™ and a
decompressor
are needed to see this picture.

We would put no more than 1 MW on each dump

US Particle Accelerator School




Il Ii I- Measurement strategy:

Using near accelerator
measure absolute flux normalization with v-e events to ~1%,
Also, measure the v_O event rate.

5 2

5 2

In all three accelerators, 5
given the known flux, fit for the v, — v, signal
with free parameters: 0,3 and o

US Particle Accelerator School
Source: J. Conrad




THw By construction our capability equals LBNE’s
I I" But DAEOQALUS has different systematics

N I
Y
e

Ocp
o
;.P’
& < i
24
ID T
= S5SISS

180 o DaedalusPhase1+2  ~  LBNES yi\s nu + 5 yrs nubar
L ) ‘ 1= T 4T, A e
_ % /ﬂ/ |/é 7 X\B\ @, g) 30+30 1¢ Pzr
120 HA = 120
V”I / l} | ' _l \3 /\ ; T.ru0 > value
Al o O R (@)==t
) QA (o | ) )
0
©

., C k_A
~120 |/ __ 1 1200
/) ) | M ® C\
— -l 80 [ .';:'III. M L.‘ ;. : \1 1 C>| J|

0 002 0.04 0.06 008 0.1 012 0.14 0.16 =180 002 0.04 0.06 008 01 012 014 0.16
Sil‘12219,3 Sin22(51113

US Particle Accelerator School




Il Ii I- What the combined experiments can do!

Syr Combined Running 10yr Combined Running
Daedalus Phase 1 plus LBNE 5yr nu Daedalus Phase 1&2 plus LBNE 10yr nu
180 . S T @) | o
| ©) |
120 |

©

(

N
~—

IR

T s @
(&)
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Comparable to the expectation for 2nd generation Super-beam facilities
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Il Ii I- The 3-phase run-plan consists of

.

Learn: Run the near accelerator to learn more about
operations, as well as to make useful preliminary cross
section measurements

Discover: Run 1n the 1-2-3 MW configuration to discover
the value of o-p while maintaining flexibility of design

3. Measure: Run for the remainder of the experiment with
the most optimal accelerator design.
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Il Ii I- A tentative schedule for discussion...

QuickTime™ and a
decompressor
are needed to see this picture.
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