University of Ljubljana FACULTY OF ECONOMICS

DAEδALUS

QuickTime[™] and a decompressor reneeded to see this picture.

William A. Barletta

Director, United States Particle Accelerator School Dept. of Physics, MIT & Economics Faculty, University of Ljubljana

> Physics Seminar University of Ljubljana October 20, 2011

What is DAEδALUS ? Search for CP violation in the neutrino sector

University of Liubliana

CONOMICS

Use *decay-at-rest neutrino beams,* & the planned *300 kton H₂O detector* (Gd doped) at DUSEL

The quark sector has "mixing" quark mass eigenstates ≠ quark weak eigenstates

Small effect, $V\mu$ but clearly seen in weak interactions...

QuickTime™ and a decompressor are needed to see this picture. ... and kaon decays, D meson decays, etc.

Mixing shows up in processes with 2 diagrams to the same final state ==> interference term in the decay probability

US Particle Accelerator School

Source: J. Conrad

US Particle Accelerator School

Does the lepton sector show similar phenomena?

Observation of one type of neutrino changing into another type would imply:

- 1. Neutrinos have mass with a mass difference, Δm
- 2. Lepton number (electron, muon, tau) is not conserved \succ ($\{ e^{\Box} \neq , \{ c^{\Box} \neq , \{ e^{\Box} \neq \} \}$)
- 3. The *Weak Eigenstate* is a mixture of the *Mass Eigenstates* with mixing angle θ

mass eigenstates ≠ flavor eigenstates

$$\begin{pmatrix} v_e \\ v_\mu \end{pmatrix} = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$$

Experimental parameters: Propagation distance, L Neutrino energy, E Fundamental parameters $\theta \& \Delta m^2$ $P_e = 1 - \sin^2 2\theta \sin^2(\Delta m^2 L/E).$

Neutrino oscillations due to mixing was observed in the Kamland experiment

QuickTime™ and a decompressor are needed to see this picture.

 $P_e = 1 - \sin^2 2\theta \sin^2(\Delta m^2 L/E).$

Ratio of background & geo-neutrino subtracted anti-neutrino spectrum to expectation for no-oscillation as a function of L/E.

L is the effective baseline taken as a flux-weighted average (L=180km).

Histogram & curve account for distances to 55 individual reactors, the time-dependent flux variations & efficiencies.

Source: Kamland website

In the Standard Model, neutrinos are part of three weak lepton doublets

The three families of leptons: e, μ , and τ , $\Box \Box \Box \Box 3x3$ neutrino mixing matrix

 $\begin{pmatrix} Flavor\\ Eigenstate \end{pmatrix} = \begin{pmatrix} Mixing & Matrix \end{pmatrix} \begin{pmatrix} Mass\\ Eigenstate \end{pmatrix}$ $\begin{pmatrix} v_{e}\\ v_{\mu}\\ v_{\tau} \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3}e^{i\delta}\\ U_{\mu1} & U_{\mu2} & U_{\mu3}\\ U_{\tau1} & U_{\tau2} & U_{\tau3} \end{pmatrix} \begin{pmatrix} v_{1}\\ v_{2}\\ v_{3} \end{pmatrix}$ $\Delta m_{12}^{2} = \Delta m_{Solar}^{2} = m_{1}^{2} - m_{2}^{2} , \quad \Delta m_{31}^{2} \approx \Delta m_{32}^{2} = \Delta m_{Atmospheric}^{2} = m_{3}^{2} - m_{1}^{2}$

Atmospheric neutrinos result from the interaction of cosmic rays with nuclei in the Earth's atmosphere *Solar neutrinos* are v_e originating from nuclear fusion in the Sun

NOTE: $\lambda/E \sim 1/\Delta m^2$

University of Ljubljana FACULTY OF ECONOMICS

Neutrino oscillations

The quark mixing matrix must be unitary, but it doesn't have to be "simple"

Any 3×3 unitary matrix has 3 associated free parameters (Euler angles) $c_{ij}=\cos\theta_{ij}$ $s_{ij}=\sin\theta_{ij}$ & can have a complex phase

& can have a complex phase

QuickTime[™] and a decompressor are needed to see this picture.

This "CP violating phase" δ can lead to a different decay rate for matter vs. antimatter For example neutral kaon decays (factor of ~1000 in lifetime)

Source: J. Conrad

US Particle Accelerator School

University of Ljubljana FACULTY OF

Current knowledge of mixings & mass differences

> Search for CP violation & measure δ_{CP}

Neutrino oscillations can reveal the CP violation phase

Muon neutrinos change to electron neutrinos as they propagate through space

University of Ljubljan FACULTY O

- ♦ CP Violation \Rightarrow
- ★ Two next generation experiments $Prob(\nu_{\mu} \rightarrow \nu_{e}) \neq Prob(\nu_{\mu} \rightarrow \nu_{e})$
 - Long baseline neutrino/antineutrino experiment (LBNE) Conventional Approach
 - Send beam from Fermilab to DUSEL (South Dakota)
 - LBNE has one beam with a near (1 km) and a far detector (1300 km)
 - Far detector is a very large (300 kton water Cerenkov detector with phototubes)
 - Daedalus A New Powerful Approach
 - One detector and multiple antineutrino sources at different distances (1.5 km, 8 km, 20 km)
 - Use same large water detector (300 kton water with phototubes)

The conventional approach, if you have the Tevatron

University of Liubliand

CONOMIC

Source: J. Conrad

Both approaches use DUSEL

US Particle Accelerator School

University of Ljubljana FACULTY OF ECONOMICS

Conventional approach: LBNE @ DUSEL

Experimental comments:

- Large neutrino flux covering 1st and 2nd oscillation max points (0.8 and 2.4 GeV)
- Fairly pure v_{μ} flux with small v_{e} contamination
- Minimize flux with energy above 5 GeV that causes background
- But substantial neutral current π^0 events that mimic v_e events

Neutrino Detectors

The LBNE search for CP violation shoots neutrinos through 1300 km of *matter*

The easiest way to make a high-flux beam which switches from v to \overline{v} :

"Conventional neutrino beam" -- 100's of MeV to a few GeV

The ground is made of *matter* (electrons) not *antimatter* (positrons) & Forward scattering affects neutrinos differently than antineutrinos

All long-baseline experiments must introduce a model for matter effects, before they can study CP-violation

Therefore quote sensitivity as allowed regions in both θ_{13} and δ

Terms depending on δ change the oscillation wave L dependence.

QuickTime[™] and a decompressor are needed to see this picture.

Measurement at 3 points constrains the CP violating contribution

Expected LBNE Events in 300 kton Water Detector

Difficult to collect large antineutrino statistics

Second maximum can help the δ_{CP} measurement since Δm_{12}^2 terms bigger but large backgrounds and low statistics

Normal Hierarchy

Expectation for inverted hierarchy

 $(m_2)^2$ $(m_1)^2$ $(\Delta m^2)_{sol}$ $(\Delta m^2)_{am}$ $(m_3)^2$ inverted hierarchy

University of Ljubljana

FACULTY OF ECONOMICS

QuickTime™ and a decompressor are needed to see this picture.

QuickTime™ and a decompressor are needed to see this picture.

EXAMPLE 1 What do we know about δ vs θ_{13} ?

This region ruled out by Chooz and Palo Verde

Source: J. Conrad

US Particle Accelerator School

ECONOMICS

University of Ljubljana

"Jelly bean plots" identify hypothetical values of $\delta \& \theta_{13} \&$ show the expected contours at 1σ and 2σ

If we know the mass hierarchy, this is how well LBNE can do in 10 years of running *(e.g. without Project X)*

US Particle Accelerator School

Source: J. Conrad

New DAESALUS Multi-Source Approach

"Eliminate" matter effects

Use a narrow spectrum neutrino beam from decays at rest

EXAMPLE 1 For a π^+ decay at rest beam, shape is driven by nature - only the normalization varies

University of Liubliand

CONOMIC

The signal: inverse beta decay in H₂O detector

Provides the normalization of the flux since the cross-section is known to 1%

QuickTime™ and a decompressor are needed to see this picture.

about 20% from muon flavor

Mostly from $v_{e}s$

University of Ljubljana

ECONOMICS

Measurement strategy

- Determine the $\overline{\nu_{\mu}}$ flux from observed neutrino-electron elastic scatters $(\nu_e + e^- \rightarrow \nu_e + e^-)$
 - Every decay-at-rest π^+ gives one ν_{μ} , one ν_{e} , and one $\overline{\nu_{\mu}}$ with an isotropic distribution thus measuring the ν_{e} constrains the other fluxes
 - Use events with visible energy > 10 MeV
 - This assumes that other contributions such as π[±] decay-in-flight are negligible (calculations put them at the 10⁻⁴ level)
 - Outgoing electron very forward peaked so easy to separate
 - Well understood process with small cross section and experimental uncertainties (largest uncertainty is 2% energy scale error.)
- Using this flux, determine the predicted number of signal inverse-beta decay events (v_e + p → e⁺ + n) (plus background)
 - Well known cross section
 - Good experimental handle for isolating this process
 - See energy signal from positron (use visible energy > 20 MeV cut to reduce backgrounds)
 - See delayed coincidence with 8 MeV energy signal from capture of the neutron on Gd
- Compare observed and predicted events versus the physics parameters: θ_{13} , δ_{CP} etc.

US Particle Accelerator School

University of Ljubljanu FACULTY OI

University of Liubliana

CONOMIC

We take advantage of the fact that Nature assures decay-at-rest beams will be identical in flavor & energy

US Particle Accelerator School

Source: J. Conrad

But the neutrino cross section is small! How many neutrinos do we need?

- ✤ For phase 1 (five years) we need
 - > 4E+22 neutrinos per year from the near site
 - > 8E+22 neutrinos per year from the mid-site,
 - > 1.2E+23 neutrinos per year from the far site
 - ➤ with each site having a 20% duty factor
- Recall the production reaction

$$p + C \rightarrow \pi^{+} + X$$

$$\pi^{+} \rightarrow \nu_{\mu} + \mu^{+}$$

$$\mu^{+} \rightarrow e^{+} + \overline{\nu}_{\mu} + \nu_{e}$$

University of Liubliand

CONOMICS

• At 1 GeV, roughly 10 % of protons produce a π^+ ==> *This means a lot of protons!*

These are NOT small beam powers per accelerator

MARS calculations - A. Houlier

Determine distance for an event by timing

University of Ljubljana

CONOMICS

Expected results from DAEδALUS

QuickTime™ and a decompressor are needed to see this picture QuickTime[™] and a decompressor are needed to see this picture. University of Ljubljana

FACULTY OF ECONOMICS

The DAEδALUS accelerator complex

- Performance essentials
 - Seven ~ 1 MW beam proton beams
 - > ~1 MW of protons with energy 600 MeV <E_p<1500 MeV

University of Liubliand

ACULTY O

- Efficient acceleration
- ➢ High reliability (~95%)
- ✤ What we do not need
 - 1. Fancy time structure

A Quasi-CW is fine (100 μ s on & 400 μ s off)

- 2. Ability to inject into another accelerator or ability to make clean secondary beams.
- 3. Flexibility with respect to beam energy

And all this at a "reasonable" price

DAEδALUS Needs vs. Existing Machines (Average Power Needs)

- ✤ LAMPF (Linac): 800 MeV, 1 mA (12% DF)
- ◆ PSI (Cyclotron): 590 MeV, 2.2 mA (100% DF)
- ✤ SNS (Linac): 1 GeV, 1 mA (6% DF)

* DAE δ ALUS:

Near ~ 1 mA (20% DF) Far ~ 5 mA (20% DF)

DAEδALUS vs. Existing Machines (Peak Power adjusting for duty factor)

- ✤ LAMPF (Linac): 800 MeV, 8 mA peak
- ✤ PSI (Cyclotron): 590 MeV, 2.2 mA
- ✤ SNS (Linac): 1 GeV, 17 mA peak

✤ DAEδALUS

Near $\sim 5 \text{ mA peak}$ Far $\sim 25 \text{ mA peak}$

University of Ljubljana FACULTY OF ECONOMICS

University of Ljubljana

ECONOMIC

- Proton linac
 - SNS made simple
- Rapid cycling synchrotron
 - JPARC-like at lower energy and higher current
- Cyclotrons
 - ➢ PSI-like (1 MW @ 650 MeV)
 - Compact SC cyclotron
 - > $H2^+$ ring cyclotron
 - Stacked cyclotrons
- ✤ FFAG
 - Requires extensive R&D

The SC Linac Option

- Most conservative choice:
 - Copy SNS as much as possible
 - "Eliminate" re-engineering
- Performance parameters
 - ≻ 800 MeV
 - > 70 mA of H^+ @ 6% duty factor
 - > 2 ms spills at 50 Hz
- Other features
 - One accelerator feeds three targets
 - Conceptually straight-forward upgrade path for Phase II running

University of Liubliand

ECONOMIC

- Negatives
 - ➢ Size
 - Cost of conventional facility

Rapid cycling synchrotrons

- Characteristics
 - Limit to ALS sized (~100 m circumference)
 - > Ignoring the extraction gap, ~ 200 bunches
 - > 20 nC/bunch ==> 2.4e13 protons per fill
 - > Rapid cycling operation at ~100 Hz ==> 400 μ A on target
 - At 1.5 GeV ==> 0.6 MW on the target, significantly less than required.

University of Liublian

CONOMIC

- Machine diameter is still ~ 30 m with at 10 m tail for the injection linac.
- ✤ All features would be pushed to the technical limits,
 - ➢ Moreover, there would be no head-room in overall performance.

Consequently, we have ruled out this design from further consideration.

1 MW cyclotrons exist

- ➤ Very large
- ➤ 580 MeV, 1.8 mA
- ➤ ~300 500 M\$ per copy (?)
- ➢ High efficiency (~40%)
- ➤ Very low losses (0.01%)
- More complex than needed
 - One is paying for flexibility
- Are there other cyclotron approaches at the 1 MW level?

QuickTime™ and a decompressor are needed to see this picture.

University of Ljubljana

ECONOMICS

Why superconducting cyclotrons?

- Cyclotrons are efficient users of acceleration voltage (MV/m)
 - High E-fields not required to reach high energy
- Cyclotrons have been around for 8 decades
 - ➤ They are well characterized & quantitative
- Superconducting cyclotrons have been around for 3 decades
 - They are robust, have established a scaling in which plant cost decreases 3x when the B field is approximately doubled

University of Liubliand

ACULTY O

- Superconducting Cyclotrons have never required feasibility demonstrations
 - Beam dynamics & magnet designs are quantitative & predictive

One can again double the B field without increasing risk or diminishing performance

Compact SC Isochronous Cyclotrons: Our initial motivation for DAEdALUS

- Potentially low-cost
 - Single stage acceleration
 - High magnetic field, isochronous design
 - Small-footprint, single stage, mA-current
 - under development at MIT for the Defense Threat Reduction Agency
- High current operation relatively insensitive to final beam energy. Limiting intensity depends on
 - 1) Ability to capture a high current beam at low energy into stable orbits at the cyclotron center
 - 2) Suppression of beam loss due to resonant instabilities during acceleration
 - ➤ 3) Ability to extract beam without high losses
- Can non-resonant self-extraction work at high energy & high efficiency?

All relevant design issues will be addressed in DTRA-sponsored research at MIT that is aimed at beam parameters very similar to DAEdALUS parameters.

Example: MIT Designed Proton Cyclotron for Proton Radiotherapy

- Cost of PBRT is reduced an order of magnitude (\$150M to \$20M)
 - First system goes into Hospital June 2010
 - 5 are in various stages of production simultaneously
 - 15 are on order

Still River Monarch 250 MeV

DTRA sponsored demo: 250 MeV, 1mA

- ✤ 4 Sector, Superconducting Isochronous cyclotron
- ♦ $B_0 \approx 5.6T, B_f \approx 7T$
- ♦ Rpole $\approx 0.4 \text{m}$; 37 tons
- ♦ 84.5 MHz, h=1, 2 dees in valleys, $V0 \approx 160 \text{ kV}$; 450 kW
- External ECR and axial injection
- Non-resonant extraction; passive magnetic channels

Are we done? 2010 workshop identified issues

- ✤ Injection
 - For axial injection inflection may be problem
 - lose factor of 10; heat dissipation
 - Longitudinal phase space acceptance depends on extraction strategies

University of Ljubljand FACULTY OI

- Magnet questions
 - Isochronicity requirements, control of field variations & control flutter
- Extraction
 - Self-extraction, IBA, 14 MeV H+, mA beam (is this energy the limit)
 - ➢ Turn separation is much lower at higher energies,
 - RF manipulation could induce resonances? Relating to beam energy?
 - ➢ Need tune close to gamma (~2 for 1 GeV)
 - ➤ Can one get 1 cm/turn?
 - Septum placement, definition of extraction channel?
 - Beam loss specification for component survival & maintainability?

Is controlled extraction possible?

Non-Liouvillian extraction is possible

An SC H2⁺ ring cyclotron originally for Accelerator driven reactors is being designed by INFN, Catania

University of Liubliand

ACULTY O

- ✤ 800 Mev/n, 1 mA
- ✤ Stripper foil dissociates the H2⁺, changing the rigidity.

		Superconducting Ring Cyclotron			
	-	E_{inj}	34 MeV/n	E_{max}	$800 \ {\rm MeV/n}$
QuickTime™ and a decompressor are needed to see this picture.	(34 MeV/n	R_{inj}	1.4 m	R_{ext}	4.5 m
		$\langle B \rangle$ at R_{inj}	1.2 T	$\langle B \rangle$ at R_{ext}	2.17 T
		sectors	9	Accel. Cavities	6
		RF	$53.7 \mathrm{~MHz}$	Harmonic	6th
		V-peak	220 kV	$\Delta E/\mathrm{turn}$	$1.950 { m MeV}$
		ΔR at R_{inj}	$15 \mathrm{m}$	ΔR at R_{ext}	$2.7 \mathrm{mm}$
		Injector Cyclotron			
		E_{inj}	50 keV/n	E_{max}	$34 { m MeV/n}$
		R_{inj}	$5.5~\mathrm{cm}$	R_{ext}	1.4 m
		$\langle B \rangle$ at Rinj	1.2 T	$\langle B \rangle$ at R_{ext}	2.17 T
		sectors	3	Accel. Cavities	3
		RF	26.85 MHz	Harmonic	3rd
		V-inj	70 kV	V-ext	180 keV
15 m►		$\Delta E/\mathrm{turn}$	1080 keV	ΔR at R_{ext}	11 mm

RIKEN Superconducting Ring Cyclotron (SRC)

University of Ljubljana

CONOMIC

And then there is the beam dump Deposition of a 2 GeV, 4 MW beam in C

QuickTime™ and a decompressor are needed to see this picture.

We would put no more than 1 MW on each dump

US Particle Accelerator School

University of Liubliand CONOMIC

By construction our capability equals LBNE'sBut DAEδALUS has different systematics

University of Ljubljana

CONOMICS

What the combined experiments can do!

5yr Combined Running

10yr Combined Running

Comparable to the expectation for 2nd generation Super-beam facilities

Source: J. Conrad

The 3-phase run-plan consists of

1. Learn: Run the near accelerator to learn more about operations, as well as to make useful preliminary cross section measurements

University of Liubliand

CONOMIC

- 2. Discover: Run in the 1-2-3 MW configuration to discover the value of δ_{CP} while maintaining flexibility of design
- 3. 3. Measure: Run for the remainder of the experiment with the most optimal accelerator design.

A tentative schedule for discussion...

QuickTime[™] and a decompressor are needed to see this picture.

US Particle Accelerator School

University of Ljubljana

