Measurement of time-dependent CP violation in $B^0 ightarrow \eta' K_S^0$ decays

Luka Šantelj advisor: prof. Boštjan Golob

October 2, 2013

イロト イヨト イヨト イ

イロト イヨト イヨト イ

OUTLINE

- CPV in the Standard Model
- 2 CPV in $B^0 \rightarrow \eta' K_s^0$
 - CPV and new physics
 - Previous experimental results
- B How to measure CPV
 - Principle of measurement
 - The Belle detector
- 4 Measurement procedure
 - Measurement results
- Conclusions

The Standard Model

CPV in the Standard Model

- A theory of three fundamental forces (EM,weak,strong).
- Experimentally very well confirmed (up to \sim TeV energy scale).

But nobody is **perfect**:

- No gravity.
- Massless neutrinos.
- Cosmological origin: DM, CPV, ...
- Naturalness (Hierarchy, strong CP)
- 19 free parameters.

*ロト *個ト * ヨト * ヨ

line CPV in the Standard Model

CPV in $B^0 \rightarrow \eta'$

neasure CPV Measurement procedure Measurement results Conclusi

・ロト ・日下・ ・ ヨト・

Hadrons

• The strong interaction bounds quarks into hadrons.

Baryons qqq and Antibaryons qqq Baryons are fermionic hadrons. There are about 120 types of baryons.				Mesons qq Mesons are bosonic hadrons. There are about 140 types of mesons.							
Symbol	Name	Quark content	Electric charge	Mass GeV/c ²	Spin	Symbol	Name	Quark content	Electric charge	Mass GeV/c ²	Spin
р	proton	uud	1	0.938	1/2	π^+	pion	ud	+1	0.140	0
p	anti- proton	ūūd	-1	0.938	1/2	К-	kaon	sū	-1	0.494	0
n	neutron	udd	0	0.940	1/2	$ ho^+$	rho	ud	+1	0.770	1
Λ	lambda	uds	0	1.116	1/2	В ⁰	B-zero	db	0	5.279	0
Ω-	omega	SSS	-1	1.672	3/2	η_{c}	eta-c	cՇ	0	2 .980	0

- most phenomena are **C and P** symmetric (EM, strong, gravity).
- Weak interaction affects only left-handed particles (right-handed anti-particles).
 Obviously C and P are violated.
- Combined CP symmetry is preserved in most of weak processes.
- It was widely believed to be exact symmetry of nature (matter \leftrightarrow anti-matter).
- However, violated in certain rare processes. (as discovered in neutral K decays (1964))

Example:

CPV in the Standard Model CPV in OCOC

- The weak interaction allows for quarks to swap their flavor for another.
- Information on the relative strength of the flavor-changing weak current:

CKM matrix (Cabibbo-Kobayashi-Maskawa): 3x3 unitary matrix

cutline CPV in the Standard Model CPV in $\mathcal{B}^0 \rightarrow \eta' \mathcal{K}^0_S$ How to measure CPV Measurement procedure Measurement results Conclusions OO CP violation in the SM

- If $V_{ij} = V_{ij}^{\star} \implies \mathcal{L} = \mathcal{L}_{CP} \implies$ CP conservation.
- The CKM has three real parameters and one complex phase (KM phase).

since KM phase
$$\neq 0 \implies$$
 CP violation (CPV)

• Unitarity triangle:

CKM matrix is unitary: $V_{ud}V_{ub}^{\star} + V_{cd}V_{cb}^{\star} + V_{td}V_{tb}^{\star} = 0$, etc ...

- Single parameter η describes all CP violating phenomena.
- B meson decays \Rightarrow sides and angles of the UT \Rightarrow consistency check of the SM

Luka Šantelj ()

イロト イヨト イヨト イヨ

- The KM mechanism (with measured values of the CKM matrix elements) predicts large CPV in the *B* meson system.
- One of CPV manifestations is the asymmetry in decay rates of B^0 and \overline{B}^0 .
- However, flavor eigenstates B^0 $(d\bar{b})$ and \bar{B}^0 $(\bar{d}b)$ are not mass eigenstates.
- As an initially produced B^0 propagates in time, it gains \overline{B}^0 component \Longrightarrow mixing.

Image: A math a math

CPV in $B^0 - \bar{B}^0$ mixing

• Mixing phenomenology \Rightarrow time-dependent decay rates of states $B^0(t)$ ($\bar{B}^0(t)$), which were pure B^0 (\bar{B}^0) at t = 0, to a final state f

outline CPV in the Standard Model CPV in $B^0 o \eta' \kappa_0^5$ How to measure CPV Measurement procedure Measurement results Conclusions

$$egin{aligned} & \Gamma(B^0(t) o f) \propto e^{-t/ au_{B^0}} \left[1 - \mathcal{A}_f \cos\Delta Mt - \mathcal{S}_f \sin\Delta Mt
ight], \ & \Gamma(ar{B}^0(t) o f) \propto e^{-t/ au_{B^0}} \left[1 + \mathcal{A}_f \cos\Delta Mt + \mathcal{S}_f \sin\Delta Mt
ight]. \end{aligned}$$

Asymmetry: $a_f(t) \equiv \frac{\Gamma(B^0(t) \to f) - \Gamma(\bar{B}^0(t) \to f)}{\Gamma(B^0(t) \to f) + \Gamma(\bar{B}^0(t) \to f)} = \mathcal{A}_f \cos \Delta M t + \mathcal{S}_f \sin \Delta M t$

- Values of \mathcal{A}_f and \mathcal{S}_f can be calculated within the SM.
- Prime example: $B^0 o J/\psi \ K_S^0$ decay

$$\mathcal{A}_{J/\psi K_S^0} \simeq 0$$
 and $\mathcal{S}_{J/\psi K_S^0} \simeq \sin(2\phi_1)$ (accurate to $\mathcal{O}(0.01)$)

- By measuring the asymmetry $a_{J/\psi K_S^0}$ one can determine the ϕ_1 angle of the unitarity triangle.
- Current experimental value (HFAG 2012): sin $2\phi_1 = 0.68 \pm 0.02$.
- In great agreement with the SM predictions! \implies Kobayashi and Maskawa won the 2008 Nobel Prize in Physics.

イロト イロト イヨト イヨト

CP violation and new physics

 $\frac{\text{CPV in } B^0 \to \eta' \kappa_S^0}{6000}$

outline CPV in the Standard Model

- Despite great success! of the Kobayashi-Maskawa mechanism, it cannot represent a complete CP violation story.
- The SM is an effective low energy theory valid up to energy scale Λ (exp: $\Lambda\gtrsim 1$ TeV). Additional CP violating phases are inevitable in most of theories of physics beyond the SM.
- CP violation in the **SM** alone fails by many orders of magnitude to explain the matter-antimatter asymmetry of the Universe.

CP violation in the SMThe Universe
$$\frac{n_B - n_{\bar{B}}}{n_{\gamma}} \sim 10^{-16}$$
 $\frac{n_B - n_{\bar{B}}}{n_{\gamma}} \sim 10^{-9}$

 \Longrightarrow In the early Universe processes that severely violate CP were present.

• Many methods how to find new CP violating phases in **B meson decays** were proposed.

イロト イヨト イヨト イヨ

• This decay is dominated by the $b \rightarrow s\bar{q}q$ quark transition. In the SM these transitions can only happen through a so-called **penguin diagram**.

• The values of the CPV parameters within the SM

$$\mathcal{A}_{\eta'K_{S}^{0}} \simeq 0$$
 and $\mathcal{S}_{\eta'K_{S}^{0}} \simeq \sin(2\phi_{1})$ (accurate to $\lesssim 0.1$)
Same as in $B^{0} \rightarrow J/\psi K_{S}^{0}$ decay!

Why this is interesting ?

• Processes that are dominated by penguin diagrams (like $b \rightarrow s\bar{q}q$) are known to be sensitive to new physics effects.

- In general these new particles carry new CP violating phases, which can cause a deviation of $S_{\eta' K_c^0}$ from sin $2\phi_1$.
- On the other hand, the decay $B^0 \rightarrow J/\psi K_S^0$ is tree dominated $(b \rightarrow c)$ and is unlikely to receive large new physics contributions.
- Measuring $S_{\eta' \kappa_S^0} \sin(2\phi_1)$ is one of **gold-plated** observables for new CP violating phases.

イロト イヨト イヨト イヨ

How to measure CPV Measurement procedure Measurement results Conclusions

Previous experimental results

CPV in $B^0 \rightarrow \eta' K_c^0$

• CPV parameters were measured in several $b
ightarrow s ar{q} q$ transition dominated decays.

- At the present level of experimental uncertainties no significant deviations from sin 2 ϕ_1 are observed.
- Rather large uncertainties still allow for sizable new physics contributions.

• CPV in
$$B^0 \rightarrow \eta' K_S^0$$
:

$$\begin{array}{l} \text{Belle 2007, 534 M $B\bar{B}$ pairs} \\ \mathcal{S}_{\eta' \kappa_{S}^{0}} = 0.67 \pm 0.11 \pm 0.04 \\ \mathcal{A}_{\eta' \kappa_{S}^{0}} = -0.03 \pm 0.07 \pm 0.05 \end{array}$$

BaBar 2009, 467 M $B\bar{B}$ pairs $S_{\eta'K_S^0} = 0.53 \pm 0.08 \pm 0.02$ $\mathcal{A}_{\eta'K_S^0} = +0.11 \pm 0.06 \pm 0.02$

・ロト ・日下・ ・ ヨト・

Luka Šantelj ()

CPV in $B^0 \rightarrow \eta' \kappa_c^0$

How to measure time-dependent CPV

• We need B mesons \implies **B** factories.

B mesons are produced in:

- The KEK-B is an electron-positron collider designed for B physics studies.
- Located in Tsukuba, Japan.
- Consists of linear injector and two 3km storage rings.
- e⁺ and e⁻ beams cross at a single point (interaction point).
- There the Belle detector is placed.

イロト イヨト イヨト イ

$$e^{-} \xrightarrow{8 \text{ GeV}} \overset{3.5 \text{ GeV}}{\longleftrightarrow} e^{+} \Longrightarrow ~\Upsilon(4S) \implies B^{0} \bar{B}^{0} (B^{+}B^{-})$$

• We need to measure decay time distributions of states that were at t = 0 pure B^0 and \overline{B}^0 states, into $\eta' K_S^0$ final state. But how ?

- We therefore need to:
 - 1. Determine the flavor of B_{tag} .
 - 2. Reconstruct B_{CP} decaying into $\eta' K_S^0$.
 - 3. Measure the distance between B_{CP} and B_{tag} decay vertices.

Luka Šantelj ()

CPV in $B^0 \rightarrow \eta' \kappa_c^0$

The BELLE detector

outline CPV in the Standard Model

• Efficient detection and identification of long-lived final state particles $(e^{\pm}, \mu^{\pm}, \pi^{\pm}, K^{\pm}, K_L, \gamma)$.

 \circ

How to measure CPV Measurement procedure Measurement results

• Belle and KEKB operated during 1999-2010 and recorded about 772 millions of $B\bar{B}$ decays.

Luka Šantelj ()

CPV in $B^0 \rightarrow \eta' \kappa_c^0$

イロト イヨト イヨト イヨト

Preparation of measurement procedure

CPV in the Standard Model

• Basic idea: determine the values of $S_{\eta' \kappa_S^0}$ and $A_{\eta' \kappa_S^0}$ by a fit of

$$\mathcal{P}^{sig}(\Delta t, q) = \frac{e^{-|\Delta t|/\tau_{B^0}}}{4\tau_{B^0}} \left[1 + q \left(\mathcal{A}_{\eta' \kappa_S^0} \cos \Delta M \Delta t + \mathcal{S}_{\eta' \kappa_S^0} \sin \Delta M \Delta t \right) \right],$$

How to measure CPV Measurement procedure

where q = +1 (q = -1) for $B_{tag} = B^0$ (\overline{B}^0), to measured Δt , q distribution. • However, several experimental limitations have to be included:

$$\mathcal{P}^{sig} \rightarrow \mathcal{P}^{sig} \otimes \mathcal{R}^{sig}$$
 Δt resolution,

$$\mathcal{P}^{\mathsf{sig}} \otimes \mathcal{R} \hspace{0.2cm}
ightarrow \hspace{0.2cm} f_{\mathsf{sig}} \mathcal{P}^{\mathsf{sig}} \otimes \mathcal{R} + (1 - f_{\mathsf{sig}}) \mathcal{P}^{\mathsf{bkg}}$$

background events,

$$\mathcal{P}^{sig}(\Delta t,q) \ o \ \mathcal{P}^{sig}(\Delta t,(1-2w)q)$$
 wrongly determined flavor,

• Determine \mathcal{R}^{sig} , f_{sig} , w event-by-event \Rightarrow maximize fit sensitivity.

Luka Šantelj ()

Event reconstruction and selection

outline CPV in the Standard Model

- Branching fraction for $B^0
 ightarrow \eta' K_S^0$ decay is $(3.3\pm0.2) imes 10^{-5}.$
- To reconstruct B_{CP} decay into $\eta' K_S^0$ we combine 4-momentum vectors of decay final state particles.

CPV in $B^0 \rightarrow \eta' K_c^0$ How to measure CPV Measurement procedure

• Several selection criteria \Rightarrow reduce the number of background events.

The most efficient are criteria on **invariant**
masses of reconstructed
$$\rho^0$$
, η , η' mesons
(0.932 $< M_{\rho^0\gamma}^{\eta'} < 0.975$ GeV, $M_{\eta'} \simeq 0.957$ GeV).
Not a free lunch:
background $\Downarrow \rightarrow$ **signal** \Downarrow .

- Optimized to minimize the statistical uncertainty of $S_{\eta' K_c^0}$ (using simulated events).
- Remaining background mainly arises from $e^+e^- \rightarrow q\bar{q}$ events (q = u, d, s, c).

Luka Šantelj ()

Signal/Background fraction fit

• To determine $f_{sig} \Rightarrow$ distribution of reconstructed events in $M_{bc}, \Delta E, LR$.

$$M_{bc}=\sqrt{(E_{beam}^{cms})^2-(p_B^{cms})^2},~\Delta E=E_B^{cms}-E_{beam}^{cms},~LR$$
- event shape variable

outline CPV in the Standard Model CPV in $B^0 \rightarrow \eta' K_c^0$ How to measure CPV Measurement procedure Measurement results Conclusions

- Based on the distributions of simulated events we construct the PDFs $\mathcal{F}^{sig}(M_{bc}, \Delta E, LR)$ and $\mathcal{F}^{bkg}(M_{bc}, \Delta E, LR)$.
- f_{sig} is determined by a fit of $\mathcal{F} = f_{sig}\mathcal{F}^{sig} + (1 f_{sig})\mathcal{F}^{bkg}$ to the measured events distribution (each decay mode separately).
- Finally, $f_{sig} \mathcal{F}^{sig} / \mathcal{F}$ gives us event-by-event signal probability.

イロト イヨト イヨト イヨト

Signal/Background fraction fit

outline CPV in the Standard Model

• Fit result (all decay modes with $K_S^0 \to \pi^+\pi^-$ combined):

Obtained signal yields and fractions

mode	Nsig	f _{sig}	f _{cont}	f _{BB}
$K_{S}^{0} ightarrow \pi^{+}\pi^{-}$				
ρ^0	1410.5 ± 48.5	0.19	0.79	0.02
$\eta \gamma \gamma$	648.3 ± 27.9	0.49	0.50	< 0.01
$\eta ightarrow 3\pi$	174.3 ± 13.5	0.65	0.35	< 0.01
sum	2233.1 ± 57.6			
$K_{\rm S}^0 ightarrow \pi^0 \pi^0$				
ρ^0	168.2 ± 21.4	0.04	0.93	0.03
$\eta ightarrow \gamma \gamma$	104 ± 14.2	0.16	0.84	< 0.01
sum	272 ± 25.7			

Only events in signal region $M_{bc} > 5.27$ GeV, $|\Delta E| < 0.08$ GeV, are counted and used for Δt analysis.

イロト イヨト イヨト イ

How to measure CPV Measurement procedure

outline CPV in the Standard Model CPV in $\mathcal{B}^{0} \rightarrow \eta' \mathcal{K}_{S}^{0}$ How to measure CPV Measurement procedure Measurement results Com Ooco Oo Oo

- We determine Δt by measuring Δz .
- Decay vertex of B_{CP} : vertexing algorithm extrapolates tacks of π^+, π^- from η' decay into a common origin point.
- Decay vertex of B_{tag} : all remaining tracks in event are used. Tracks that spoil the vertex quality significantly are discarded (likely from D, K_S^0).

- Only good quality tracks, with at least two hits in the SVD, are used.
- The position resolution of reconstructed vertices is \sim 80 μm for B_{CP} and \sim 100 μm for B_{tag} vertex.
- Vertex reconstruction efficiency is 95% for B_{CP} and 93% for B_{tag} vertices.

・ロト ・日下・ ・ ヨト・

Signal Δt resolution function

• We compose \mathcal{R}^{sig} as a convolution of 4 different contributions

$$\mathcal{R}^{\mathsf{sig}} = \mathcal{R}^{\mathsf{CP}}_{\mathsf{det}} \otimes \mathcal{R}^{\mathsf{tag}}_{\mathsf{det}} \otimes \mathcal{R}_{\mathsf{np}} \otimes \mathcal{R}_{\mathsf{kir}}$$

How to measure CPV Measurement procedure Measurement results

 $\mathcal{R}_{det}^{CP,tag}$ - detector resolution (Δz), \mathcal{R}_{np} - non-primary tracks, \mathcal{R}_{kin} - kinematic assumption that *B* mesons are at rest in the CMS

• \mathcal{R}_{det} is event dependent (number of SVD hits, ...)

$$\mathcal{R}_{det}(x) \sim rac{1}{s\sigma_z} \exp\left[-rac{x^2}{2(s\sigma_z)^2}
ight]$$

- s scale factor, σ_z uncertainty from vertex fit
- Several \mathcal{R}^{sig} shape parameters are determined by fitting large control and simulated data samples.
- Using simulated events and performing *B* meson lifetime fits we validate the resolution function.

イロト イヨト イヨト イヨト

outline CPV in the Standard Model CPV in $B^0 \rightarrow \eta' \kappa_S^0$ How to measure CPV Measurement procedure Measurement results Conclusions Flavor tagging

- Determination of B^{tag} flavor: charge of decay products $\Leftrightarrow B_{tag}$ flavor.
- The most important are high momentum lepton and kaon tracks. e.g. $B^0 \rightarrow X l^+ \nu$ ($\bar{B}^0 \rightarrow X l^- \nu$), and K^+ from $\bar{b} \rightarrow \bar{c} \rightarrow \bar{s}$ (K^- from $b \rightarrow c \rightarrow s$)
- Algorithm returns q and r ($r \rightarrow 1$ for unambiguously determined q, and $r \rightarrow 0$ for no flavor information).
- We divide reconstructed events into 7 bins according to *r* and determine *w* in each bin (using large control samples of self-tagged decays).
- From simulated signal events:

Background Δt shape

outline CPV in the Standard Model

• We compose the PDF as $\mathcal{P}^{\textit{bkg}}(\Delta t) = \mathcal{P}^{\textit{bkg}}_{\textit{phys}}(\Delta t) \otimes \mathcal{R}^{\textit{bkg}}(\Delta t)$ with

$$\mathcal{P}_{ extsf{phys}}^{bkg}(\Delta t) = f_{\delta}\delta(\Delta t - \mu_{\delta}) + (1 - f_{\delta})\exp\left(-rac{|\Delta t - \mu_{ au}|}{ au_{bkg}}
ight)$$

How to measure CPV Measurement procedure

and \mathcal{R} is a sum of 3 Gaussian functions (again with the width $\propto \sigma_z$).

- $P^{bkg}(\Delta t)$ shape parameters \Rightarrow fit of candidates in $M_{bc} \Delta E LR$ sideband. ($M_{bc} < 5.265$ GeV, $-0.1 < \Delta E < 0.25$ GeV, LR < 0.9, less than 0.1% signal.)
- Comparison: data distribution fitted PDF (for $K_S^0 \rightarrow \pi^+\pi^-$ modes)

CPV in $B^0 \rightarrow n' K_a^0$

Luka Šantelj ()

Image: A math a math

Validation tests

outline CPV in the Standard Model

- Make sure that the prepared method gives unbiased values of $S_{\eta' K_c^0}$ and $A_{\eta' K_c^0}$.
- Simulated events:

- We prepare samples of simulated events that fully mimic measured data sample (signal+background)

- Obtain $\mathcal{S}_{\eta'K_c^0}$ and $\mathcal{A}_{\eta'K_c^0}$ with the prepared method, compare with input values.
- Measured events (nominal sample $B^0 \rightarrow \eta' K^0_{S}$ + control sample $B^{\pm} \rightarrow \eta' K^{\pm}$).
 - Lifetime fit: $\mathcal{P}^{sig}(\Delta t) \Rightarrow \frac{1}{2\tau_B} \exp(-|\Delta t|/\tau_B) \otimes \mathcal{R}^{sig}$, τ_B free parameter.

- Fit results: $\tau_{B^+} = 1.65 \pm 0.03 \text{ ps}$ (W.A. $\tau_{B^+} = 1.64 \pm 0.01 \text{ ps}$), $\tau_{R^0} = 1.49 \pm 0.04 \text{ ps}$ (W.A. $\tau_{R^0} = 1.52 \pm 0.01 \text{ ps}$)

25 / 28

CPV in $B^0 \rightarrow \eta' K_0^0$ How to measure CPV Measurement procedure Measurement results Conclusions

Luka Šanteli ()

Measurement results

outline CPV in the Standard Model CPV in $B^0 \rightarrow \eta' K_c^0$

- Final PDF is event dependent \Rightarrow unbinned maximum likelihood fit method.
- Fitting measured events Δt , q distribution we obtain (uncertainties are stat. only):

How to measure CPV Measurement procedure Measurement results

	772 M BB			
mode	$\mathcal{S}_{\eta'K^0}$	$\mathcal{A}_{\eta' K^0}$		
$B^0 ightarrow \eta' K_S^0$	0.711 ± 0.074	$+0.021 \pm 0.052$		
$K^0_S ightarrow \pi^+\pi^-$	0.728 ± 0.079	-0.002 ± 0.054		
$\tilde{\rho}^{0}$	0.718 ± 0.098	-0.071 ± 0.069		
$\eta ightarrow \gamma \gamma$	0.724 ± 0.151	$+0.161 \pm 0.098$		
$\eta ightarrow 3\pi$	0.800 ± 0.259	-0.058 ± 0.181		
$K^0_S ightarrow \pi^0 \pi^0$	0.576 ± 0.206	$+0.284 \pm 0.180$		

• We study several possible sources of systematic uncertainty:

source	ΔS	$\Delta \mathcal{A}$	source	ΔS	$\Delta \mathcal{A}$
$\mathcal{F}^{sig}, \mathcal{F}^{cont}$ param.	0.004	0.002	flavor tagging	0.006	0.005
fractions f_{cir}^{i}	0.005	0.003	poor quality vertex	0.010	0.007
fractions f_{DD}^{sys}	0.015	0.004	SVD missalignment	0.006	0.004
signal <i>LR</i> PDF	0.005	0.002	Δz bias	0.005	0.007
Δt resolution	0.020	0.006	tag-side interference	0.002	0.020

<u>CPV</u> in $B^0 \rightarrow \eta' \kappa_c^0$

Together: $\Delta S^{syst} = 0.03$, $\Delta A^{syst} = 0.03$

Luka Šantelj ()

イロト イヨト イヨト イヨ

outline CPV in the Standard Model

CPV in $B^0 \rightarrow \eta' K_S^0$

How to measure CPV Measurement procedure Measurement results

Measurement results

Final result

$$egin{array}{lll} \mathcal{S}_{\eta' \kappa^0_{\mathcal{S}}} = & +0.71 \pm 0.07(\textit{stat}) \pm 0.03(\textit{syst}) \ \mathcal{A}_{\eta' \kappa^0_{\mathcal{S}}} = & +0.02 \pm 0.05(\textit{stat}) \pm 0.03(\textit{syst}) \end{array}$$

• The most accurate values up-to-date (among all $b
ightarrow sar{q}q$ modes).

Luka Šantelj ()

outline CPV in the Standard Model CPV in $B^0 o \eta' K_5^0$ How to measure CPV Measurement procedure Measurement results **Conclusions** 0000 00

Conclusions

• We presented a measurement of the CPV parameters in $B^0 \rightarrow \eta' K_S^0$ decay, based on the Belle full data sample, containing 772 M $B\bar{B}$ pairs.

 $\mathcal{S}_{\eta' \kappa_{\rm S}^0} = +0.71 \pm 0.07 \pm 0.03, \ \ \mathcal{A}_{\eta' \kappa_{\rm S}^0} = +0.02 \pm 0.05 \pm 0.03$

- The obtained values are the most accurate up-to-date.
- We find no significant deviation from the SM prediction.
- However, the quest to discover new CP violating phases, and possibly answer one of the most intriguing questions about the Universe, is ongoing.

```
In 2016 SuperKEKB and Belle II will start operation

\Rightarrow 50x larger sample of B mesons

\Rightarrow we expect \Delta S_{\eta' K_S^0} \simeq 0.02.
```

Thank you for your attention!

"The important thing is not to stop questioning. Curiosity has its own reason for existing." - A. Einstein

Luka Šantelj ()

CPV in $B^0 \rightarrow \eta' K_c^0$

< □ > < □ > < □ > < □ > < □ >