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Flavour Physics Note: Discussion will be only on quark flavours 

• Why 3 generations of quarks? Why only 3?  
• Extreme hierarchy of masses (2.4 to 1.75× 105) 

MeV/𝑐2 
• CP violation explained in SM; but not enough to 

explain matter –antimatter asymmetry 
• …. 

 

Why flavour physics is interesting? 

B- Factories: BELLE, BELLEII, BaBar, LHCb 

Charm Factories: BESIII, CLEO-c 

Standard Model is an QFT that describes the fundamental 
particles and its interaction (Weak , em and strong) 

All test made on SM has been successful. Not full story! 

Flavour sector is less well known (more open questions) 

Flavour relates the existence of family of quarks and how  
they couple to each other 

These mysteries makes flavour physics of 
SM of great interest 
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Cabbibo-Kobayashi-Maskawa (CKM) matrix 

𝑉𝐶𝐾𝑀𝑉𝐶𝐾𝑀
†  = I =𝑉𝐶𝐾𝑀

† 𝑉𝐶𝐾𝑀 
 

𝑉𝑢𝑑 𝑉𝑢𝑠 𝑉𝑢𝑏
𝑉𝑐𝑑 𝑉𝑐𝑠 𝑉𝑐𝑏
𝑉𝑡𝑑 𝑉𝑡𝑠 𝑉𝑡𝑏

 

𝑑′

𝑠′

𝑏′
 

𝑑
𝑠
𝑏

 = 

4 

Mixing between weak eigenstates and flavor eigenstates in three generations. 

2008 
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𝑠
𝑏
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Mixing between weak eigenstates and flavor eigenstates in three generations. 

3 angles and 1 phase required to write it down 

2008 
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Mixing between weak eigenstates and flavor eigenstates in three generations. 
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𝑉𝑢𝑑𝑉𝑢𝑏
∗ + 𝑉𝑐𝑑𝑉𝑐𝑏

∗ + 𝑉𝑡𝑑𝑉𝑡𝑏
∗ = 0 

𝜶/𝝓𝟐 = (𝟖𝟒. 𝟗−𝟒.𝟓
+𝟓.𝟏)∘ 

𝜷/𝝓𝟏 = (𝟐𝟐. 𝟐 ± 𝟎. 𝟕)
∘ 

𝜸/𝝓𝟑 = (𝟕𝟏. 𝟏−𝟓.𝟑
+𝟒.𝟔)∘ 

h
tt

p
:/

/c
km

fi
tt

er
.in

2
p

3
.f

r 

(b-d unitary triangle) 

http://ckmfitter.in2p3.fr 

2008 
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One aim of flavor physics experiments is 
to measure CKM parameters precisely 

http://ckmfitter.in2p3.fr 

2008 
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CKM angle 𝜸 

Direct measurements Indirect measurements 
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CKM angle 𝜸 

Direct measurements 

• Measure it using tree level decays 
• Theoretical uncertainty 𝒪(10−7) 

Indirect measurements 

Large experimental uncertainties, potential for 
further improvement in coming years 

𝜸 = (𝟕𝟏. 𝟏−𝟓.𝟑
+𝟒.𝟔)∘  
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CKM angle 𝜸 

Direct measurements 

• Measure it using tree level decays 
• Theoretical uncertainty 𝒪(10−7) 

JHEP 01, 051 (2014) 

Indirect measurements 

• Infer the value of 𝛾 using other sides of 
triangle, assuming the triangle is closed 

• NP effects can play – potential for different 
central value 

Large experimental uncertainties, potential for 
further improvement in coming years 

Uncertainties from LQCD 

𝜸 = (𝟔𝟓. 𝟑−𝟐.𝟓
+𝟏.𝟎)°  

𝜸 = (𝟕𝟏. 𝟏−𝟓.𝟑
+𝟒.𝟔)∘  
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CKM angle 𝜸 

Direct measurements 

• Measure it using tree level decays 
• Theoretical uncertainty 𝒪(10−7) 

JHEP 01, 051 (2014) 

Indirect measurements 

• Infer the value of 𝛾 using other sides of 
triangle, assuming the triangle is closed 

• NP effects can play – potential for different 
central value 

Large experimental uncertainties, potential for 
further improvement in coming years 

Uncertainties from LQCD 

𝜸 = (𝟔𝟓. 𝟑−𝟐.𝟓
+𝟏.𝟎)°  

𝜸 = (𝟕𝟏. 𝟏−𝟓.𝟑
+𝟒.𝟔)∘  

Precise measurement required for meaningful comparison 
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Measurement of 𝜸/𝝓𝟑 

𝑩± →𝑫𝑲± where 𝐷 = 𝑫𝟎or 𝑫𝟎 (PLB 265, 172 (1991)) 

12 
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Measurement of 𝜸/𝝓𝟑 

𝑩± →𝑫𝑲± where 𝐷 = 𝑫𝟎or 𝑫𝟎 (PLB 265, 172 (1991)) 

13 

𝑏 → 𝑐𝑢 𝑠 + 𝑏 → 𝑢𝑐 𝑠 
 

Γ ∝ |𝑓 𝐵− → 𝐷𝐾− |2 = 𝐴𝐵
2  + 𝐴𝐵

2 𝑟𝐵
2+ 2𝐴𝐵

2 𝑟𝐵
2 cos 𝛿𝐵  −  𝛾  

𝑟𝐵 =
𝑓 𝐵− → 𝐷0𝐾−

𝑓 𝐵− → 𝐷0𝐾−
 

Common final states-possibility of interference – access to phase 
term 

Sensitivity to 𝛾 comes from interference 

Other related modes with 𝐷∗ or 𝐾∗ in 
final states can also be used 
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Measurement of 𝜸/𝝓𝟑 

𝑩± →𝑫𝑲± where 𝐷 = 𝑫𝟎or 𝑫𝟎 (PLB 265, 172 (1991)) 

14 

𝑏 → 𝑐𝑢 𝑠 + 𝑏 → 𝑢𝑐 𝑠 
 

Γ ∝ |𝑓 𝐵− → 𝐷𝐾− |2 = 𝐴𝐵
2  + 𝐴𝐵

2 𝑟𝐵
2+ 2𝐴𝐵

2 𝑟𝐵
2 cos 𝛿𝐵  −  𝛾  

𝑟𝐵 =
𝑓 𝐵− → 𝐷0𝐾−

𝑓 𝐵− → 𝐷0𝐾−
 

Common final states-possibility of interference – access to phase 
term 

Sensitivity to 𝛾 comes from interference 

Other related modes with 𝐷∗ or 𝐾∗ in 
final states can also be used 

𝑩± →𝑫𝝅± modes has larger BF but small value of  𝑟𝐵 less sensitive to 𝛾 
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Methods to measure 𝜸 from 𝑩± →𝑫𝑲± 

 Gronau, London and Wyler method (GLW): D decay to CP eigenstate, 𝐾−𝐾+, 𝐾𝑆
0𝜋0 … PLB 265, 172 (1991)  

 Atwood, Dunietz and Soni method (ADS):  D decay to CF and DCS states,  𝐾−𝜋+, 𝐾−𝜋+𝜋0…. Phys. Rev. Lett. 

78, 3357 (1997)  

 Bondar, Poluektov, Giri, Grossman, Soffer and Zupan method (BPGGSZ): D decay to multibody final 
states,  𝐾𝑆

0𝐾+𝐾−, 𝐾𝑆
0𝜋+𝜋−, 𝐾𝑆

0𝜋+𝜋−𝜋0  … PRD 68, 054018 (2003)  
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Methods to measure 𝜸 from 𝑩± →𝑫𝑲± 
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0𝜋0 … PLB 265, 172 (1991)  

 Atwood, Dunietz and Soni method (ADS):  D decay to CF and DCS states,  𝐾−𝜋+, 𝐾−𝜋+𝜋0…. Phys. Rev. Lett. 

78, 3357 (1997)  

 Bondar, Poluektov, Giri, Grossman, Soffer and Zupan method (BPGGSZ): D decay to multibody final 
states,  𝐾𝑆

0𝐾+𝐾−, 𝐾𝑆
0𝜋+𝜋−, 𝐾𝑆

0𝜋+𝜋−𝜋0  … PRD 68, 054018 (2003)  

BPGGSZ method 

Dalitz plot analysis of multibody final states.  

Multibody final states: decays proceeds through various 
intermediate final states. 

𝑨 → 𝒂𝒃𝒄 

Dalitz plot: A scatter plot of decay in terms of Lorentz 
invariant quantities     Phil. Mag. 44, 1068 (1953) 
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Measurement of 𝛾 using 𝑩± → 𝑫 𝑲𝐒
𝟎𝑲+𝑲− 𝑲± via BPGGSZ method 
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Measurement of 𝛾 using 𝑩± → 𝑫 𝑲𝐒
𝟎𝑲+𝑲− 𝑲± via BPGGSZ method 

 𝐷 → 𝐾𝑆
0𝐾+𝐾− coordinates:     𝒎±

𝟐 = (𝑷𝑲𝑺
𝟎±𝑷𝑲±)

𝟐 
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Measurement of 𝛾 using 𝑩± → 𝑫 𝑲𝐒
𝟎𝑲+𝑲− 𝑲± via BPGGSZ method 

 𝐷 → 𝐾𝑆
0𝐾+𝐾− coordinates:     𝒎±

𝟐 = (𝑷𝑲𝑺
𝟎±𝑷𝑲±)

𝟐 

 𝒇𝑩− 𝒎+
𝟐 ,𝒎−
𝟐 ∝ 𝒇𝑫 𝒎+

𝟐 ,𝒎−
𝟐 + 𝒓𝑩𝒆

𝒊 𝜹𝑩−𝜸 𝒇𝑫 (𝒎+
𝟐 ,𝒎−
𝟐 ) 

20 



Measurement of 𝛾 using 𝑩± → 𝑫 𝑲𝐒
𝟎𝑲+𝑲− 𝑲± via BPGGSZ method 

 𝐷 → 𝐾𝑆
0𝐾+𝐾− coordinates:     𝒎±

𝟐 = (𝑷𝑲𝑺
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𝟐 ,𝒎−
𝟐 ∝ 𝒇𝑫 𝒎+

𝟐 ,𝒎−
𝟐 + 𝒓𝑩𝒆

𝒊 𝜹𝑩−𝜸 𝒇𝑫 (𝒎+
𝟐 ,𝒎−
𝟐 ) 

 Neglecting the CP violation and second-order effects of charm mixing:    

𝒇𝑫 (𝒎+
𝟐 ,𝒎−
𝟐 ) ≡ 𝒇𝑫 𝒎−

𝟐 ,𝒎+
𝟐  

21 



Measurement of 𝛾 using 𝑩± → 𝑫 𝑲𝐒
𝟎𝑲+𝑲− 𝑲± via BPGGSZ method 
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𝒇𝑫 (𝒎+
𝟐 ,𝒎−
𝟐 ) ≡ 𝒇𝑫 𝒎−

𝟐 ,𝒎+
𝟐  

            𝒅Г (𝑩− → 𝑫 𝑲𝑺
𝟎𝑲+𝑲−)𝑲− ∝ | 𝒇𝑫 𝒎+

𝟐 ,𝒎−
𝟐  |𝟐 + 𝒓𝑩

𝟐 | 𝒇𝑫 𝒎−
𝟐 ,𝒎+
𝟐  |𝟐 + 2𝒓𝑩 𝕽[𝒇𝑫 𝒎+

𝟐 ,𝒎−
𝟐 𝒇𝑫
∗ 𝒎−

𝟐 ,𝒎+
𝟐 𝒆−𝒊 𝜹𝑩−𝜸 ]    𝒅𝒎+

𝟐𝒅𝒎−
𝟐  

∆𝜹𝑫 𝒎+
𝟐 ,𝒎−
𝟐 = 𝜹𝑫 𝒎+

𝟐 ,𝒎−
𝟐 − 𝜹𝑫(𝒎−

𝟐 , 𝒎+
𝟐 ) 

𝑓𝐷 𝑚+, 
2 𝑚−
2 = |𝑓𝐷 𝑚+, 

2 𝑚−
2 | 𝑒𝑖𝛿𝐷 𝑚+, 

2 𝑚−
2

 

(Strong-phase difference) 
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Knowledge of D decay dynamics crucial 



Measurement of 𝛾 using 𝑩± → 𝑫 𝑲𝐒
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𝟐 ,𝒎−
𝟐 = 𝜹𝑫 𝒎+

𝟐 ,𝒎−
𝟐 − 𝜹𝑫(𝒎−

𝟐 , 𝒎+
𝟐 ) 

𝑓𝐷 𝑚+, 
2 𝑚−
2 = |𝑓𝐷 𝑚+, 

2 𝑚−
2 | 𝑒𝑖𝛿𝐷 𝑚+, 

2 𝑚−
2

 

(Strong-phase difference) 

𝓑𝓕(𝑫𝟎 → 𝑲𝑺
𝟎𝑲+𝑲−) =  (4.45 ± 0.19 )× 𝟏𝟎−𝟑 

24 (PDG) PTEP 2020, 083C01 (2020) 

Multibody decays proceeds through various intermediate resonant state hence large  
Strong-phase variations expected over Dalitz plot. 

Knowledge of D decay dynamics crucial 
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BPGGSZ method 



26 

 𝑓𝐷 𝑚+
2 , 𝑚−
2  from an amplitude model for 𝐷 → 𝐾𝑆

0𝐾+𝐾− 

Model-dependent measurements 

BPGGSZ method 
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 𝑓𝐷 𝑚+
2 , 𝑚−
2  from an amplitude model for 𝐷 → 𝐾𝑆

0𝐾+𝐾−  Binned Dalitz plot 
 Requires amplitude weighted  average values 

of ∆𝜹𝑫 𝒎+
𝟐 ,𝒎−
𝟐  in each bins 

Model-dependent measurements Model-independent measurements 

BPGGSZ method 
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 𝑓𝐷 𝑚+
2 , 𝑚−
2  from an amplitude model for 𝐷 → 𝐾𝑆

0𝐾+𝐾−  Binned Dalitz plot 
 Requires amplitude weighted  average values 

of ∆𝜹𝑫 𝒎+
𝟐 ,𝒎−
𝟐  in each bins 

Model-dependent measurements Model-independent measurements 

BPGGSZ method 

Which one? 
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 𝑓𝐷 𝑚+
2 , 𝑚−
2  from an amplitude model for 𝐷 → 𝐾𝑆

0𝐾+𝐾−  Binned Dalitz plot 
 Requires amplitude weighted  average values 

of ∆𝜹𝑫 𝒎+
𝟐 ,𝒎−
𝟐  in each bins 

Model-dependent measurements Model-independent measurements 

BPGGSZ method 

Which one? 

No model-dependent uncertainty Model uncertainty  of 3 – 9 degrees 

Better statistical sensitivity Less statistical sensitivity 
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 𝑓𝐷 𝑚+
2 , 𝑚−
2  from an amplitude model for 𝐷 → 𝐾𝑆

0𝐾+𝐾−  Binned Dalitz plot 
 Requires amplitude weighted  average values 

of ∆𝜹𝑫 𝒎+
𝟐 ,𝒎−
𝟐  in each bins 

Model-dependent measurements Model-independent measurements 

BPGGSZ method 

Type equation here. 

Which one? 

No model-dependent uncertainty Model uncertainty  of 3 – 9 degrees 

Better statistical sensitivity Less statistical sensitivity 



Model-independent measurement of 𝜸 
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Steps: 



Model-independent measurement of 𝜸 

 Divide Dalitz plot into 2𝒩 bins (indexed 𝑖), symmetrically around 
𝑚+
2 = 𝑚−

2    line (Note: no assumptions on bin shapes) PRD 68, 054018 (2003) 
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Steps: 

Square binning scheme 



Model-independent measurement of 𝜸 

 Divide Dalitz plot into 2𝒩 bins (indexed 𝑖), symmetrically around 
𝑚+
2 = 𝑚−

2    line (Note: no assumptions on bin shapes) 

 Yield of  𝑩± → 𝑫(𝑲𝑺
𝟎𝑲+𝑲−)𝑲± decay in 𝑖th bin 

𝑲𝒊: Flavor-tagged 𝑫𝟎 → 𝑲𝑺
𝟎𝑲+𝑲− events 

𝑵𝒊
∓ ∝ (𝑲±𝒊 + 𝒓𝑩

𝟐𝑲∓𝒊 + 𝟐 𝑲𝒊𝑲−𝒊 𝒙𝑩∓𝒄𝒊 + 𝒚𝑩∓𝒔𝒊 ) 

𝑥𝐵± = 𝑟𝐵cos (𝛿𝐵 ±  𝛾) 𝑦𝐵± = 𝑟𝐵sin (𝛿𝐵 ±  𝛾) 𝑟𝐵
2 = 𝑥𝐵±

2 + 𝑦𝐵±
2  

PRD 68, 054018 (2003) 
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 Steps: 

Square binning scheme 



Model-independent measurement of 𝜸 

 Divide Dalitz plot into 2𝒩 bins (indexed 𝑖), symmetrically around 
𝑚+
2 = 𝑚−

2    line (Note: no assumptions on bin shapes) 

 Yield of  𝑩± → 𝑫(𝑲𝑺
𝟎𝑲+𝑲−)𝑲± decay in 𝑖th bin 

𝑲𝒊: Flavor-tagged 𝑫𝟎 → 𝑲𝑺
𝟎𝑲+𝑲− events 

𝑵𝒊
∓ ∝ (𝑲±𝒊 + 𝒓𝑩

𝟐𝑲∓𝒊 + 𝟐 𝑲𝒊𝑲−𝒊 𝒙𝑩∓𝒄𝒊 + 𝒚𝑩∓𝒔𝒊 ) 

𝑥𝐵± = 𝑟𝐵cos (𝛿𝐵 ±  𝛾) 𝑦𝐵± = 𝑟𝐵sin (𝛿𝐵 ±  𝛾) 𝑟𝐵
2 = 𝑥𝐵±

2 + 𝑦𝐵±
2  

PRD 68, 054018 (2003) 
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Steps: 

𝒄𝒊 = 
 𝒇𝑫 𝒎+

𝟐 ,𝒎−
𝟐 𝒇𝑫 𝒎−

𝟐 ,𝒎+
𝟐  × 𝐜𝐨𝐬 ∆𝜹𝑫 𝒎+

𝟐 ,𝒎−
𝟐

𝒊
 𝒅𝒎+
𝟐 , 𝒅𝒎−

𝟐

𝑭𝒊𝑭−𝒊
 

𝒔𝒊 = 
 𝒇𝑫 𝒎+

𝟐 ,𝒎−
𝟐 𝒇𝑫 𝒎−

𝟐 ,𝒎+
𝟐  × 𝐬𝐢𝐧 ∆𝜹𝑫 𝒎+

𝟐 ,𝒎−
𝟐

𝒊
 𝒅𝒎+
𝟐 , 𝒅𝒎−

𝟐

𝑭𝒊𝑭−𝒊
 

Square binning scheme 



Model-independent measurement of 𝜸 

 Divide Dalitz plot into 2𝒩 bins (indexed 𝑖), symmetrically around 
𝑚+
2 = 𝑚−

2    line (Note: no assumptions on bin shapes) 

 Yield of  𝑩± → 𝑫(𝑲𝑺
𝟎𝑲+𝑲−)𝑲± decay in 𝑖th bin 

𝑲𝒊: Flavor-tagged 𝑫𝟎 → 𝑲𝑺
𝟎𝑲+𝑲− events 

𝑵𝒊
∓ ∝ (𝑲±𝒊 + 𝒓𝑩

𝟐𝑲∓𝒊 + 𝟐 𝑲𝒊𝑲−𝒊 𝒙𝑩∓𝒄𝒊 + 𝒚𝑩∓𝒔𝒊 ) 

𝑥𝐵± = 𝑟𝐵cos (𝛿𝐵 ±  𝛾) 𝑦𝐵± = 𝑟𝐵sin (𝛿𝐵 ±  𝛾) 𝑟𝐵
2 = 𝑥𝐵±

2 + 𝑦𝐵±
2  

Square binning scheme 

PRD 68, 054018 (2003) 
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Steps: 

𝒄𝒊 = 
 𝒇𝑫 𝒎+

𝟐 ,𝒎−
𝟐 𝒇𝑫 𝒎−

𝟐 ,𝒎+
𝟐  × 𝐜𝐨𝐬 ∆𝜹𝑫 𝒎+

𝟐 ,𝒎−
𝟐

𝒊
 𝒅𝒎+
𝟐 , 𝒅𝒎−

𝟐

𝑭𝒊𝑭−𝒊
 

𝒔𝒊 = 
 𝒇𝑫 𝒎+

𝟐 ,𝒎−
𝟐 𝒇𝑫 𝒎−

𝟐 ,𝒎+
𝟐  × 𝐬𝐢𝐧 ∆𝜹𝑫 𝒎+

𝟐 ,𝒎−
𝟐

𝒊
 𝒅𝒎+
𝟐 , 𝒅𝒎−

𝟐

𝑭𝒊𝑭−𝒊
 

Needs to be measured first. 



Determination of strong-phase difference from 𝑫𝟎𝑫𝟎 sample 

𝒄𝒊 and 𝒔𝒊 can be measured using 𝒆+𝒆− →  𝝍 𝟑𝟕𝟕𝟎 → 𝑫𝟎𝑫𝟎 

Data from charm factories collected at 𝑠 = 3.773 GeV 
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Determination of strong-phase difference from 𝑫𝟎𝑫𝟎 sample 

𝒄𝒊 and 𝒔𝒊 can be measured using 𝒆+𝒆− →  𝝍 𝟑𝟕𝟕𝟎 → 𝑫𝟎𝑫𝟎 

Data from charm factories collected at 𝑠 = 3.773 GeV 

𝑫𝟎𝑫𝟎 are in quantum correlated (C = -1 state) 

𝑒+𝑒−  → 𝜓 3770  →  
1

2
𝐷0𝐷0  −  𝐷0𝐷0  

𝑒+𝑒−  → 𝜓 3770  →  
1

2
[𝐷𝐶𝑃−𝐷𝐶𝑃+  − 𝐷𝐶𝑃+𝐷𝐶𝑃−]  

𝐷𝐶𝑃± =  
(𝐷0 ± 𝐷0)

2
 

Both D has opposite CP to each other:  reconstructing one D in CP eigenstates gives the CP of other D 
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Determination of strong-phase difference from 𝑫𝟎𝑫𝟎 sample 

𝒄𝒊 and 𝒔𝒊 can be measured using 𝒆+𝒆− →  𝝍 𝟑𝟕𝟕𝟎 → 𝑫𝟎𝑫𝟎 

Data from charm factories collected at 𝑠 = 3.773 GeV 

𝑫𝟎𝑫𝟎 are in quantum correlated (C = -1 state) 

𝑒+𝑒−  → 𝜓 3770  →  
1

2
𝐷0𝐷0  −  𝐷0𝐷0  

𝑒+𝑒−  → 𝜓 3770  →  
1

2
[𝐷𝐶𝑃−𝐷𝐶𝑃+  − 𝐷𝐶𝑃+𝐷𝐶𝑃−]  

𝐷𝐶𝑃± =  
(𝐷0 ± 𝐷0)

2
 

Both D has opposite CP to each other:  reconstructing one D in CP eigenstates gives the CP of other D 

Tagging 
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Determination of strong-phase difference from 𝑫𝟎𝑫𝟎 sample 

𝒄𝒊 and 𝒔𝒊 can be measured using 𝒆+𝒆− →  𝝍 𝟑𝟕𝟕𝟎 → 𝑫𝟎𝑫𝟎 

Data from charm factories collected at 𝑠 = 3.773 GeV 

𝑫𝟎𝑫𝟎 are in quantum correlated (C = -1 state) 

𝑒+𝑒−  → 𝜓 3770  →  
1

2
𝐷0𝐷0  −  𝐷0𝐷0  

𝑒+𝑒−  → 𝜓 3770  →  
1

2
[𝐷𝐶𝑃−𝐷𝐶𝑃+  − 𝐷𝐶𝑃+𝐷𝐶𝑃−]  

𝐷𝐶𝑃± =  
(𝐷0 ± 𝐷0)

2
 

Both D has opposite CP to each other:  reconstructing one D in CP eigenstates gives the CP of other D 

Tagging 

Singletag (ST): Only one D meson in reconstructed in an  event 

For eg: 𝐷0 → 𝐾𝑆
0𝐾+𝐾− 𝑣𝑠 𝐷0 → anything 

      or 𝐷0 → anything 𝑣𝑠 𝐷0 → 𝐾𝑆
0𝐾+𝐾− 
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Determination of strong-phase difference from 𝑫𝟎𝑫𝟎 sample 

𝒄𝒊 and 𝒔𝒊 can be measured using 𝒆+𝒆− →  𝝍 𝟑𝟕𝟕𝟎 → 𝑫𝟎𝑫𝟎 

Data from charm factories collected at 𝑠 = 3.773 GeV 

𝑫𝟎𝑫𝟎 are in quantum correlated (C = -1 state) 

𝑒+𝑒−  → 𝜓 3770  →  
1

2
𝐷0𝐷0  −  𝐷0𝐷0  

𝑒+𝑒−  → 𝜓 3770  →  
1

2
[𝐷𝐶𝑃−𝐷𝐶𝑃+  − 𝐷𝐶𝑃+𝐷𝐶𝑃−]  

𝐷𝐶𝑃± =  
(𝐷0 ± 𝐷0)

2
 

Both D has opposite CP to each other:  reconstructing one D in CP eigenstates gives the CP of other D 

Tagging 

Singletag (ST): Only one D meson in reconstructed in an  event 

For eg: 𝐷0 → 𝐾𝑆
0𝐾+𝐾− 𝑣𝑠 𝐷0 → anything 

      or 𝐷0 → anything 𝑣𝑠 𝐷0 → 𝐾𝑆
0𝐾+𝐾− 

 
Double tag (DT): Both D meson reconstructed in an event 

For eg: 𝐷0 → 𝐾𝑆
0𝐾+𝐾− 𝑣𝑠 𝐷0 → 𝐾+𝐾− 

       or  𝐷0 → 𝐾+𝐾− 𝑣𝑠 𝐷0 → 𝐾𝑆
0𝐾+𝐾− 

Flavor identification not 
possible 40 



𝑴𝒊
±  = 
𝑺±

𝑺𝒇
 𝑲𝒊 − 𝟐𝒄𝒊 𝟐𝑭+ − 𝟏 𝑲𝒊𝑲−𝒊 + 𝑲−𝒊 × 𝝐𝐃𝐓,𝒊 

𝑐𝑖  can determined from CP-tagged 𝐾𝑆
0𝐾+𝐾− events (DT 𝐾𝑆

0𝐾+𝐾− vs CP± tag modes)  

𝐹+ = 1 (0) for pure CP+ (CP-)  states 
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𝑴𝒊
±  = 
𝑺±

𝑺𝒇
 𝑲𝒊 − 𝟐𝒄𝒊 𝟐𝑭+ − 𝟏 𝑲𝒊𝑲−𝒊 + 𝑲−𝒊 × 𝝐𝐃𝐓,𝒊 

𝑴𝒊𝒋  = 
𝑵
𝑫𝟎𝑫𝟎

𝟐𝑺𝒇
𝟐  𝑲𝒊𝑲−𝒋 + 𝑲−𝒊𝑲𝒋  − 𝟐 𝑲𝒊𝑲−𝒋𝑲−𝒊𝑲𝒋(𝒄𝒊𝒄𝒋 + 𝒔𝒊𝒔𝒋)  × 𝝐𝑫𝑻,𝒊𝒋 

𝑐𝑖  can determined from CP-tagged 𝐾𝑆
0𝐾+𝐾− events (DT 𝐾𝑆

0𝐾+𝐾− vs CP± tag modes)  

𝑐𝑖 and 𝑠𝑖  can be determined from 𝐾𝑆
0𝐾+𝐾− vs  𝐾𝑆

0ℎ+ℎ− (ℎ = 𝐾, 𝜋) 
For 𝐾𝑆

0𝐾+𝐾− vs  𝐾𝑆
0𝜋+𝜋− 𝑐𝑗 , 𝑠𝑗  

corresponds to strong phase 
parameters of 𝐷0 → 𝐾𝑆

0𝜋+𝜋− 

PRL 124, 241802 (2020) 
PRD 124, 241802 (2020) 

𝐹+ = 1 (0) for pure CP+ (CP-)  states 
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𝑴𝒊
±  = 
𝑺±

𝑺𝒇
 𝑲𝒊 − 𝟐𝒄𝒊 𝟐𝑭+ − 𝟏 𝑲𝒊𝑲−𝒊 + 𝑲−𝒊 × 𝝐𝐃𝐓,𝒊 

𝑴𝒊𝒋  = 
𝑵
𝑫𝟎𝑫𝟎

𝟐𝑺𝒇
𝟐  𝑲𝒊𝑲−𝒋 + 𝑲−𝒊𝑲𝒋  − 𝟐 𝑲𝒊𝑲−𝒋𝑲−𝒊𝑲𝒋(𝒄𝒊𝒄𝒋 + 𝒔𝒊𝒔𝒋)  × 𝝐𝑫𝑻,𝒊𝒋 

𝑐𝑖  can determined from CP-tagged 𝐾𝑆
0𝐾+𝐾− events (DT 𝐾𝑆

0𝐾+𝐾− vs CP± tag modes)  

𝑐𝑖 and 𝑠𝑖  can be determined from 𝐾𝑆
0𝐾+𝐾− vs  𝐾𝑆

0ℎ+ℎ− (ℎ = 𝐾, 𝜋) 
For 𝐾𝑆

0𝐾+𝐾− vs  𝐾𝑆
0𝜋+𝜋− 𝑐𝑗 , 𝑠𝑗  

corresponds to strong phase 
parameters of 𝐷0 → 𝐾𝑆

0𝜋+𝜋− 

PRL 124, 241802 (2020) 
PRD 124, 241802 (2020) 

𝐹+ = 1 (0) for pure CP+ (CP-)  states 
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𝑴𝒊
′±  = 

𝑺±

𝑺𝒇
 𝑲𝒊
′ + 𝟐𝒄𝒊

′ 𝟐𝑭+ − 𝟏 𝑲𝒊
′𝑲−𝒊
′ +𝑲−𝒊

′ × 𝝐𝐃𝐓,𝒊 

𝑴𝒊𝒋
′  = 
𝑵
𝑫𝟎𝑫𝟎

𝟐𝑺𝒇
𝟐  𝑲𝒊𝑲−𝒋

′ + 𝑲−𝒊𝑲𝒋
′  − 𝟐 𝑲𝒊𝑲−𝒋

′ 𝑲−𝒊𝑲𝒋
′(𝒄𝒊𝒄𝒋

′ + 𝒔𝒊𝒔𝒋
′) × 𝝐𝑫𝑻,𝒊𝒋 

𝑐𝑖
′ can determined from CP-tagged 𝐾𝐿

0𝐾+𝐾− events 

𝑐𝑖
′and 𝑠𝑖

′ can be determined from 𝐾𝐿
0𝐾+𝐾− vs  𝐾𝑆

0ℎ+ℎ− (ℎ = 𝐾, 𝜋) 

For 𝑫𝟎 → 𝑲𝑳
𝟎𝑲+𝑲− we can measure 𝒄𝒊

′and 𝒔𝒊
′ 

𝑐𝑖
′and 𝑠𝑖

′ not required for 𝛾 measurements 

Required for improving the 
precision of  𝑐𝑖 and 𝑠𝑖  



Beijing Spectrometer Experiment (BESIII) 

 Two ring 𝑒+𝑒− symmetric collider;  
circumference:   240 m 

 Design ℒ =   1 x 1033 cm−2s−1 
 𝑠  = 2 – 4.6 GeV 

BEPC II  
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@ IHEP, Beijing 



Beijing Spectrometer Experiment (BESIII) 

 Two ring 𝑒+𝑒− symmetric collider;  
circumference:   240 m 

 Design ℒ =   1 x 1033 cm−2s−1 
 𝑠  = 2 – 4.6 GeV 

 Hermiticity:   93% of 4𝜋 

 MDC:   
𝜎𝑝

𝑝
 = 0.5% @ 1 GeV 

 TOF:  𝜍 = 80 ps (100 ps) in barrel and end-cap regions 

 ECL:   
𝜎𝐸

𝐸
 = 2.5%  @ 1 GeV 

 SC solenoid:  1T 

“Second generation charm factory after CLEO-c”  (Since 2009) 

BEPC II  
BESIII 

45 

@ IHEP, Beijing 

arXiv:hep-ex/0809.1869 



Analysis strategy 

Tag modes 

 Signal:    𝐾𝑆
0𝐾+𝐾−,  𝐾𝐿

0𝐾+𝐾− 
 CP even:  𝐾+𝐾−,   𝜋+𝜋−, 𝐾𝑆

0𝜋0𝜋0, 𝜋+𝜋−𝜋0,   𝐾𝐿
0𝜋0,  𝐾𝐿

0𝜔,  𝐾𝐿
0𝜂, 𝐾𝐿

0𝜂′ 
 CP odd:   𝐾𝑆

0𝜋0,  𝐾𝑆
0𝜔,  𝐾𝑆

0𝜂, 𝐾𝑆
0𝜂′ 

 Flavor:   𝐾−𝜋+,  𝐾−𝜋+𝜋0,  𝐾−𝑒+𝜐𝑒 
 Mixed CP:   𝐾𝑆

0𝜋+𝜋−,   𝐾𝐿
0𝜋+𝜋− 

Reconstruction of final state particles 

𝐾𝑆
0 → 𝜋+𝜋−, 𝜔 → 𝜋+𝜋−𝜋0,  𝜋0 → 𝛾𝛾, 𝜂 → 𝛾𝛾,  𝜂′ → 𝜋+𝜋−𝜂 

CP and flavor modes will be reconstructed both as ST and DT 

𝐹+ = 0.973 ± 0.017 

Branching fraction (1.43 ±0.06) % 

(PDG) PTEP 2020, 083C01 (2020) 

PLB 747, 9 (2015) 
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Particles are combined to reconstruct final states 
 Fully reconstructed tags:  Full kinematic reconstruction 

possible,  
 Partially reconstructed tags:  Particles having missing 

particle in final states; no full reconstruction, inference using 
missing energy and momentum 

D 

D 

𝑲𝑺
𝟎 

𝐾𝑆
0 

𝝅+ 

𝝅− 

𝝅𝟎 

𝑲− 

𝒆+ 𝒆− 

𝝅+ 

𝝅− 

𝑲+ 

𝛾 

𝛾 



𝑫𝟎 reconstruction 

𝑴𝑩𝑪 = 𝑬𝐛𝐞𝐚𝐦 −  |𝒑𝒊|
𝟐 

𝒊

 

∆𝑬 = 𝐸𝐛𝐞𝐚𝐦  − 𝐸𝑖
𝑖

 Beam constrained mass:  Beam energy difference: 

Low background level/high purity samples 

Cuts on ∆𝐸 to reduce combinatorial 
backgrounds 

𝑀miss
2  = 𝐸miss

2  - |𝒑miss|
2 

𝑈miss = 𝐸miss  − |𝑝miss| 

Larger backgrounds due to 
partial reconstruction 

Larger yields ! 
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Data yields 
ST Yield Total PDF = Signal MC shape ⨂ 

Gaussian + Argus 

𝑁ST  by integrating signal PDF 

For partially reconstructed tags 

𝑵𝑺𝑻 = 𝟐 × 𝑵𝑫𝟎𝑫𝟎 ×  𝓑𝓕 

ℬℱ 𝐾𝐿
0𝑋 =  ℬℱ(𝐾𝑆

0𝑋) for (𝑋 =  𝜂, 𝜂′, 𝜔) Note: 

PLB 241, 278 (1990) 

(PDG) PTEP 2020, 083C01 (2020) 

Difference expected to be around 10% 
PLB 349, 363 (1995) 

48 



DT yield 

𝑵𝐃𝐓 = 𝑵𝐒  −  𝑵𝐏  −  
𝒂𝐒
𝒂𝐃
𝑵𝐃 +  

𝒂𝐒
𝒂𝒊

𝒊=𝐀,𝐁,𝐂

𝑵𝒊 −
𝒂𝐒
𝒂𝒊
𝒂𝐃  

Sideband subtraction method on 2D 𝑀𝐵𝐶 plane 

Combinatorial backgrounds 

𝑁𝑖:  Counts in 𝑖th region 

𝑎𝑖:  Area of 𝑖th 

Peaking background 

𝒀𝑺 = 
(𝑵𝑺− 𝑵𝑺

𝑷)  −  𝜹(𝑵𝑳 − 𝑵𝑳
𝑷) − 𝜸(𝑵𝑯 − 𝑵𝑯

𝑷)

𝟏 − 𝜹𝜶 − 𝜸𝜷
 

For partially reconstructed tag sideband subtraction done on 𝑀miss
2  or 𝑈miss distribution 

Full DT yields are not required bin-by-bin yields are only required 

Sideband-subtraction done on each bin of the Dalitz plot 

PRD 78, 012001 (2008) 
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Dalitz Plot 

𝑲𝑺
𝟎𝑲+𝑲−𝐯𝐬. CP-even tags 

𝑲𝑺
𝟎𝑲+𝑲−𝐯𝐬. CP-odd tags 

𝜙 1020  

𝑎0(980) 
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Dalitz Plot 

𝑲𝑺
𝟎𝑲+𝑲−𝐯𝐬. CP-even tags 

𝑲𝑺
𝟎𝑲+𝑲−𝐯𝐬. CP-odd tags 

𝜙 1020  

𝑎0(980) 

𝑲𝑳
𝟎𝑲+𝑲−𝐯𝐬. CP-even tags 

𝑲𝑳
𝟎𝑲+𝑲−𝐯𝐬. CP-odd tags 

𝜙 1020  

𝑎0 980  
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Dalitz plot binning Equal-∆𝜹𝑫  binning scheme 

𝒩 = 2 𝒩 = 3 𝒩 = 4 
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Dalitz plot binning Equal-∆𝜹𝑫  binning scheme 

𝒩 = 2 𝒩 = 3 𝒩 = 4 

(PRL 78, 034023 (2008)) 

 𝑲𝑺
𝟎𝝓 𝟏𝟎𝟐𝟎 ,

 𝑲𝑺
𝟎𝒇𝟎(𝟗𝟖𝟎), 

 𝑲±𝒂∓ 𝟗𝟖𝟎 ,
 𝑲𝟎𝒂𝟎 𝟗𝟖𝟎  

 𝑲𝑺
𝟎𝒇𝟎 𝟏𝟑𝟕𝟎 ,

 𝑲±𝒂𝟎
∓(𝟏𝟒𝟓𝟎),          

non resonant 
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𝒇𝑫 𝒎+
𝟐 ,𝒎−
𝟐 =   𝒂𝒓𝒆

𝒊𝝓𝒓
𝒓  𝒇𝒓 𝒎+

𝟐 ,𝒎−
𝟐 + 𝒂𝑵𝑹𝒆

𝒊𝝓𝑵𝑹  
BaBar Isobar model  amplitude 

𝑎0, 𝑎±  Flatte function 

Others RBW function 



Dalitz plot binning Equal-∆𝜹𝑫  binning scheme 

𝒩 = 2 𝒩 = 3 𝒩 = 4 

∆𝜹𝑫 𝒎+
𝟐 ,𝒎−
𝟐  calculated from the amplitude model 

(PRL 78, 034023 (2008)) 

 𝑲𝑺
𝟎𝝓 𝟏𝟎𝟐𝟎 ,

 𝑲𝑺
𝟎𝒇𝟎(𝟗𝟖𝟎), 

 𝑲±𝒂∓ 𝟗𝟖𝟎 ,
 𝑲𝟎𝒂𝟎 𝟗𝟖𝟎  

 𝑲𝑺
𝟎𝒇𝟎 𝟏𝟑𝟕𝟎 ,

 𝑲±𝒂𝟎
∓(𝟏𝟒𝟓𝟎),          

non resonant 
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𝒇𝑫 𝒎+
𝟐 ,𝒎−
𝟐 =   𝒂𝒓𝒆

𝒊𝝓𝒓
𝒓  𝒇𝒓 𝒎+

𝟐 ,𝒎−
𝟐 + 𝒂𝑵𝑹𝒆

𝒊𝝓𝑵𝑹  
BaBar Isobar model  amplitude 

𝑎0, 𝑎±  Flatte function 

Others RBW function 



Dalitz plot binning Equal-∆𝜹𝑫  binning scheme 

Dalitz plot divided into bins satisfying condition  

𝟐𝝅 𝒊 − 𝟑 𝟐 /𝓝 ≤  ∆𝜹𝑫 𝒎+
𝟐 ,𝒎−
𝟐 < 𝟐𝝅 𝒊 − 𝟏 𝟐 /𝓝      for 𝑖 = 1, 2, 3…𝒩 

𝒩 = 2 𝒩 = 3 𝒩 = 4 

∆𝜹𝑫 𝒎+
𝟐 ,𝒎−
𝟐  calculated from the amplitude model 

(PRL 78, 034023 (2008)) 

 𝑲𝑺
𝟎𝝓 𝟏𝟎𝟐𝟎 ,

 𝑲𝑺
𝟎𝒇𝟎(𝟗𝟖𝟎), 

 𝑲±𝒂∓ 𝟗𝟖𝟎 ,
 𝑲𝟎𝒂𝟎 𝟗𝟖𝟎  

 𝑲𝑺
𝟎𝒇𝟎 𝟏𝟑𝟕𝟎 ,

 𝑲±𝒂𝟎
∓(𝟏𝟒𝟓𝟎),          

non resonant 
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𝒇𝑫 𝒎+
𝟐 ,𝒎−
𝟐 =   𝒂𝒓𝒆

𝒊𝝓𝒓
𝒓  𝒇𝒓 𝒎+

𝟐 ,𝒎−
𝟐 + 𝒂𝑵𝑹𝒆

𝒊𝝓𝑵𝑹  
BaBar Isobar model  amplitude 

𝑎0, 𝑎±  Flatte function 

Others RBW function 

Equal-∆𝜹𝑫  binning scheme 

∀ 𝒩 ≥ 2 

Gain in statistical sensitivity by 30 % for Equal-∆𝜹𝑫  
compared to rectangular bins ! 
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Are there other binning options available in general? 
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Are there other binning options available in general? 

• Optimal binning 
• Modified optimal binning etc.  
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Are there other binning options available in general? 

• Optimal binning 
• Modified optimal binning etc.  

How to decide on binning schemes? How to select an amplitude model? 
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Are there other binning options available in general? 

• Optimal binning 
• Modified optimal binning etc.  

How to decide on binning schemes? How to select an amplitude model? 

Compare the 𝒬2 values 

𝒩 = 2 0.94−0.06
+0.16      𝒩 = 3 0.87−0.06

+0.14     𝒩 = 4 (0.94−0.06
+0.21)     for the binning used in this analysis 

EPJC 47, 347 (2006) 
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Are there other binning options available in general? 

• Optimal binning 
• Modified optimal binning etc.  

How to decide on binning schemes? How to select an amplitude model? 

Compare the 𝒬2 values 

Effects of Model based binning on 𝜸  

𝒩 = 2 0.94−0.06
+0.16      𝒩 = 3 0.87−0.06

+0.14     𝒩 = 4 (0.94−0.06
+0.21)     for the binning used in this analysis 

EPJC 47, 347 (2006) 
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Are there other binning options available in general? 

• Optimal binning 
• Modified optimal binning etc.  

How to decide on binning schemes? How to select an amplitude model? 

Compare the 𝒬2 values 

Effects of Model based binning on 𝜸  

• No model-dependent systematics 
• Wrong model effects sensitivity but no bias on result 

𝒩 = 2 0.94−0.06
+0.16      𝒩 = 3 0.87−0.06

+0.14     𝒩 = 4 (0.94−0.06
+0.21)     for the binning used in this analysis 

EPJC 47, 347 (2006) 



Bin yields 
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Bin yields Migration correction 

Finite detector resolution leads to migration of events 

Migration matrix U constructed using signal MC sample 

𝐔𝒊𝒋 =  
𝒎𝒋𝒊

 𝒎𝒋𝒌
𝓝
𝒌=−𝓝,𝒌≠𝟎

 

𝑚𝑗𝑖: Events generated in bin 𝑗 and reconstructed in bin 𝑖 

Vector of corrected yield N, related to uncorrected yield 
𝐍rec by 

N = 𝐔−𝟏𝐍𝐫𝐞𝐜 
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Background Analysis 

All 𝐾𝐿
0𝑋 modes contains backgrounds from 𝐾𝑆

0𝑋 modes 𝐾𝑆
0 → 𝜋0𝜋0 with both 𝜋0 not reconstructed 

𝑲𝑳
𝟎𝑲+𝑲−𝒗𝒔 𝑪𝑷 even 𝑲𝑳

𝟎𝑲+𝑲−𝒗𝒔 𝑪𝑷 odd 

𝑲𝑺
𝟎𝑲+𝑲−𝒗𝒔 𝑪𝑷 even 𝑲𝑺

𝟎𝑲+𝑲−𝒗𝒔 𝑪𝑷 odd 

Flat backgrounds:  𝑲+𝑲−𝝅𝟎𝝅𝟎 ∼ 2% 

∼2 – 4 % 
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Background Analysis 

All 𝐾𝐿
0𝑋 modes contains backgrounds from 𝐾𝑆

0𝑋 modes 𝐾𝑆
0 → 𝜋0𝜋0 with both 𝜋0 not reconstructed 

𝑲𝑳
𝟎𝑲+𝑲−𝒗𝒔 𝑪𝑷 even 𝑲𝑳

𝟎𝑲+𝑲−𝒗𝒔 𝑪𝑷 odd 

𝑲𝑺
𝟎𝑲+𝑲−𝒗𝒔 𝑪𝑷 even 𝑲𝑺

𝟎𝑲+𝑲−𝒗𝒔 𝑪𝑷 odd 

Dalitz plot distribution of 

backgrounds for 𝑲𝑳
𝟎𝑲+𝑲−𝒗𝒔 𝑪𝑷 ±  

Dalitz plot distribution of 𝑲𝑺
𝟎𝑲+𝑲−𝒗𝒔 𝑪𝑷 ∓  

Expected background yields can be 
calculated using 𝑐𝑖 and 𝑠𝑖 from 
CLEO-c value 

𝑵𝒊
𝑩𝒌𝒈
= 𝑵𝑪𝑳𝑬𝑶
𝑩𝒌𝒈

 × 𝝐𝒊
𝒓𝒆𝒕 

𝝐𝒊
𝒓𝒆𝒕: retention efficiency 

𝝐𝒊
𝒓𝒆𝒕 = 

Number of Background events selected

Number of Background events generated
  

Flat backgrounds:  𝑲+𝑲−𝝅𝟎𝝅𝟎 ∼ 2% 

PRD 82, 112006 (2010) 

∼2 – 4 % 
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Extraction of 𝒄𝒊 and  𝒔𝒊 

The uncorrected yields in related bins are combined according to the symmetry relations 
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Extraction of 𝒄𝒊 and  𝒔𝒊 

The uncorrected yields in related bins are combined according to the symmetry relations 

𝑐𝑖
(′)
, 𝑠𝑖
(′)

  obtained by minimizing the negative log likelihood expression 

𝑁  is expected migration corrected yield 

67 

𝑁 = 𝑀 + 𝐵 
                               𝑁  = 𝑀 + 𝐵  



Extraction of 𝒄𝒊 and  𝒔𝒊 

The uncorrected yields in related bins are combined according to the symmetry relations 

𝑐𝑖
(′)
, 𝑠𝑖
(′)

  obtained by minimizing the negative log likelihood expression 

𝑁  is expected migration corrected yield 

∆𝑐𝑖 = 𝑐𝑖,BaBar
′ − 𝑐𝑖,BaBar 
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𝑁 = 𝑀 + 𝐵 
                               𝑁  = 𝑀 + 𝐵  



Systematic uncertainties 

General strategy: smearing the input quantity by a Gaussian with in the measured uncertainty to produce a new 
value of input quantity. 

Accounting for correlation: vector of correlated variable  
                             X = 𝝁 + 𝑨𝒁 

Repeat fit 1000 times and build a distribution of 𝑐𝑖
(′)

 and 𝑠𝑖
(′)

 values; width of distribution gives systematic uncertainty 

A is Cholesky decomposition of covariance matrix, Z is vector of unit Gaussian  

Systematic 
uncertainty for 𝓝 = 
2 bins 69 



Fit results 

(𝒄𝒊, 𝒔𝒊) for 
𝓝 = 𝟐, 𝟑, 𝟒 

(𝒄𝒊
′, 𝒔𝒊
′) for 

𝓝 = 𝟐, 𝟑, 𝟒 
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For 𝓝 = 𝟐, 𝟑, 𝟒 

Bias in fit values due 
to the values 
outside the region 

𝑐𝑖
2 + 𝑠𝑖

2 = 1 

Impact on measurement of  𝜸 

Simulate 𝐵± → 𝐷(𝐾𝑆
0𝐾+𝐾−)𝐾± decay in each bins 

Smear values of 𝑐𝑖and 𝑠𝑖  within their uncertainties 
accounting for correlation 

10000 ToyMC sample generated Values of  𝑟𝐵, 𝛿𝐵 and  𝛾 set to 
latest world averages  

http://ckmfitter.in2p3.fr 
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𝑁𝑖
∓ = 
𝑎𝐵
𝑎𝐷
(𝑲±𝒊 + 𝒓𝑩

𝟐𝑲∓𝒊 + 𝟐 𝑲𝒊𝑲−𝒊 𝒙𝑩∓𝒄𝒊 + 𝒚𝑩∓𝒔𝒊 ) 

𝑎𝐵 set to a larger value 



Summary 

Explained the model-independent BPGGSZ method for measuring  CKM angle 𝛾 
Role of charm factories in the model independent  measurement of 𝛾 explained 
𝑐𝑖 and 𝑠𝑖  measured with a better precision to date 
Measurements are statistically dominated no irreducible systematic uncertainty 
Uncertainty on 𝛾 due to 𝑐𝑖 and 𝑠𝑖  are  2.4∘, 1.3∘, 1.3∘ for 𝒩 = 2, 3, 4 Equal-∆𝛿𝐷 bins 
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Phys. Rev. D 102, 052008   (2020)  [ arXiv: hep-ex/2007.07959] 
. 

Measurements  of 𝜸 using 𝑩± → 𝑫 𝑲𝑺
𝟎𝒉+𝒉− 𝑲±   at LHCb (2020) 

Uncertainty due to 𝑐𝑖  and 𝑠𝑖  ∼ 1∘  →  50% improvement with 
BESIII value 

JHEP 02 , 169 (2021) 

𝜸 = (𝟔𝟖. 𝟕−𝟓.𝟏
+𝟓.𝟐)∘ 

1900 𝐾𝑆
0𝐾+𝐾−events 

9 𝑓𝑏−1 𝑃𝑃  data @ 7,8 , 13 TeV 

𝓝 = 𝟐 



Summary 

Explained the model-independent BPGGSZ method for measuring  CKM angle 𝛾 
Role of charm factories in the model independent  measurement of 𝛾 explained 
𝑐𝑖 and 𝑠𝑖  measured with a better precision to date 
Measurements are statistically dominated no irreducible systematic uncertainty 
Uncertainty on 𝛾 due to 𝑐𝑖 and 𝑠𝑖  are  2.4∘, 1.3∘, 1.3∘ for 𝒩 = 2, 3, 4 Equal-∆𝛿𝐷 bins 
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Phys. Rev. D 102, 052008   (2020)  [ arXiv: hep-ex/2007.07959] 
. 

Measurements  of 𝜸 using 𝑩± → 𝑫 𝑲𝑺
𝟎𝒉+𝒉− 𝑲±   at LHCb (2020) 

Uncertainty due to 𝑐𝑖  and 𝑠𝑖  ∼ 1∘  →  50% improvement with 
BESIII value 

JHEP 02 , 169 (2021) 

𝜸 = (𝟔𝟖. 𝟕−𝟓.𝟏
+𝟓.𝟐)∘ 

1900 𝐾𝑆
0𝐾+𝐾−events 

9 𝑓𝑏−1 𝑃𝑃  data @ 7,8 , 13 TeV 

𝓝 = 𝟐 

Similar analysis using Belle+BelleII data under progress! 
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The value of 𝑐𝑖 and 𝑠𝑖  required for model-independent determination of charm mixing parameters 
and for searching CP violation in 𝐷 → 𝐾𝑆

0𝐾+𝐾− decays  

Other areas: 

Phys.Rev.Lett 122, 231802 (2019) [arXiv:hep-ex/1903.03074] 

New 𝐷 → 𝐾𝑆
0𝐾+𝐾− model at BESIII 

arXiv:hep-ex/2006.02800 

Other activities at BESIII 

• Involved in the similar measurements of 𝑐𝑖  and 𝑠𝑖  for 𝐷 → 𝐾𝑆
0𝜋+𝜋− with groups at Oxford University 

• Quantum-correlated studies of 𝐷 → 𝐾𝑆
0𝜋+𝜋−𝜋0 decays (undergraduate project of Mr. Pratyush  Anand , 

Master student at ETH Zurich) 
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TOF Calibration work at BESIII 

Plastic based scintillator was replaced by MRPC in 2015 

ETOF has 72 modules, each modules has 8 MRPC strips 

Need to calibrate each strip  

𝑡𝑟𝑎𝑤 = 𝑇𝑂𝐹 + 𝑡𝑝𝑟𝑜𝑝 + 𝑡𝑐𝑎𝑏𝑙𝑒 + 𝑡𝑒𝑙𝑒𝑐 + 𝑡𝑡𝑖𝑚𝑒𝑤𝑎𝑙𝑘 

Position of hit 

𝑡𝑝𝑟𝑒𝑑 − 𝑡𝑟𝑎𝑤 

𝑓 𝑥 =  𝑐1 + 
𝑐2
𝑥3
+ 𝑐3𝑥 + 𝑐4𝑥

2 + 𝑐5𝑥
3 + 𝑐6𝑥

4 3rd strip 5th module 

Nucl. Instrum and Method in Phys. A 
953, 163053 (2020) 

Not appropriate needs to be 
improved 

constant 
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BACKUP 

Fit results: First uncertainty is statistical and second uncertainty is systematic 
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Average of CLEO and BESIII results, uncertainties statistical and systematic added in quadratures 

Average of CLEO and BESIII results 

CLEO and BESIII results are compatible: Weighted average will 
be equally good 

Just add a term to fit                  𝝌𝐚𝐯𝐠
𝟐  = (𝐏 − 𝐏𝐂𝐋𝐄𝐎)𝑻 𝑽−𝟏(𝐏 − 𝐏𝐂𝐋𝐄𝐎) 



Event pre-selections 

Charged Particle 
 Polar angle: |cos (𝜃)| < 0.93 
 Radial distance:  |𝑉𝑥𝑦| < 1 cm 

 Longitudinal distance: |𝑉𝑍| < 10 
cm  

Neutral showers 
 0 < time < 700 ns 
 Energy: > 0.025 GeV  
    (> 0.050 GeV) for barrel (end-cap) 
 Distance from MDC track exit 
> 10𝜍 

𝝅𝟎 → 𝜸𝜸 (𝜼 → 𝜸𝜸) reconstruction 
 Kinematic fit: 𝜒2 < 20  
  0.110 < M(𝛾𝛾) < 0.165 GeV 
      (0.480 < M(𝛾𝛾) < 0.580 GeV) 
 No. of 𝛾 in end-cap > 1 

𝑲𝑺
𝟎 reconstruction 

 Kinematic fit: 𝜒2 < 100 
 0.487 < M(𝛾𝛾) < 0.511 GeV 
 Flight significance: L/𝜍𝐿 > 2 
 No track quality requirement 

𝝎 → 𝝅+𝝅−𝝅𝟎 and 
 𝜼′ → 𝝅+𝝅−𝜼 
 0.760 < M(𝜋+𝜋−𝜋0) < 0.805 

(GeV) 
 0.938 < M(𝜋+𝜋−𝜂) < 0.978 

GeV 

Particle identification 
 𝜋±:  ℒ𝜋 > ℒ𝐾  
 𝐾±:  ℒ𝐾 > ℒ𝜋 

 𝑒±:  
ℒ𝑒

ℒ𝜋+ℒ𝐾+ℒ𝑒
  > 0.8 

Detector described using cylindrical coordinates with IP as the origin 

Particles are combined to reconstruct final states 
 Fully reconstructed tags:  Full kinematic reconstruction possible,  
 Partially reconstructed tags:  Particles having missing particle in final states; no full reconstruction, inference 

using missing energy and momentum 
79 
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Cabbibo-Kobayashi-Maskawa (CKM) matrix 

𝑉𝐶𝐾𝑀𝑉𝐶𝐾𝑀
†  = I =𝑉𝐶𝐾𝑀

† 𝑉𝐶𝐾𝑀 𝑉𝑢𝑑 𝑉𝑢𝑠 𝑉𝑢𝑏
𝑉𝑐𝑑 𝑉𝑐𝑠 𝑉𝑐𝑏
𝑉𝑡𝑑 𝑉𝑡𝑠 𝑉𝑡𝑏

 
𝑑′

𝑠′

𝑏′
 

𝑑
𝑠
𝑏

 = 
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Mixing between weak eigenstates and flavor eigenstates in three generations. 

Can be parameterized using 3 angles  and 1 phase (rephasing quark fields) 

Various parameterizations (Chau and Keung parameterization)  

𝐶𝑖𝑗(𝑆𝑖𝑗) = cos 𝜃𝑖𝑗(sin 𝜃𝑖𝑗) 

𝛿 is  the irreducible phase 

Wolfenstein parameterization 

𝑠12 ≡  𝜆 
                         𝑠23  ≡ 𝐴𝜆

2 

                  𝑠13𝑒
−𝑖𝛿  ≡ 𝐴𝜆3(𝜌 − 𝑖𝜂) 

𝜆 = 0.22 


