$B_{c} \rightarrow J / \psi \ell^{-} \bar{\nu}$ Form Factors for the full q^{2} range from Lattice QCD

J. Harrison ${ }^{1}$, C. T. H. Davies ${ }^{1}$, A. Lytle ${ }^{2}$
${ }^{1}$ SUPA, School of Physics and Astronomy, University of Glasgow, Glasgow, G12 8QQ, UK
${ }^{2}$ INFN, Sezione di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Roma RM, Italy

Background

- Experimental measurements of flavor-changing B decays are a source of tension with the standard model, e.g.[1].
- The $B_{c} \rightarrow J / \psi \ell^{-} \bar{\nu}$ decay has not yet been measured precisely. In future LHC runs we anticipate that the experimental precision of $R(J / \psi)$ (the ratio of $J / \psi \tau \bar{\nu}$ to $J / \psi \mu \bar{\nu}$ branching fraction) will be reduced significantly down to the 1% level.
- We calculate the form factors for B_{c} to J / ψ for the first time from lattice QCD and determine $R(J / \psi)$ in the Standard Model.
The differential decay rate with respect to $q^{2}=\left(p_{B_{c}}-p_{J / \psi}\right)^{2}$ is given by

$$
\begin{aligned}
\frac{d \Gamma}{d q^{2}}=\frac{G^{2}}{(2 \pi)^{3}}\left|V_{c b}\right|^{2} & \frac{\left(q^{2}-M_{\ell}{ }^{2}\right)^{2} p^{\prime}}{12 M_{B_{c}}^{2} q^{2}} \mathcal{B}\left(J / \psi \rightarrow \mu^{+} \mu^{-}\right) \\
& \quad \times\left[\left(H_{-}^{2}+H_{0}^{2}+H_{+}^{2}\right)+\frac{M_{\ell}{ }^{2}}{2 q^{2}}\left(H_{-}^{2}+H_{0}{ }^{2}+H_{+}^{2}+3 H_{t}^{2}\right)\right]
\end{aligned}
$$

where M_{ℓ} is the mass of the final state lepton, $\ell=e, \mu, \tau$, and the H_{i} are the helicity amplitudes defined in terms of form factors as

$$
\begin{aligned}
& H_{ \pm}\left(q^{2}\right)=\left(M_{B_{c}}+M_{J / \psi}\right) A_{1}\left(q^{2}\right) \mp \frac{2 M_{B_{c} p^{\prime}}}{M_{B_{c}}+M_{J / \psi}} V\left(q^{2}\right), \\
& H_{0}\left(q^{2}\right)=\frac{1}{2 M_{J / \psi} \sqrt{q^{2}}}\left(\left(M_{B_{c}}^{2}-M_{J / \psi}^{2}-q^{2}\right) A_{1}\left(q^{2}\right)-4 \frac{M_{B_{c}}^{2} p^{\prime 2}}{M_{B_{c}}+M_{J / \psi}} A_{2}\left(q^{2}\right)\right), \\
& H_{t}\left(q^{2}\right)=\frac{2 M_{B_{c}} p^{\prime}}{\sqrt{q^{2}}} A_{0}\left(q^{2}\right) .
\end{aligned}
$$

And the form factors are in turn defined in terms of the QCD matrix elements [4]

$$
\begin{aligned}
\left\langle J / \psi\left(p^{\prime}, \epsilon\right)\right| \bar{c} \gamma^{\mu} b\left|B_{c}^{-}(p)\right\rangle & =\frac{2 i V\left(q^{2}\right)}{M_{B_{c}}+M_{J / \psi}} \epsilon^{\mu \nu \rho \sigma} \epsilon_{\nu}^{*} p_{\rho}^{\prime} p_{\sigma} \\
\left\langle J / \psi\left(p^{\prime}, \epsilon\right)\right| \bar{c} \gamma^{\mu} \gamma^{5} b\left|B_{c}^{-}\right\rangle & =A_{0}\left(q^{2}\right) 2 M_{J / \psi} \epsilon^{*} \cdot q \\
q^{2} & q^{\mu} \\
& +A_{1}\left(q^{2}\right)\left(M_{B_{c}}+M_{J / \psi}\right)\left[\epsilon^{* \mu}-\frac{\epsilon^{*} \cdot q}{q^{2}} q^{\mu}\right] \\
& -A_{2}\left(q^{2}\right) \frac{\epsilon^{*} \cdot q}{M_{B_{c}}+M_{J / \psi}}\left[p^{\mu}+p^{\prime \mu}-\frac{M_{B_{c}}^{2}-M_{J / \psi}^{2}}{q^{2}} q^{\mu}\right] .
\end{aligned}
$$

In this work we compute these form factors in lattice QCD across the full q^{2} range and construct the differential decay rate and branching ratio $R(J / \psi)$.

Lattice QCD

Lattice QCD exploits the relation between the Euclidean path integral and operator formalisms in order to extract matrix elements and energies, eg.

$$
\int \mathcal{D}[\psi, \bar{\psi}, A] \mathcal{O}_{1}(t) \mathcal{O}_{2}(0) e^{-S^{E}[\psi, \bar{\psi}, A]}=\sum_{n}\langle 0| \hat{\mathcal{O}}_{1}|n\rangle\langle n| \hat{\mathcal{O}}_{2}|0\rangle e^{-E_{n} t} .
$$

For nonperturbative physics we must discretise space onto a finite volume lattice, evaluate path integral numerically, and then extract matrix elements and energies using statistical methods. Here we use HISQ quarks on the $2+1+1$ second generation MILC HISQ ensembles and Bayesian methods, implemented in the corrfitter python package [2], to extract matrix elements and energies

Heavy-HISQ

To control discretisation errors we require that $a m_{q}<1$. Most lattices have $a m_{b}>1$. This leads us to use Heavy-HISQ, eg. [3]

- Use multiple unphysically light heavy quark masses with physical b masses on only the finest lattice.
- Fit the q^{2} dependence using the z-expansion, including $\Lambda_{\mathrm{QCD}} / m_{h}$ and $a m_{h}$ terms in the coefficients.
- Extract the physical q^{2} dependence by setting $m_{h}=m_{b}$ and $a m_{h}=0$

The use of HISQ quarks, which feature greatly suppressed $a m$ errors, minimises the $a m_{h}$ dependence of our lattice data, as well as allowing us to renormalise the lattice currents fully non-perturbatively. Our form factor fit function is then

$$
\begin{aligned}
F\left(q^{2}\right) & =P\left(q^{2}\right) \sum_{n=0}^{3} a_{n} z^{n} \mathcal{N}_{n} \\
a_{n} & =\sum_{j, k, l=0}^{3} b_{n}^{j k l}\left(\frac{2 \Lambda}{M_{\eta_{b}}}\right)^{j}\left(\frac{a m_{c}^{\mathrm{val}}}{\pi}\right)^{2 k}\left(\frac{a m_{b}^{\mathrm{val}}}{\pi}\right)^{2 l}
\end{aligned}
$$

$P\left(q^{2}\right)$ incorporates poles arising from $b \bar{c}$ (axial-)vector states coupling to the current and \mathcal{N} includes quark mass mistuning effects.

Results

Form factor data, together with the extrapolated physical point curves:

We then assemble the computed form factors into helicity amplitudes, from which we may construct the differential decay rates.

We find
$\Gamma\left(B_{c}^{-} \rightarrow J / \psi \mu^{-} \bar{\nu}_{\mu}\right)=2.14(14) \times 10^{10} s^{-1}($ preliminary $)$,
$\Gamma\left(B_{c}^{-} \rightarrow J / \psi \tau^{-} \bar{\nu}_{\tau}\right)=6.53(34) \times 10^{9} s^{-1}$ (preliminary),
and the ratio

$$
R(J / \psi)=0.3050(74) \text { (preliminary) }
$$

References

[1] J. P. Lees et al. Evidence for an excess of $\bar{B} \rightarrow D^{(*)} \tau^{-} \bar{\nu}_{\tau}$ decays. Phys. Rev. Lett., 109:101802, 2012.
[2] G. P. Lepage. corrfitter. Corrfitter Version 6.0.7, github.com/gplepage/corfititer.
[3] E. McLean, C. T. H. Davies, A. T. Lytle, and J. Koponen. Lattice QCD form factor for $B_{s} \rightarrow D_{s}^{*} l \nu$ at zero recoil with nonperturbative current renormalisation. Phys. Rev., D99(11):114512, 2019.
[4] Jeffrey D. Richman and Patricia R. Burchat. Leptonic and semileptonic decays of charm and bottom hadrons. Rev. Mod. Phys. 67:893-976, 1995.

