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1
I N T R O D U C T I O N

1.1 the standard model and fundamental symmetries

The Standard Model of particle physics (SM) is a theory which describes the
fundamental particles and the interactions between them. It is a relativistic quan-
tum gauge field theory, based on the gauge symmetry group SU(3)C× SU(2)L×
U(1)Y , which describes the three interactions found in Nature - the electromag-
netic, the weak and the strong interactions [1, 2, 3]. The interactions are mediated
by spin 1 particles, called gauge bosons, between the spin 1

2 constituents of mat-
ter, called fermions. Another spin 0 particle, called the Higgs boson, generates
the masses of the particles via interaction and the spontaneous breaking of the
gauge symmetry [4].

If a system exhibits a certain symmetry, this means that a certain feature of
the system is unchanged under some transformation. This unchanged feature
of the system is said to be invariant under the transformation. Mathematically,
transformations that leave a quantity unchanged are described by groups. The
transformations can be continuous or discrete, with countinuous transforma-
tions described by Lie groups, and discrete transformations by discrete groups.
It is important to note that according to Noether’s theorem [5], every symmetry
is associated with a conservation law.

The particles in the SM are described using quantum fields, with the dynamics
of the SM determined via the principle of least action, by a Lagrangian function,
built from these fields. Since the SM is a relativistic quantum gauge field theory,
its Lagrangian is invariant to two continuous transformations - the Poincare
transformations, described by the Poincare Lie group translation × SO(1, 3)
and the gauge transformations, described by the mentioned SU(3)C × SU(2)L ×
U(1)Y Lie group.

The Poincare symmetry is a global spacetime symmetry of the SM, which
follows from the principles of special relativity - all physical quantities and
laws must be the same in every inertial frame of reference for every point of
the Minkowski spacetime. Since the inertial frames are connected via Poincare
transformations, the physical quantities and laws must be invariant under the
Poincare group of transformations and the corresponding conserved quantities
are the energy, the momentum and the angular momentum of the system. Also,
in order for the theory to be causal, it has to have an exact Poincare symmetry
[6].

The gauge symmetry is an internal symmetry (independent of spacetime co-
ordinates) of a quantum field theory, which arises because a quantum field,
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2 introduction

Figure 1: Standard Model particles and their properties

which is not an observable quantity, can have different configurations, which
result in the same observable quantities. The transformations from one to the
other field configuration is called a gauge transformation. We can associate a
gauge symmetry group for every interaction described by the SM. The fields
transform as a SU(3)C group under the strong interaction and the conserved
quantity under these transformations is the quark color. Under the electroweak
interaction, the fields transform as a SU(2)L ×U(1)Y group and the conserved
quantities are the weak hypercharge and the weak isospin. So the SM has a
SU(3)C × SU(2)L × U(1)Y gauge symmetry. In the SM, this symmetry is then
spontaneously broken by the non-zero vacuum expectation value of the theory
to the SU(3)C×U(1)em symmetry group, which gives the strong, weak and elec-
tromagnetic interactions.

The fundamental quantum fields in the SM are divided into several categories,
based on their spin and quantum numbers, which are conserved by the gauge
transformations (see figure 1).

The spin 1 gauge bosons, which mediate the interactions, are divided into:

• Eight massless gluons g, which carry the strong interaction. They carry a
color-anticolor charge, and interact with quarks and between themselves.
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• The three massive weak gauge bosons W+, W− and Z0, which carry the
weak interaction. In addition to weak isospin, the W bosons also carry an
electric charge. They interact with quarks and leptons of different flavors
and also between themselves.

• The massless photon γ, which carries the electromagnetic force between
charged particles.

The spin 1
2 fermions are organized into three generations, which have identical

properties according to the interactions, the only difference between the genera-
tions being the masses of the particles and the flavor quantum number. In one
generation, we have a pair of left-handed quarks (an up-type and a down-type
quark), a pair of left-handed leptons (a lepton and its corresponding neutrino),
a right-handed up-type quark, a right-handed down-type quark, and a right-
handed lepton. For every particle, there is a corresponding antiparticle, which
has the same mass and reversed quantum numbers. The left-handed particle
fields are SU(2)L doublets, and the right-handed particle fields are SU(2)L sin-
glets.

• There are thus six quarks of different flavor, the up-type quarks u, c, t,
and the down-type quarks d, s and b. The quarks carry color charge, and
hence they interact via the strong interaction. In addition, they also carry
an electric charge and the weak isospin, so they can also interact via the
electromagnetic and weak interaction.

• There are also six flavors of leptons, which do not carry color charge. The
leptons are e, µ and τ, and they interact via the electromagnetic and weak
interactions. To each of the leptons there corresponds a neutrino, νe, νµ
and ντ. They are electrically neutral and can therefore interact only via the
weak force.

The Higgs boson is a spin 0 particle, an SU(2)L doublet, and does not carry color
or electric charge.

Every described particle except the Higgs boson has been experimentally con-
firmed, and a new particle, which is consistent with the Higgs boson, was dis-
covered by the ATLAS and CMS collaborations in 2012 [7, 8].

In addition to these exact symmetries, we can also define other transforma-
tions under which the SM is only approximately conserved. For example, we
can define approximate continuous symmetries, such as the quark flavor sym-
metry, the chiral symmetry, etc. We can also define three discrete symmetries:

• the P symmetry - the symmetry under parity transformation, which re-
verses the spatial coordinates, ~r to −~r,

• the C symmetry - the symmetry under charge conjugation, which trans-
forms a particle into its antiparticle by conjugating all internal quantum
numbers,

• the T symmetry - the symmetry under time reversal, which transforms t to
−t.
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The electromagnetic and strong interaction terms in the SM Lagrangian conserve
all three of these symmetries, so they also conserve any combination, and the
weak interaction violates the P and C symmetries maximally - only the left-
handed particles and right-handed antiparticles interact with the weak gauge
bosons.

For a long time, it was thought that the combined CP symmetry is conserved
by all three interactions and is therefore a fundamental symmetry of the SM,
until Cronin and Fitch discovered a small CP-violating effect in the system of
neutral kaons in 1964 [9]. Later, CP-violation was also discovered in decays of
B mesons by the Belle and Babar collaborations [10]. CP-violation was not yet
discovered in other meson decays, baryon decays or lepton decays.

It can be shown that the combined CPT symmetry has to be conserved in order
for the SM to be a Lorentz (Poincare) invariant local quantum field theory with a
Hermitian Hamiltonian [11] or alternatively, that the violation of CPT symmetry
implies a violation of Lorentz (Poincare) symmetry [12], so CPT symmetry is a
fundamental symmetry of the SM.

1.2 violation of CP symmetry

CP-transformation changes a particle into its antiparticle. Because of this, viola-
tion of CP symmetry is one of the key ingredients that explain why the Universe
is predominantly composed out of matter and not antimatter. It is one of the
three Sakharov conditions for baryogenesis, which are necessary for the matter-
antimatter asymmetry [13].

To quantify the asymmetry between baryonic and antibaryonic matter, we
compare the number of baryons and the number of photons found in the uni-
verse today, as this number is related to the asymmetry between quarks and
antiquarks in the early universe (∼ 10−6 seconds after the Big Bang). The baryon
number asymmetry of the Universe, deduced from nucleosynthesis and cosmic
microwave background radiation [14, 15], is:

∆|t&10−6 =
nB −nB
nγ

' 10−10 (1)

It is usually assumed that earlier than ∼ 10−6 seconds after the Big Bang, the
Universe underwent inflation, which evened out the initial asymmetries between
quarks and antiquarks, so ∆|t.10−6 = 0 must have held, and the asymmetry be-
tween quarks and antiquarks would have to come from violation of CP symme-
try alone. The Sakharov conditions are necessary to explain how a non-vanishing
∆ could arise dynamically from the starting symmetric situation ∆ = 0. The three
conditions are:

• There must be baryon number violation interactions:

Heff(∆B 6= 0) 6= 0 (2)

• There must be CP-violating interactions, because if CP were an exact sym-
metry, every process mediated by Heff(∆B 6= 0) would still have the same
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decay rate as the CP-conjugated one, so the matter-antimatter asymmetry
would still be 0.

• The universe must have been out of thermal equilibrium. This is because
CPT is conserved, and in an equilibrium state, time becomes irrelevant on
a global scale, so CPT symmetry reduces to CP symmetry, and the second
condition is not fulfilled.

In the SM, the only source of CP-violation in quark interactions comes from the
Kobayashi-Maskawa (KM) mechanism, explained in section 1.2.1, however, this
mechanism alone does not account for the baryon number asymmetry (1) seen
today. Therefore it is important to search for as-yet undiscovered CP-violating
effects included in the SM (namely, CP-violation in the leptonic sector, as it is
the only other possibility), or in models that extend the SM.

1.2.1 Kobayashi Maskawa mechanism

In order to describe CP-violation in the SM, let us denote the fermionic particle
fields in figure 1 by (in this derivation, we will follow [16] and [17]):

PHf(rSU(3), rSU(2))Y , (3)

where P is the particle, H the handedness, f the flavor/generation index, rSU(3)
and rSU(2) the representations of SU(3)C and SU(2)L that the particle belongs in,
and Y the hypercharge. With this notation, we have for fermions:

QLi(3, 2)1/6 =

[
ULi

DLi

]
, URi(3, 1)2/3, DRi(3, 1)−1/3, (4)

LLi(1, 2)−1/2 =

[
νLi

ELi

]
, ERi(1, 1)−1,

and for the Higgs field we have

φ(1, 2)1/2 (5)

The SM Lagrangian can be divided into multiple parts:

L = LgaugeKT +LfermionKT +LHiggs +LYukawa, (6)

where the parts contain the gauge fields kinetic terms, the fermion fields kinetic
terms, the Higgs field potential and the Yukawa interaction terms. The only
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part of the SM Lagrangian that is CP-violating is the Yukawa term. 1 The quark
Yukawa terms are:

−L
quark
Yukawa = YdijQLiφDRj + Y

u
ijQLiφ̃URj + (Ydij)

∗DRiφ
†QLj + (Yuij)

∗URiφ̃
†QLj, (7)

where φ̃ =

[
0 1

−1 0

]
φ∗.

We spontaneously break the SU(3)C×SU(2)L×U(1)Y symmetry into SU(3)C×
U(1)em by letting the Higgs field acquire a nonzero vacuum expectation value:

< φ >=

[
0
v√
2

]
, v = 246GeV (8)

After the spontaneous symmetry breaking, the Yukawa interactions become the
mass terms:

−LmassYukawa = (Md)ijDLiDRj+ (Mu)ijULiURj+ (Md)
∗
ijDRiDLj+ (Mu)

∗
ijURiUij. (9)

These fields, however, are written in the interaction basis and so the mass ma-
trices in equation (7) are not diagonal. If we want to obtain the physical masses
of the quarks, we need to write the terms in the mass basis, where the mass
matrices are diagonal. We can always find two unitary matrices VqL and VqR

so that VqLMqV
†
qR = M

diag
q , (q = u,d). The quark mass eigenstates are then

q ′Li = (VqL)ijqLj, q ′Ri = (VqR)ijqRj, (q = u,d).
With these transformations, the charged current weak interactions, which we

get from the LfermionKT part of the Lagrangian in (6), now transform to:

−Lcc,flavor =
g

2
QLiγ

µWa
µτ
aQLi, a = 1, 2→

−Lcc,mass =
g√
2

[
u ′L, c ′L, t

′
L

]
γµW+

µ (VuLV
†
dL)

d ′Ls ′L
b ′L

+ (10)

g√
2

[
d
′
L, s ′L, b

′
L

]
γµW−

µ (VuLV
†
dL)
∗

u ′Lc ′L
t ′L

 ,

where W±µ = 1√
2
(W1

µ ∓W2
µ).

The 3× 3 unitary matrix:
VCKM = VuLV

†
dL, (11)

1 There can also be a CP violating term in the QCD gauge field kinetic term: Lθ =
θQCD
32π2

εµνρσF
µναFρσα. This term can be estimated by measuring the electric dipole moment

of the neutron, which leads to the bound θQCD < 10−10. There is no requirement in SM that
this parameter should be so small, and understanding why CP-violation is so small in strong
interactions is called the strong CP problem [18].
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Figure 2: Magnitudes of the CKM matrix elements, represented by an area.

is called the Cabibbo-Kobayashi-Maskawa (CKM) matrix. The elements of the
CKM matrix are free parameters in the SM, and their magnitudes determine the
probability of the weak chargedW± boson couplings between quarks of different
generations (flavors), so we can label the elements:

VCKM =

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

 (12)

Every 3 × 3 unitary matrix can be parameterized by 3 real parameters and 1

complex phase. One particularly useful parameterization is called the Wolfen-
stein parametrization [19]:

VCKM =

 1− 1
2λ
2 λ Aλ3(ρ− iη)

−λ 1− 1
2λ
2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

+O(λ4). (13)

The global fit on all available measurements and SM unitarity constraints, gives
for the parameters:

λ = 0.22535± 0.00065, A = 0.811+0.022−0.012 ρ = 0.131+0.026−0.013 η = 0.345+0.013−0.014 (14)

From these values we can see that the CKM matrix is almost diagonal, in a sense
that the absolute values of its elements are smaller, the further away one goes
from the diagonal (see figure 2), so the quarks are more likely to couple to quarks
in the same generation.

The complex phase parameter in the CKM matrix is the only source of CP-
violation in the SM. This can be explained intuitively by CP transforming the
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charged current weak interaction Lagrangian (10) and comparing it to the un-
transformed one:

−Lcc,mass =
g√
2

[
u ′L, c ′L, t

′
L

]
γµW+

µ VCKM

d ′Ls ′L
b ′L

+

g√
2

[
d
′
L, s ′L, b

′
L

]
γµW−

µ V
∗
CKM

u ′Lc ′L
t ′L

 ,

CP
→ (15)

−LCPcc,mass =
g√
2

[
d
′
L, s ′L, b

′
L

]
γµW−

µ VCKM

u ′Lc ′L
t ′L

+

g√
2

[
u ′L, c ′L, t

′
L

]
γµW+

µ V
∗
CKM

d ′Ls ′L
b ′L

 ,

We see that the Lagrangian (10) is CP symmetry conserving only if VCKM =
V∗CKM holds, in other words, if the CKM matrix elements are real. This will be
true only if the complex phase is equal to 0.

A similar derivation can be performed for the leptons, but in the SM, the
leptonic CP-violation is equal to 0, because in the SM, the neutrinos do not
have masses. However, recent neutrino oscillation experiments have shown that
neutrinos mix among themselves and therefore have masses [20], so there could
be a possibility of CP-violation also in the leptonic sector. So far, no CP-violation
in this sector has been experimentally confirmed.

1.3 CP violation in charm decays

CP violation in the SM for tree-level charm decays is expected to be very small.
This is due to the fact that the t quark is so heavy that it decays before it can
form hadrons, so all the charmed hadronic states that participate in weak decays
are composed of quarks that belong to the first two generations. The 2× 2matrix
for the first two generations (the Cabibbo matrix) is real to the order of λ2 in the
Wolfenstein parametrization (13). The complex phase that causes CP violation
enters only in the λ4 order, and this yields a CP volating effect of the order
O(10−3).
CP-violation can also occur in next order decays (box and penguin decays),

however, the CP violating effects that can occur are highly suppressed by the
smallness of the typical CKM matrix element combinations VcqV∗uq that deter-
mine the coupling probability in the second order weak charm decays. To esti-
mate the order of magnitude of the CP violating effects, we look for example
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at the factor VcsV∗us (this is a factor relevant to the box diagram process). Using
CKM matrix unitarity, this factor can be expressed as:

VcsV
∗
us = −VcdV

∗
ud

(
1+

VcbV
∗
ub

VcdV
∗
ud

)
. (16)

The second term’s absoulte value is small, and we can express the magnitude of
the imaginary part for the term VcsV

∗
us as:

arg(VcsV
∗
us) ≈ Im

(
VcsV

∗
us

VcsV∗us

)
≈ 7× 10−4. (17)

Both contributions are therefore of the order of O(10−3), so any observation of
CP violation significantly larger than this would present a clean signal of physics
not described by the SM. Searches for CP violation in charm decays are therefore
a promising way to discover physics beyond the SM.

1.4 CP-violation in weak decays of the Λc baryon

The Λ+
c baryon is a spin 1/2 particle composed of (udc) quarks. In this work,

we will search for CP-violation in a specific decay chain of Λ+
c , where the Λ+

c

baryon decays weakly to the Λ0 baryon, also a spin 1/2 baryon, composed of
(uds) quarks and a π+, a spin 0 meson with a quark content of (ud). The Λ0

baryon then decays weakly to a proton, again a spin 1/2 baryon composed of
quarks (uud), and a π−, a spin 0 meson with a quark content of (du). (see figure
3).

Weak decays of a spin 1/2 particle to a spin 1/2 and a spin 0 particles (B0 →
B1M) can be described by an amplitude:

A(B0 → B1M) = uB1(pB1 , sB1)[AS − γ5AP]uB0(pB0 , sB0). (18)

If we CP transform this amplitude, we get:

A(B0 → B1M) CP
→ vB0(pB0 , sB0)[AS + γ5AP]vB1(pB1 , sB1). (19)

From these amplitudes, we can calculate the angular distribution in the decay
which is a linear function of the cos θ of the decay (see section 1.4.1). If CP
symmetry is conserved in these decays, the parameter of B0 decay, αB0 , will be
the opposite of the parameter of B0 decay, αB0 , because of (18) and (19). If we
define an asymmetry:

A
B0
CP

=
αB0 +αB0
αB0 −αB0

, (20)

we can determine the amount of CP-violation in this decay.
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Figure 3: Feynman diagrams of the Λ+
c baryon decay chain.

1.4.1 Λc decay chain angular distribution - nonrelativistic derivation

In this section and in section 1.4.2, we follow [21]. The two decays that we are
analyzing are both weak decays of a spin 1/2 particle to a spin 1/2 particle and
a spin 0 particle. We look first at just the decay Λc → Λπ. Because this decay is
weak, the parity is not conserved and there is no restriction on the parity of the
final state. If we take the initial state to be completely polarized (for example, we
choose the initial state with spin up), then by angular momentum conservation,
the Λπ final state can have an angular momentum of l = 0 (S-wave) or l = 1

(P-wave). The following spin configurations are allowed:

ψ1 = ASY
0
0s1/2 = AS

[
1

0

]

ψ2 = −AP(−

√
1

3
)Y10s1/2 = −AP(−

√
1

3
)(
√
3 cos θ)

[
1

0

]
(21)

ψ3 = −AP(

√
2

3
)Y11s−1/2 = −AP(

√
2

3
)(−

√
3

2
sin θeiϕ)

[
0

1

]
,

where AS and AP are the amplitudes of the S and P angular momentum state,

Yij are orbital momentum eigenfunctions, the factors −
√
1
3 and

√
2
3 are Clebsch-

Gordon coefficients for the decomposition of the initial spin 1/2 state into two
spins, 1/2 and 1, and s1/2 and s−1/2 are the Pauli spin functions.

The final state is a superposition of all three possible spin configurations:

ψf = ψ1 +ψ2 +ψ3 = (AS +AP cos θ)

[
1

0

]
+ (APe

iϕ sin θ)

[
0

1

]
, (22)

This gives for the angular distribution of the decay as measured in the Λc center-
of-mass system (CMS) (see figure 4):

dN

d cos θ
= ψ∗fψf = 1+αΛc cos θ, (23)
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Figure 4: Definition of the angle in the angular distribution of Λc decay in Λc CMS.

where αΛc is the weak asymmetry decay parameter for the Λc decay:

αΛc =
2Re(A∗SAP)

|AS|2 + |AP|2
. (24)

Theoretically, this parameter can for example be calculated in the framework of
heavy quark effective theory [22]. In addition, we can also define two other decay
parameters:

βΛc =
2Im(A∗SAP)

|AS|2 + |AP|2

γΛc =
|AS|

2 − |AP|
2

|AS|2 + |AP|2
. (25)

We would like to determine the polarization of the Λ particle coming from
this decay. For this, we need the spin state of the Λ. The most general spin state
of a spin 1/2 particle can be written as:

ψ = a

[
1

0

]
+ b

[
0

1

]
, (26)

where a and b are complex numbers normalized to 1:

|a|2 + |b|2 = 1. (27)

Since the final state wave function (22) contains all information about the spin of
the Λ, we just need to normalize it to get the correct spin state of the Λ. We will
also set ϕ to 0. With this, we set the emission direction of the Λ into the z− x
plane, which does not affect generality. The Λ spin state is then:

ψΛ =
ψf
|ψf|2

=
AS +AP cos θ
1+αΛc cos θ

[
1

0

]
+

AP sin θ
1+αΛc cos θ

[
0

1

]
. (28)

The polarization vector for spin 1/2 particles is defined as

~P = 2 < ~J >= ψ∗~σψ, (29)
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where ~σ are the Pauli matrices. From equations (28) and (29) we can now deter-
mine the components of the Λ polarization vector:

(1+αΛc cos θ)PΛx = αΛc sin θ+ 2|AP|2 cos θ sin θ
(1+αΛc cos θ)PΛy = βΛc sin θ (30)

(1+αΛc cos θ)PΛz = γΛc +αΛc cos θ+ 2|AP|2 cos2 θ.

Now we generalize to the case where the initial Λc particle is not completely
polarized (PΛc < 1). We can define the initial polarization of a sample of Λc
particles as:

PΛc =
N↑ −N↓
N↑ +N↓

, (31)

where N↑ and N↓ are the numbers of Λc particles in the sample with spin up
and spin down, respectively. Equation (23) now becomes:

dN

d cos θ
= 1+ PΛcαΛc cos θ, (32)

and for calculation of the Λ polarization, we must reweigh both spin terms in
equation (28) by N↑

N↑−N↓
and N↓

N↑−N↓
, respectively. For the spin down state, we

must also make the transformation y → −y, z → −z, θ → π− θ, as the Λc spin
points in the negative z direction in this case. When we take this into account,
the Λ polarization for a Λc source with polarization PΛc in the Λc CMS is:

PΛx =
αΛc sin θ+ 2PΛc |AP|

2 cos θ sin θ
1+ PΛcαΛc cos θ

PΛy =
PΛcβΛc sin θ

1+ PΛcαΛc cos θ
(33)

PΛz =
PΛcγΛc +αΛc cos θ+ 2PΛc |AP|

2 cos2 θ
1+ PΛcαΛc cos θ

.

These expressions simplify if we write them in the Λ emission CMS, where
the x-axis is defined with the Λ emission direction in the Λc CMS, the y-axis
direction is the same as before, and the z-axis are defined to be perpendicular
in the usual way (see figure 5). If we transform the Λ polarization vector to this
coordinate system, we get (we will denote the axes with indices 1, 2 and 3 for
this system):

PΛ1 =
αΛc + PΛc cos θ
1+ PΛcαΛc cos θ

PΛ2 =
PΛcβΛc sin θ

1+ PΛcαΛc cos θ
(34)

PΛ3 =
PΛcγΛc sin θ

1+ PΛcαΛc cos θ
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Figure 5: Definition of the Λ emission coordinate system.

Now we look at the decay Λ→ pπ. We know that this is also a weak decay of
a spin 1/2 particle to a spin 1/2 particle and a spin 0 particle, so according to the
equation (32), the angular distribution of the decay in the Λ CMS is:

dN

d cos θp
= 1+ PΛαΛ cos θp, (35)

where αΛ is the weak asymmetry parameter for the decay of Λ and PΛ is the Λ
polarization.

In our case, the Λ sample has this angular distribution with respect to the
direction of the polarization ~PΛ. We now want to write the angular distributions
of the decay with respect to the directions 1, 2 and 3 in figure 5. It can be shown
that the distribution (35) remains the same for all three directions, if we write
it with the polar angle and the right component of polarization for the specific
direction. So, for all three directions, we will have:

dN

d cos ϑk
(θ) = 1+αΛPΛk(θ) cos ϑk, k = 1, 2, 3 (36)

The components (34) are written for a specific angle θ. In our sample, however,
for each Λ that is emitted, this angle will be different, so if we want angular
distributions in Λ CMS of the whole sample, we need to average the polarization
components over θ:

dN

d cos ϑk
= 1+αΛ < PΛk > cos ϑk, k = 1, 2, 3. (37)

< PΛk > is the statistical average of the polarization components over the θ decay
angle:

< PΛk >=

∫
PΛk(θ)f(θ)dΩ, (38)
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where f(θ) is the normalized distribution (32). If we calculate this, we arrive to
our final distributions:

dN

d cos ϑ1
= 1+αΛcαΛ cos ϑ1, cos ϑ1 = êp · ê1

dN

d cos ϑ2
= 1+

π

4
PΛcβΛcαΛ cos ϑ2, cos ϑ2 = êp · ê2 (39)

dN

d cos ϑ3
= 1+

π

4
PΛcγΛcαΛ cos ϑ3, cos ϑ3 = êp · ê3,

where ê1, ê2 and ê3 have been defined in figure 5 and êp is the emission direction
of the proton in the Λ CMS.

As one can see from the first of equations (39), we can determine the parameter
αΛc regardless of the initial polarization of the Λc sample, if αΛ is known.

1.4.2 Λc decay chain angular distribution - relativistic derivation

In section 1.4.1, we derived the angular distributions nonrelativistically. Specifi-
cally, we did not distinguish between the Λc CMS where the decay orbital mo-
mentum is strictly defined, and the Λ CMS where the Λ spin is strictly defined.
To find a relativistic generalization, we need to write down the relativistic decay
state of the Λc in its CMS. This state can be written as a superposition of states:

|L,M, s,m >=

∫
dΩ~pY

M
L (Ω~p)ϕ~pΓ~pχ

m
s , (40)

where:

• Ω~p are the angles θ~p, φ~p, denoting the direction of the Λ momentum ~p in
the Λc CMS.

• YML (Ω~p) is the decay orbital momentum state with angular momentum L

and z component M.

• ϕ~p is a plane wave state ei~p~x for Λ in the Λc CMS.

• χms is the spin eigenstate of Λ in the Λ CMS, which is defined so that the
coordinate axes are parallel to the axes in the Λc CMS.

• Γ~p is the matrix that transforms the Λ spin state from the Λ CMS to the Λc
CMS.

It can be shown that the rotation properties of the relativistic states (40) do not
depend on the Λ momentum ~p, which means that they transform under rota-
tions in the Λc CMS as the corresponding nonrelativistic states. If this is true,
then the nonrelativistic derivation which considers only angular momentum in
the Λc CMS is identical to the relativistic one. The only difference is that caution
must be taken when transforming from the Λ CMS to Λc CMS. Since every Λ in
the sample has its own CMS, defined by the Λc CMS, we need to first transform
every quantity from the laboratory system to the Λc CMS, and from there to the
Λ CMS, where we have calculated the angular distribution.



2
E X P E R I M E N TA L S E T U P

This work has been done by analyzing the data collected by the Belle detector.
The Belle detector is a particle detector constructed around the crossing point of
the electron and positron beams of the KEKB asymmetric e+e− collider, located
at the High Energy Accelerator Research Organization in Tsukuba, Japan. In
this chapter, the KEKB collider and the Belle detector will be described. For a
complete description, see [23] for the KEKB collider and [24, 25] for the Belle
detector.

2.1 the kekb asymmetric e+e− collider

KEKB is a two-ring, asymmetric energy electron-positron collider. Its two rings
with a circumference of ∼ 3 km are installed 11 m below the ground level in a
tunnel which was previously used for the TRISTAN collider. In one of the rings,
the electrons are stored at the energy of 8.5 GeV (the high energy ring - HER)
and in the other, positrons are stored at the energy of 3.5 GeV (the low energy
ring - LER). The electrons and positrons are injected into the rings by a linac
complex at full energies. The two rings intersect at an angle of 22 mrad in a
single point, called the interaction point (IP), where the e+e− collisions occur.
The Belle detector is built around the IP in order to catch the particles produced
by the collisions (see figure 6).

The beam energies are chosen so that the center-of-mass (CM) energy is :

ECM = 2
√
EHERELER = 10.58 GeV , (41)

which corresponds to the mass of the Υ(4S) resonance, an excited bound state of
bb quarks [26]. Because the mass of Υ(4S) is approximately equal to 2 times the
mass of the B meson, this resonance is just above the threshold for the B meson
production, and it decays exclusively to a pair of B mesons (either charged or
neutral). Because the cross-section for the e+e−→ Υ(4S)→ BB reaction at this
energy is large, the KEKB collider produces a large amount of B mesons (it is a
so-called ’B-factory’). This setup that gives a large B meson production is chosen
because the Belle collaboration’s main goal was to study CP violation in decays
of B mesons.

15
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Figure 6: A schematic of the KEKB collider.[23]

interaction type σ[nb]

e+e− → Υ(4S)→ BB 1.1
e+e− → cc 1.3

e+e− → qq, (q = u,d, s) 2.1
e+e− → τ+τ− 0.93

Bhabha, radiative Bhabha 37.8
γγ 11.1

Table 1: Cross sections for possible e+e− interactions in the KEKB collider. [24]

The beam energies are asymmetric, and therefore the produced Υ(4S) particle
is boosted in the laboratory system by:

βγ =
EHER − ELER
ECMS

= 0.425. (42)

The BB pair produced from Υ(4S) has approximately the same boost, as they
are produced almost at rest in the CMS of the Υ(4S), so the decay vertices of
both mesons are ∼ 200 µm apart in the laboratory system, which allows for the
measurement of time-dependent CP-violation.

In addition to collecting data at this energy, the accelerator also collected
data at energies corresponding to other Υ(NS) resonances, and at an energy
of 60 MeV below the Υ(4S) resonance (see figure 7).

The colliding e+e− can also undergo interactions other than the Υ(4S)→ BB

production. The interactions include all other quark pair production except for tt
pairs, muon and tau pair production, Bhabha scattering and two photon events.
The cross-sections for each interaction are written in table 1. As we can see, the
collider also produces a large amount of cc pairs, which can be used to study
charm physics.
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Figure 7: Cross section for e+e− → hadrons at the center-of mass energies near the Υ
resonances.[26]

The performance of an accelerator is characterized by its luminosity, which
equals the number of particles per area per unit of time times the opacity of the
target. For the intersecting ring collider, it is equal to:

L = fn
N1N2
A

, (43)

where f is the revolution frequency, n the number of particle bunches in an
individual ring, N1 and N2 the number of particles in each colliding bunch, and
A the cross-section of the beam.

The luminosity relates the rate of particle collisions to the interaction cross-
section:

dN

dt
= Lσ. (44)

The KEKB collider’s design luminosity was 1.0× 10−34/cm2s, and in June 2009,
it achieved a luminosity of 2.11× 1034/cm2s, which is the current world record
for colliders.

The integrated luminosity,

L =

∫
Ldt, (45)

is a measure of total collected data. In its running period, the KEKB collider has
produced a total of more than 1000 fb−1 of data, 711 fb−1 of this amount at the
Y(4S) resonance and 100 fb−1 at 60 MeV below the Y(4S) resonance (see table
2).

2.2 the belle detector

The Belle detector (figure 8) is constructed around the interaction point of the
KEKB accelerator. It’s purpose is to measure the energy, momentum and identity
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Resonance collected data [fb−1]

Υ(1S) 6

Υ(2S) 25.0
Υ(3S) 3

60 MeV below Υ(4S) 100

Υ(4S) 711

Υ(5S) 121

all data > 1000

Table 2: The amount of data produced at various energies of different resonances in the
KEKB collider.[27]

0 1 2 3 (m)

e- e+
8.0 GeV 3.5 GeV
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Figure 8: Side view of the Belle detector.[24]
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Figure 9: Cross-section of the beam pipe at the interaction region.[24]

of various long-lived particles which are final products of the e+e− collisions
in the accelerator. It is configured around the 1.5 T solenoid magnet and iron
structure which surround the KEKB beams.

The detector is composed of various subdetector systems, all of which have
specific tasks. Just outside the beryllium beam pipe is the silicon vertex detec-
tor (SVD), which measures the decay vertices of B mesons. Looking radially
outward, after the SVD there is the multiwire drift chamber (CDC), used for
charged particle tracking and via measurements of specific ionization dE

dx , also
for particle identification. The aerogel Cherenkov counters (ACC) and the time-
of-flight counters (TOF) outside the CDC are also used for particle identification.
Following those in the radial direction, there is an electromagnetic calorimeter
(ECL), used for measuring the energy of the electromagnetic showers, composed
of an array of CsI(Tl) crystals. All of these subdetectors are located inside the
superconducting solenoid magnet. The outermost subdetector is the KL meson
and muon detector (KLM), composed of arrays of resistive plate counters inter-
spersed in the iron yoke.

The detector covers a polar angle of 17◦ < θ < 150◦ 1. A part of the uncov-
ered polar angle is measured by a pair of extreme forward calorimeters (EFC),
composed of an array of BGO crystals.

In order to reduce the Bhabha and γγ background events and to reduce the
rate of data that needs to be written by the data acquisition system, the Belle
detector employs a hardware and a software trigger.

In the following the most important parts of the detector for the performed
measurement are described in more details.

2.2.1 Beam pipe

The beam pipe in the interaction region (−4.6 cm 6 z 6 10.1 cm) is a double-
wall beryllium cyllinder (see figure 9). The inner radius is 15 mm for the new
beam pipe and 20 mm for the old beam pipe (see chapter 2.2.2). Because of the
heat induced by the beam, it is He-gas cooled. Both beryllium walls are 0.5 mm

1 The laboratory system is defined with the z-axis pointing in the opposite direction of the LER
beam, the x-axis in the horizontal direction, and the y-axis in the vertical direction.
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Figure 10: Detector configurations of SVD1 (top) and SVD2 (bottom). [24, 25]

thick and represent 0.3% of the radiation length. On the outside wall, a 60 µm
thick gold sheet is attached, in order to reduce the low energy X-ray background
from HER. Its thickness corresponds to 0.6% of the radiation length.

2.2.2 Silicon vertex detector - SVD

In order to study the time-dependent CP-violation in Bmeson decays, one needs
a precision of ∼ 100 µm in the measurement of the difference of the z decay
vertex positions for B meson pairs. This measurement is provided by the silicon
vertex detector (SVD), and in addition, it is also useful for measuring the decay
vertex positions of D and τ mesons and also contributes to tracking. As the
resolution that can be achieved is dominated by the multiple Coulomb scattering,
the SVD needs to be placed as close to the IP as possible and it must be low in
mass but rigid.

The SVD is composed out of layers of detectors, where each layer is built out of
independent DSSD (double-sided silicon detector) ladders. (see figure 10). The
DSSD is a depleted p− n junction, in which a passing charged particle excites
electrons from the valence to the conducting band, thus creating electron-hole
pairs, which create currents in the p+ and n+ strips on the surface of the DSSD.
Each DSSD in SVD has 1280 sense strips and 640 readout pads on opposite sides.

In the Belle detector, there have been two different silicon vertex detectors
(denoted by SVD1 and SVD2), where SVD1 was operating from the beginning
of the measuring period until 2003, and SVD2 was operating from 2003 until the
end of the measuring period.
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Figure 11: Impact parameter resolutions of SVD1 and SVD2 in the z direction and the
r−φ plane.[24]

SVD1 had 3 layers, at 30, 45.5 and 60mm radially from the IP, consisting out of
8, 10 and 14 DSSD ladders respectively, where in each ladder there were 2, 3 or
4 ladders, depending on the layer. It covered a solid of angle of 23◦ 6 θ 6 139◦

and at θ = 90◦, corresponded to 1.85% of radiation length.
SVD2 had 4 layers, at 20, 43.5, 70 and 80 mm radially from the IP, consisting

out of 6, 12, 18 and 18 DSSD ladders respectively, where in each ladder there
were 2, 3, 5 or 6 ladders, depending on the layer. It covered a solid of angle of
17◦6 θ6 150◦, thus matching the angular coverage of the CDC, and at θ = 90◦,
corresponded to 2.6% of radiation length.

Both detectors provided sufficient accuracy in measuring the coordinates of
the decay vertices of B mesons, in the z direction and also in the r− φ plane,
as confirmed by the measurements of the impact parameter resolution. The mo-
mentum and angular dependence of the impact parameter resolution in the z
direction and rφ plane can be expressed by the formula

σz = a⊕
b

pβ sin5/2 θ
µm, σrφ = c⊕ d

sin3/2 θ
µm, (46)

where a = 36,b = 42, c = 19,d = 50 for SVD1, and a = 28,b = 32, c = 22,d = 36
for SVD2 (see figure 11).

2.2.3 Central drift chamber - CDC

Virtually all measurements done with the Belle detector need an efficient recon-
struction of individual charged particle tracks and the precise determination of
their momenta. This is accomplished with the main tracking detector, the CDC.



22 experimental setup

Figure 12: The Belle CDC cell structure.[24]

Physics goals for the Belle experiment require a momentum resolution of the
reconstructed charged to be:

σpT
pT

∼ 0.5%
√
1+ p2T [GeV/c] (47)

for all particles with pT > 100 MeV/c in the polar angle of 17◦ 6 θ 6 150◦.
The tracking system must also provide information for the trigger and particle
identification information in the form of the precise measurements of the specific
ionization dE

dx .
The CDC is designed and constructed to meet these requirements. It is a mul-

tiwire drift chamber, filled with gas, with strung anode sense and field wires
centered between cathode planes, forming cells (see figure 12). A charged par-
ticle travelling through the chamber ionizes the gas and the ionized electrons
and ions drift to the anode wires an cathode planes, respectively. In the strong
electric field close to the anode wire, the electrons trigger an avalanche, which
induces an electric pulse on the anode wire. The position of the track is then de-
termined by measuring the drift time of the electrons, that is the time difference
between the passing of the particle, determined by a scintillation counter, and
the appearance of the pulse in the wire. The drift speed must be as constant as
possible, and for this, there are additional field wires strung between the sense
wires, to ensure the uniformity of the electric field in the gap between the anode
sense wires.

The Belle CDC has an inner radius of 103.5 mm and an outer radius of 874 mm
(see figure 13). It has 50 cylindrical layers, each containing between 3 and 6 axial
or small-angle-stereo layers, and 3 cathode layers, which amounts to a total of
8400 drift cells. The z-coordinate is measured by cathode strips glued on the
inner surface of the cyllinder (see figure 12). The gas is a low-Z mixture of 50%
helium-50% ethane. It has a long radiation length, and the drift velocity saturates
at a relatively low electric field to provide a constant drift velocity, and because of
the large ethane component, still provides a good resolution on the measurement
of the specific ionization.
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Figure 13: Geometry of the Belle CDC.[24]

The spatial resolution of the CDC measured with cosmic ray data is between
120 µm and 150 µm, depending on the incident angle and layer. To extract the

transverse momentum pT =
√
p2x + p

2
y and the pz component of the momentum,

a tracking algorithm sorts CDC hits into helical tracks, where the pT and pz are
then extracted from the curvature radius and the slope of the helix. The relative
uncertainty of the measured pT is between 0.5% and 1.1%, depending on the
magnitude of the pT .

The CDC also measures the specific ionization - the energy loss of a charged
particle (dEdx ) in the chamber gas. This measurement is used for particle identifi-
cation, as the loss depends on the velocity of the particle. The specific ionization
is determined by measuring the amplitude of the pulse in the anode sense wires,
which is proportional to dE

dx . The resolution of the truncated mean energy loss for
a track in CDC is 7.8%, and with this, the CDC is able to discriminate between
pions and kaons with momenta up to 0.8 GeV/c on a 3σ level (see figure 14).

2.2.4 Aerogel Cherenkov Counter - ACC

For all measurements with the Belle detector, the ability to distinguish between
different types of particles, especially between π± and K±, is crucial. The aerogel
Cherenkov counter (ACC) extends the momentum coverage for particle identifi-
cation beyond the dE/dx measurement of the CDC and the time-of-flight mea-
surements by TOF (see chapters 2.2.3, 2.2.5, 2.4).

The ACC is an array of silica aerogel threshold Cherenkov counters. The
threshold Cherenkov counter discriminates particles by using the fact that when
a particle travels through a medium faster than light in that medium, it emits
Cherenkov radiation. The threshold for emittance of Cherenkov radiation de-
pends on the refractive index of the medium:

βthreshold =
1

n
. (48)
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Figure 14: Truncated mean of dEdx vs. the momentum observed in the CDC. [24]

Figure 15: The geometry of the ACC system.[24]

The silica aerogel used for the medium is suitable because it can be produced
with a very well known refractive index (∆n/(n− 1) ∼ 3%). The ACC is there-
fore able to discriminate between pions and kaons in the momentum range of
1.2− 3.5 GeV/c, since pions in this momentum range produce Cherenkov light,
whereas kaons, which are heavier, do not.

In Belle, the ACC consists of 960 counter modules, segmented into 60 cells
in the φ direction for the barrel part, and 228 modules, laid out in 5 concentric
layers for the forward end-cap part (see figure 15). A single module consists
of 5 aerogel tiles in a thin aluminium box with dimensions 12× 12× 12 cm3.
The refractive indices of aerogel tiles are between 1.01 and 1.03, depending on
the azimuthal angle region, in order to obtain a good K/π separation for the
whole kinematical range. The Cherenkov light is collected by fine-mesh photo-
multiplier tubes attached directly to the aerogel, chosen because of their large
effective area and high gain (∼ 108) (see figure 16).
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Figure 16: ACC counter modules for a) barrel and b) end-cap regions.[24]

2.2.5 Time-of-flight counters - TOF

The time-of-flight detector (TOF) is used for particle identification in a momen-
tum range of 0.8− 1.2 GeV , a range that lies between the ranges of the CDC and
ACC particle identification systems.

The TOF measures the time between the e+e− collision in the IP and the pas-
sage of a charged particle through it. The mass of the particle is then calculated
with

m =
p

c

√
(
ct

l
)2 − 1, (49)

where p is the particle momentum, measured by the CDC, l the length of the he-
lix that the particle has travelled on, determined by the CDC tracking algorithm,
and t the measured time by TOF. The time measurement has to have a resolution
of ∼ 100 ps, in order to obtain a 3σ separation power between pions and kaons
on a travel path of about 1.2 m.

The TOF system uses fast plastic scintillators with an attenuation length longer
than 2 m. The TOF system also provides fast timing signals for the trigger sys-
tem, and to avoid pile-up in the trigger queue, the TOF scintillation counters
must be augmented by thin trigger scintillation counters (TSC) to keep the the
trigger rate below 70 kHz. The whole system consists of 128 TOF counters and 64

TSC counters, with 2 TOF and 1 TSC counter forming one module. The system
covers a polar angle range of 34◦− 120◦ (see figure 17). The scintillation photons
are picked up by fine-mesh-dynode photomultiplier tubes, mounted directly on
the scintillation counters and placed in a magnetic field of 1.5 T . This configura-
tion meets the ∼ 100 ps time resolution goal for the Belle detector (see figure 18).
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Figure 17: The layout of the TOF/TSC module.[24]
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Figure 19: Mass distribution for TOF measurements for particle momenta below 1.2 GeV .
[24]
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Figure 20: π±/K± separation by TOF.[24]

For particle momenta below 1.2 GeV (which encompasses 90% of the particles
produced by the Υ(4S) decays), a clear separation of peaks at the π, K and p

masses is observed (see figure 19). The separation power depends on the particle
momentum, as shown on figure 20.

2.2.6 Electromagnetic calorimeter - ECL

The main purpose of the electromagnetic calorimeter (ECL) is the detection of
photons with high efficiency and good resolutions in energy and position. Good
performance for energies below 500 GeV is especially important as most photons
are the end products of cascade decays. The ECL also helps with the electron
identification by comparing the momenta and the energy deposits of the charged
particles.

The detection of high momentum π0 which decay into two photons requires
a precise determination of their opening angle and this requires a fine grained
segmentation of the calorimeter. The ECL therefore uses a highly segmented
array of CsI(Tl) crystals with a silicone photodiode readout in a magnetic field
of 1.5 T . When an electron or a photon interacts with the crystal, it produces
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Figure 21: The configuration of ECL.[24]

an electromagnetic shower by bremsstrahlung and pair creation, which is then
detected.

The Belle ECL covers an angle of 17◦ 6 θ 6 150◦, and contains 8736 CsI(Tl)
counters (see figure 21). The transverse area of each crystal is about 6× 6 cm2.
This transverse area size ensures that ∼ 80% of the deposited energy by the
EM shower remains in the same crystal, which improves the energy resolution.
A smaller size would improve the position resolution, but decrease the energy
resolution. The length of the crystal is 30 cm, corresponding to 16.2 radiation
lengths, which ensures a good energy resolution for high energy particles by
minimizing the shower leakage out of the rear of the counter. This resolution is
∼ 2.5% for electron energies above 1 GeV .

The ECL is also used for distinguishing electrons and pions, as the pions
deposit much less energy than electrons with the same momentum, due to
their lower probability of bremsstrahlung and pair creation (see figure 22). The
misidentification probability is found to be less than 1% for momenta above
2 GeV .

The energy calibration of the ECL has been carried out by using Bhabha and
e+e− → γγ events. The energy resolution achieved (for ECL and EFC) was 1.7%
(see figure 23).

2.2.7 KL and muon detector - KLM

The KL and muon detector (KLM) identifies KL and muon particles with a high
efficiency over a broad momentum range greater than 600 MeV/c. It covers an
angular range of 20◦ − 155◦ and consists of alternating layers of charged particle
detectors and 4.7 cm thick iron plates. There are 15 detector and 14 iron layers
in the barrel region and 14 detector layers in each of the forward and backward
end caps.
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Figure 22: Distributions of the energy deposits in the ECL by e−, π+ and π− at the
momentum of 1 GeV/c.[24]
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Figure 24: Cross-section of a KLM superlayer.[24]

The iron layers provide 3.9 interaction lengths of material, and the ECL system
provides an additional 0.8 of interaction length for KL conversion. The KL that
interact in the ECL or iron produce a shower of ionizing particles, which deter-
mines the KL direction. The multiple layers and detectors also provide µ/(K,π)
discrimination by measuring their range and transverse scattering, as the muons
penetrate material easier than other particles with with smaller deflections.

The charged particle detection layers are glass-electrode-resistive plate coun-
ters (RPC). They have two parallel plate electrodes with high resistivity (>
1010Ωcm), separated by a gas filled gap. The ionizing particle initiates a streamer
that results in a local discharge of the plates, which induces a signal on the ex-
ternal pickup strips. Two RPCs are sandwiched between the orthogonal θ and φ
pickup strips to form a superlayer (see figure 24). The gas used in the KLM is a
mixture of 62% HFC-134a (CH2FCF3), 30% argon and 8% butane-silver (C4H10).

The muon identification efficiency for the KLM is better than 90% with a fake
rate of les than 5%, and the spatial resolution is found out to be 1.2 cm (see
figure 25).

2.3 trigger and data acquisition

At a luminosity of 1034/cm2s, the trigger rates for various physical processes
are listed in table 3. The trigger system is needed to keep the background rates
within the tolerance of the data acquisition system (DAQ) (max 500 Hz), while
maximizing the efficiency for physics events of interest. The trigger system im-
poses a set of selection criteria on an event to select the events for which the raw
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Figure 25: Left - Spatial resolution of a KLM superlayer, middle - Muon detection effi-
ciency vs. momentum in the KLM, right - Muon fake rate vs. momentum in
the KLM.[24]

process trigger rate [Hz]
Υ(4S)→ BB 12

e+e− → qq, (q = u,d, s, c) 28

e+e− → τ+τ− or µ+µ− 16

Bhabha, radiative Bhabha 500

γγ(pT 6 0.3 GeV/c) 35

beam induced bkg O(100)

cosmic rays 20

Table 3: Trigger rates for various physical processes for the Belle detector. [24]
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Figure 26: The level 1 trigger system for the Belle detector.[24]

data should be transferred by the DAQ from the detector to the data storage
system.

The Belle trigger system consist of a level 1 (L1) hardware trigger, a level 3 (L3)
software trigger and a level 4 (L4) offline trigger.

2.3.1 L1 trigger

The L1 hardware trigger system consists of the sub-detector trigger systems
(CDC, TOF, ECL, KLM and EFC) and a central trigger system called the global
decision logic (GDL) (see figure 26). The sub-detector triggers fall into two cat-
egories, the track triggers and the energy triggers. The GDL receives the sub-
detector trigger signals within 1.85 µs and provides the trigger signal 2.2 µs
after the e+e− collision.

The CDC provides two types of triggers - the r − φ trigger, which is based
on signals from the axial superlayers and the z-trigger, which takes information
from the cathode strips. The CDC trigger is required to be fully efficient for
tracks originating from the IP and to be relatively insensitive to background
tracks from other sources.

The TOF trigger provides an event timing signal and information on the hit
multiplicity and topology. Because the timing of the event must be sufficiently
precise, it has to have a time jitter of less than 10 ns.

The ECL trigger must generate fast trigger signals in order to provide a fully
efficient trigger both for neutral and charged particles. Two kinds of triggers are
implemented, a total energy trigger, which is sensitive to events with high elec-
tromagnetic energy deposits, and a cluster counting trigger, which is sensitive to
multi-hadronic events that contain low-energy clusters and minimum ionizing
particles.
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The KLM trigger has to save events which include muon tracks with a high
efficiency, even if the cleanliness of the signal is not high.

The EFC trigger provides two types of information - the energy and the loca-
tion of signals in the BGO crystals. The trigger can discriminate between Bhabha
events, which have a coplanar forward/backward coincidence of energetic elec-
tromagnetic showers, and the two photon events, which produce a single elec-
tromagnetic shower together with some CDC tracks or ECL clusters.

The GDL, receives up to 48 trigger signals from the sub-detector trigger sys-
tems and makes global correlations between them. It takes 350 ns to generate
the final trigger signal. The final triggers fed into the GDL are:

• Multi track triggers - they require at least 3 tracks from the r − φ CDC
trigger and 1 track from the CDC z-trigger.

• Total energy triggers - they use the ECL energy sum trigger and are vetoed
by ECL Bhabha and cluster triggers.

• Isolated cluster counting trigger - requires at least 4 ECL isolated clusters,
which avoids Bhabha events.

• Bhabha triggers - take 2 tracks in the CDC r−φ trigger and 1 track in the
CDC z-trigger.

• Muon triggers - require at least 2 CDC r−φ tracks and the KLM trigger.

• Monitor triggers - a random trigger and prescaled triggers for monitoring
purposes.

The combined efficiency for all triggers is more than 99.5% for multi-hadronic
data samples.

2.3.2 L3 trigger

The L3 trigger is a software trigger which has to further reduce the events se-
lected for storage. It performs a fast reconstruction of events and rejects events
with no tracks with an impact parameter of |z| < 5 cm and a total ECL energy
deposit of less than 3 GeV . If the L1 trigger categorizes an event as a Bhabha
event, the L3 trigger passes it through. The L3 trigger reduces the event rate by
50%, while retaining 99% of hadronic events.

2.3.3 L4 trigger

The L4 trigger is an offline trigger that decides which events shall undergo full
reconstruction and thus reduces the CPU time needed for the data summary
tape production (see section 2.3.4). It requires events with the ECL deposited
energy of more than 4 GeV , at least one track with a transverse momentum
larger than 300 MeV/c and an impact parameter with r < 1 cm and |z| < 4 cm.
It rejects 78% of all triggered events while keeping nearly all the hadronic events.



34 experimental setup

Figure 27: The data acquisition system scheme for the Belle detector.[24]

2.3.4 Data acquisition system

To satisfy the 500 Hz working rate with a deadtime fraction of less than 10 , the
data acquisition system is devised in a parallel scheme. The system is divided
into 7 subsystems running in parallel, each system handling the data from a
sub-detector. The data is then combined into a single event record, converting
the "detector-by-detector" parallel data streams to a single "event-by-event" data
stream. This data stream is then sent through the L3 software trigger and then
to a mass storage system (see figure 27).

The event builder then constructs a complete event data from detector sig-
nals. Before the full event reconstruction, the data is then sent through the L4

trigger. The events accepted by the L4 trigger are then fully reconstructed and
the information is stored to the DST. In this stage, the raw data is converted into
physics objects, such as position and momentum 4-vectors, particle identification
information, and so on.

For physics analyses, the complete data from the DST is not needed, so mini-
mal sets of data required for physics analyses is stored in a "mini-DST" format.
At this level, the hadronic event size is about 40 kB.
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2.4 particle identification

The particle identification at Belle is done by combining measurements from
different subdetectors capable of discriminating between particle types. For each
subdetector, a probability for the subdetector to identify a particle as a particle
of type f (f = π,K,p, e,µ) Pf,i is determined. Then, the product of the different
probabilities Pf =

∏
i Pf,i is calculated, and this product is used to calculate a

probability ratio, which discriminates between particles of type f and f ′:

Rf/f ′ =
Pf

Pf + Pf ′
. (50)

This ratio can take a value in the range [0, 1] and is a single variable which can
be used to discriminate between two types of particles.

2.4.1 Charged hadron identification

The probability Pf, (f = K,π,p) is calculated from information from three sub-
detectors:

• the dE/dx measurement in the CDC,

• the time-of-flight measurement in TOF,

• the number of detected photons in ACC.

The probability is the calculated as a sum:

Pf = P
dE/dx
f · PACCf · PTOFf . (51)

The dE/dx probability is based on a difference between the measured and
expected value of the energy loss for particle type f and is parameterized by a
Gaussian distribution:

P
dE/dx
f =

e−
χ2

2

√
2πσdE/dx

, χ2 =

(
(dE/dx)measured − (dE/dx)f,expected

σdE/dx

)2
, (52)

where (dE/dx)measured is the measured energy loss, (dE/dx)f,expected is the ex-
pected energy loss for particle of type f, and σdE/dx is the (expected) resolution
of the dE/dx measurement.

The TOF probability is based on the measured and expected times for each
photo-tube. The χ2 is constructed by taking the difference between two two-
vectors, one containing the observed times for each of the two photo-tubes and
the other containing the predicted times:

∆i = tio − t
i
p, i = 0, 1

χ2 =
∑
j

~∆jE
−1
j

~∆j, (53)
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Figure 28: The likelihood ratio distributions for signal kaons and assumed background
particle tracks, RK/∗, where * = a) e, b) µ, c) π and d) p. The empty his-
tograms are distributions of K tracks, and the dashed histograms are back-
ground tracks in each case. TOLE JE BEDNA SLIKCA

where j denotes the j-th TOF hit and Ej is the 2× 2 error matrix for the j-th TOF
hit two vector ~∆j. The probability is the constructed as a Gaussian distribution:

PTOFf =
e−

χ2

2

√
2π

∏
j σj

, (54)

where σj is the expected timing resolution.
The ACC probability is based on comparing the observed number of photo-

electrons (Npe) with a threshold value (Nthpe,f), using the expected efficiency ε at
the measured momentum:

PACCf =

εf, Npe > Nthpe,f

1− εf, Npe 6 Nthpe,f
. (55)

If information from a certain sub-detector is not available, the probability for
any particle type is set to Pki = 0.5, i = π,K,p, k = dE/dx, TOF,ACC. In this
way, this sub-detector has no effect in the combined likelihood ratio.

Figure 28 shows the likelihood ratios for signal kaons and assumed back-
ground particle tracks, RK/∗, ∗ = e,µ,π,p.
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Figure 29: Electron identification likelihood ratio for electrons - solid line and pions -
dashed line.[24]

2.4.2 Electron identification

In order to distinguish electrons from hadrons, muons and photons, two ap-
proaches are used [28]. The first exploits the difference between the electromag-
netic showers induced by electrons and the ones induced by hadrons. The second
approach makes use of the difference in velocity between electrons and hadrons
at the same momentum, which can be determined by the dE/dx measurement
and the observation of light yield in the ACC array. These two approaches are
then combined into a single likelihood.

The discriminants used are (see figure 29):

• Position matching between the track, extrapolated into the ECL, and the
cluster position measured in the ECL. The χ2 is calculated as

χ2 = (
∆φ

σ∆φ
)2 + (

∆θ

σ∆θ
)2, (56)

where ∆φ and ∆θ are the differences between the cluster position and an
electron track in the azimuth and polar angles, respectively, and σ∆φ and
σ∆θ are the widths obtained by fitting the ∆φ and ∆θ distributions for
electrons with Gaussian functions.

• The ratio of energy E measured in the ECL and the charged track mo-
mentum p. For electrons, which have negligible mass compared to their
momentum, this ratio is 1 within measurement errors, whereas the other
hadrons have this ratio typically smaller than 1.

• The transverse shower shape in the ECL. The shape is quantified by the
variable E9/E25, defined as a ratio of energy deposited in a 3× 3 array of
crystals surrounding the crystal in the center of the shower to the energy
deposited in a 5× 5 array of crystals with the same center. Electrons exhibit
a peak at 0.95, while the other hadrons have the value at a lower range.
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Figure 30: a) ∆R vs. χ2r for single muons, b) ∆R vs. χ2r for single pions, c) ∆R, d) χ2r for
muons - solid histograms and pions - dashed histograms. [24]

• The dE/dx measurement probability, which is defined in the same way as
with charged particle identification (see chapter 2.4.1).

• The light yield in ACC, which distinguishes between electrons and hadrons
in the momentum region below ∼ 1.0 GeV , as the Cherenkov threshold for
electrons is only a few MeV , while that of other hadrons is 0.5− 1.0 GeV .

2.4.3 Muon identification

The muon probability is constructed using two quantities, the ∆R, which is the
difference between the measured and expected range of the track, and χ2r , the
goodness of fit of the transverse deviations of all hits associated with the track
[29]. This is calculated at each detector plane with Kalman filtering, energy loss
and multiple scattering effects (see figure 30).

2.5 monte carlo simulation

The physics analyses require a very good understanding of physics processes
undergoing in decays of particles and in the interaction of particles with the de-
tector material in order to correctly interpret the results, thus reducing the error.
These processes are highly complex, and many of them are not yet measured,
and so can not be described analytically and thus taken into account when in-
terpreting the results. That is why the processes are modeled by a Monte Carlo
simulation, and samples of data are generated by this simulation, mimicking the
real decays and detector responses as closely as possible.

There are currently 6 so-called "streams" of Monte Carlo data samples pro-
duced by the Belle collaboration, where each stream corresponds to the same
amount of real data as collected in the whole Belle data-taking period. The
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amount of all Monte Carlo data samples is bigger than the amount of real data
collected in order to reduce the possible uncertainties.

The Monte Carlo sample generation has two steps. In the first step, the e+e−

collision is simulated, producing sets of outgoing particles, called events. This is
done by two event generators, the EvtGen generator[30] which is used to model
the BB events and incorporates known properties of particles, such as mass,
charge, branching ratios, spin, etc., measured by numerous experiments in form
of world averages [26], and the JetSet generator [31], which is used to model
the continuum events. The hadronization of quarks is simulated with the Lund
string fragmentation model [32].

The second step is the detector response simulation, which is done by the
CERN package GEANT [33]. GEANT also uses data from as many measure-
ments of detector responses and particle - material interactions as possible, to
simulate the detector response as accurately as possible. The output of GEANT
is then reconstructed the same way as the real data, and saved in the mini-DST
format to be used in an analysis.
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M E T H O D O F M E A S U R E M E N T

In this analysis, we measure the CP-violation parameter AΛc
CP

, defined in equation
(20) for the Λc → Λπ decay 1. For this measurement, we will use the first of the
equations (39). To use this equation, we must determine the angular distribution
for the cosine of the helicity angle θh, the angle between the proton momentum
and the pion from Λc momentum in the Λ CM system (see figure 31). Note that
this is the same angle as the angle between the Λ emission direction in the Λc
system and the direction of the p emission in the Λ system, defined in (39). The
normalized angular distribution for our signal sample is then:

dN

d cos θh
=
N

2
(1+α cos θh), (57)

where N is the number of reconstructed events in the analysis data sample and
with α we denoted the product αΛcαΛ of the weak asymmetry parameters for
the Λc → Λπ and Λ→ pπ decays as defined in (23), respectively.

So far, the best (and only) measurement of CP violation in the Λc → Λπ decay
was done by the FOCUS collaboration [34], which obtained the results:

αΛc = −0.78± 0.16± 0.13, AΛc
CP

= −0.07± 0.19± 0.12, (58)

where the first cited error is statistical, and the second is systematic. Their
method of measurement was to measure the angular distribution (57) for Λ+

c

and Λ−
c decays separately, then with the known αΛ coefficient, obtained the coef-

ficients αΛc and αΛc , and then calculating the AΛc
CP

parameter with the equation
(20).

Figure 31: Definition of the helicity angle used in the analysis.

1 Whenever we write Λc without a sign, it implies both the Λ+
c and its charge conjugate.

41
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Given an expected 100 times larger number of Λc → Λπ decays in our analysis
sample, we employed a slightly different method of measuring AΛc

CP
, where we

assume that the CP-violating effects are small compared to P-violation and mea-
sure the α parameter, averaged over Λ+

c and Λ−
c decays, and then measure the

small deviation from the average α, which is linked to the ACP parameter, which
measures the amount of CP violation in the Λc → Λπ,Λ → pπ decay chain.
From this parameter, we can get the AΛc

CP
parameter by using the best known

measurement of AΛ
CP

. The method is described in the two subsequent sections.

3.1 method of measurement of 〈α〉

First, we assume that the CP violation in the Λc decay chain is small (see chapter
1.3). This means,

dα � 〈α〉 , 〈α〉 ≈ α ≈ α , (59)

where dα is the difference between the α and α coefficients, and 〈α〉 is their
average.

With the above assumption, we can first measure the average asymmetry pa-
rameter 〈α〉 by joining the Λc and Λc samples and determining the angular
distribution (57).

The angular distribution is determined by reconstructing the joined Λ+
c and

Λ
−
c events and selecting only events from the whole data sample that satisfy

a number of selection criteria - ’cuts’, thus obtaining the analysis data sample.
Then, for the selected events, cos θh is calculated, and the events are divided
into bins in the cos θh variable.

We can express the number of reconstructed signal events in each bin of the
joined Λ+

c and Λ−
c analysis data sample as:

N
rec ,join
i (cos θh ,i) = N

0 ,join
i (cos θh ,i)Br(Λc → Λπ)(cos θh ,i) (60)

Br(Λ → pπ)(cos θh ,i)〈ε〉i(cos θh ,i) ,

where Nrec ,join
i is the number of reconstructed Λ+

c and Λ
−
c decay chain sig-

nal events in the i-th bin, N0 ,join
i is the number of all produced Λ+

c and Λ
−
c

signal events that fall into the i-th bin, Br(Λc → Λπ)(cos θh ,i) and Br(Λ →
pπ)(cos θh ,i) are the angular dependent branching ratios for the decays of Λc
and Λ, cos θh ,i is the value of cos θh in the i-th bin, and 〈ε〉i is the efficiency
for the reconstruction of both Λ+

c →Λπ+ , Λ→ pπ decay chain and the charged
conjugated one in the i-th bin.

We can express the angular dependence of the branching ratios as derived in
the chapter 1.4.1:

Br(Λc→Λπ)(cos θh ,i)Br(Λ→ pπ)(cos θh ,i) = Br0
1

2
(1+〈α〉 cos θh ,i) ,

(61)
where with Br0 we denoted the product of the absolute branching ratios for
the Λc → Λπ and Λ → pπ decays. The angular dependence of the number of
all produced signal events is tied to the Λ+

c and Λ
−
c production asymmetry -
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the forward-backward asymmetry (see [26] and chapter 3.2), however, this is an
antisymmetric function with respect to particles and antiparticles, and since we
joined the Λ+

c and Λ−
c samples, this dependence cancels out. With this, we have

the expression for the number of reconstructed signal events in each bin:

Nreci (cos θh,i) = N
0Br0

1

2
(1+ 〈α〉 cos θh,i)〈ε〉i(cos θh,i). (62)

For each cos θh bin, the number of reconstructed signal events is determined
by fitting the Λc mass distribution in this bin. This number is then divided by
the efficiency for reconstructing the Λc decay chain in this bin.

We also need to account for the detector measurement resolution, which causes
the measured particle masses and momenta to be slightly different than the ac-
tual ones, and when calculating the cosθh, this results in events migrating from
the actual cos θh bin to which they belong to. To correct this, we perform a de-
convolution of the numbers of events, with the deconvolution matrix determined
from Monte Carlo simulation.

After this procedure, we are left with the true cos θh distribution (57) of Λc
signal events. From this distribution, we can determine the 〈α〉 parameter by
fitting the distribution with a linear function.

3.2 method of measurement of ACP

For measuring ACP, we reconstruct the Λ+
c and Λ−

c samples separately, and make
analysis samples by selecting events which satisfy the cuts. Then we measure the
reconstructed asymmetry in bins of cos θh, where for i-th bin, the reconstructed
asymmetry is:

Areci (cos θh,i) =
Nreci (cos θh,i) −N

rec
i (cos θh,i)

Nreci (cos θh,i) +N
rec
i (cos θh,i)

, (63)

where Nreci and Nreci are the numbers of reconstructed Λ+
c and Λ−

c events in the
i-th bin, respectively. These numbers can be expressed as:

Nreci (cos θh,i) =

N0(cos θh,i) Br(Λ
+
c → Λπ+)(cos θh,i)Br(Λ→ p+π−)(cos θh,i)εi(cos θh,i)

N
rec
i (cos θh,i) = (64)

N
0
(cos θh,i) Br(Λ

−
c → Λπ−)(cos θh,i)Br(Λ→ p−π+)(cos θh,i)εi(cos θh,i),

where N0 is the produced numbers of Λ+
c , εi is the efficiency of reconstruction

for Λ+
c events, and the quantities with bars are the corresponding quantities for

the Λ−
c events.

We again express the angular dependence of the branching ratios as:

Br(Λ+
c → Λπ+)(cos θh,i)Br(Λ→ p+π−)(cos θh,i) = Br0 12(1+α cos θh,i), (65)

Br(Λ
−
c → Λπ−)(cos θh,i)Br(Λ→ p−π+)(cos θh,i) = Br0 12(1+α cos θh,i),
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where α = αΛ+
c
αΛ and α = α

Λ
−
c
αΛ are the products of asymmetry parameters

for the Λ+
c and Λ

−
c decay chains, respectively, and Br0 is the product of the

absolute branching ratios which is the same for both decays. The numbers of
reconstructed signal events are thus:

Nreci (cos θh,i) = N0(cos θh,i)Br
01

2
(1+α cos θh,i)εi(cos θh,i) (66)

N
rec
i (cos θh,i) = N

0
(cos θh,i)Br

01

2
(1+α cos θh,i)εi(cos θh,i).

Additionally to assuming a small CP-violating effect as in the previous sec-
tion, we also assume that the produced number of Λ+

c and Λ−
c particles is ap-

proximately the same for each bin (this means that we assumed a small forward-
backward asymmetry, see below) and that the efficiencies for reconstructing ei-
ther Λ+

c or Λ−
c in each bin are approximately the same:

N0i ≈ N
0
i ≈ 〈N0〉i, (67)

εi ≈ εi ≈ 〈ε〉i.

With these assumptions, we can write to the first order in small quantities
dN0,dα and dε:

N0i = 〈N0〉i + dN0i , dN0i � 〈N0〉i,

N
0
i = 〈N0〉i − dN0i ,
α = 〈α〉+ dα, , dα� 〈α〉,
α = 〈α〉− dα, (68)
εi = 〈ε〉i + dεi, dεi � 〈ε〉i,
εi = 〈ε〉i − dεi.

If we put expressions (68) into equations (64) and then into the definition of the
reconstructed asymmetry (63), we get to the first order in small quantities:

Areci (cos θh,i) = AFBi (cos θh,i) +Aεi (cos θh,i) +ACP

cos θh,i

1+ 〈α〉 cos θh,i

AFBi =
N0i −N

0
i

N0i +N
0
i

, (69)

Aεi =
εi − εi
εi + εi

,

ACP =
α−α

α+α
.

Here AFB is the forward-backward asymmetry, the asymmetry in production
of Λ+

c and Λ−
c . This asymmetry arises because of the asymmetry in the produc-

tion of cc (and actually any fermion anti-fermion pair) in e+e− collisions. It oc-
curs at tree level because of the interference between the two possible e+e− → cc
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processes - one mediated by a virtual γ, and one by a Z0 particle. This process is
well understood and contributes at the percent level [26]. It can also come from
higher-order QED effects where it is expected to peak sharply in the forward
and backward directions, but the precise shape is not known [35]. The asymme-
try is an odd function of the c quark (and of the Λc) polar angle in the CMS and
hence cancels out when integrated over that angle.

Due to the CP conservation in the production of Λc baryons through the EM
and strong interaction, we know that AFB must be an antisymmetric function in
the polar angle:

AFB(cos θ∗) = −AFB(− cos θ∗). (70)

In our analysis, however, we can assume that there is no angular dependence of
AFB on the angle θh, since this angle is defined in the Λ CMS, which is different
for every event, so any angular dependence of AFB on θh will be evened out. We
will check this assumption with the Monte Carlo simulation and estimate the
systematic error on the result.

The Aε is the asymmetry for reconstruction of particles and antiparticles. It
arises because of the different interactions of final state particles and antiparticles
with the matter in the detector. We can again assume that it has no angular
dependence on the angle θh, for the same reasons as for the AFB asymmetry.
This assumption can be checked using the decay chain Σ∗ → Λπ, Λ→ pπ, which
has the same final state particles, but no present CP-violation. This is because
Σ∗ → Λπ is a strong decay and is therefore not CP violating, and Λ→ pπ, which
is a weak decay and could have CP violation, has the measured CP asymmetry
AΛ
CP

= (αΛ + αΛ)/(αΛ − αΛ) of 0.006± 0.021 [26] and is consistent with 0. With
measuring this decay chain, we can again estimate the systematic error on the
result.

With these assumptions, the reconstructed asymmetry is:

Areci (cos θh,i) = AFBi +Aεi +ACP

cos θh,i

1+ 〈α〉 cos θh,i
, (71)

and the only angular dependence arises because of the ACP asymmetry. This
way, we can determine the magnitude of ACP by fitting the reconstructed asym-
metry with a function of the form f(x) = k+ACP(x/(1+ 〈α〉x)), with using the
measured 〈α〉.

3.3 αΛc and ACP parameters for Λc decays

The 〈α〉 parameter that we measure using equation (62) is the decay parameter
for the Λc → Λπ,Λ → pπ decay chain. To get the αΛc decay parameter for the
Λc → Λπ decay, assuming that the CP-violation in this decay is 0 within the
uncertainty of the measurement, we use the definition for 〈α〉:

〈α〉 =
αΛcαΛ −αΛcαΛ

2
(72)
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If we assume no CP-violation in the Λc → Λπ decay, this means

αΛc = −αΛc = 〈αΛc〉 (73)

We can then calculate 〈αΛc〉 by using the world averages of measurements of αΛ
and AΛ

CP
2 from [26]:

αΛ = 0.642± 0.013 (74)

AΛCP =
αΛ +αΛ
αΛ −αΛ

= 0.006± 0.021.

We use αΛ and AΛ
CP

as independent parameters because αΛ is measured with
significantly lower precision [26]. The measurements of αΛ and AΛ

CP
with the

dominant precision are from [36] and [37], respectively. The former is performed
on Λ produced in pπ− collisions, while the latter on ΛΛ pairs produced in pp
annihilations. Hence the correlations between the two measurements are negli-
gible.

With these quantities, we calculate the 〈αΛc〉 as

〈αΛc〉 =
〈α〉
αΛ

(1+AΛCP). (75)

If we also assume no CP-violation in the Λ→ pπ decay (the world average for
AΛ
CP

is consistent with this assumption), the 〈αΛc〉 can be calculated as:

〈αΛc〉 =
〈α〉
αΛ

. (76)

From equation (71) we get the asymmetry parameter ACP, which is linked to
CP-violation in the Λc → Λπ,Λ → pπ decay chain. To get the CP asymmetry
parameter AΛc

CP
linked to CP-violation in the Λc → Λπ decay, we again take

the best measured value for the CP asymmetry parameter for Λ → pπ decays,
written in the second equation of (74), and with this value, we can then calculate
the CP asymmetry parameter for Λc → Λπ decays as:

AΛc
CP

=
αΛc +αΛc
αΛc −αΛc

=
ACP −AΛ

CP

1−ACPA
Λ
CP

. (77)

With the assumption of no CP-violation in the Λ→ pπ decay, the AΛc
CP

param-
eter is the same as the ACP parameter:

AΛc
CP

= ACP. (78)

2 We could use any pair of measurements of variables αΛ, αΛ and AΛ
CP

. We chose the pair αΛ
and AΛ

CP
because they are the most accurately measured.



4
D E V E L O P M E N T O F T H E M E A S U R E M E N T M E T H O D O N
M O N T E C A R L O S I M U L AT I O N

In order to ensure that the measurement method described in chapter 3 is valid,
i.e. produces un-biased reults, we first check the method by using a sample of
events generated by a Monte Carlo (MC) simulation (see chapter 2.5).

4.1 preselection - hadronic event selection

Before we reconstruct our signal decays, the events must pass a hadronic event
selection. This selection consists of a number of requirements, used to supress
non-hadronic events and select e+e− → Υ(4S) → BB, or e+e− → qq, q=u,d,s,c
events. The requirements are:

• For each event, there must be at least 3 reconstructed charged tracks and
two reconstructed neutral clusters in the ECL barrel region.

• The charged track must have a transverse momentum bigger than 100

MeV/c, and impact parameters dr less than 2.0 cm and |dz| less than
4.0 cm.

• The neutral clusters must have a deposited energy of bigger than 100 MeV
in the polar angle region of 17◦<θ<150◦.

• The primary vertex of the event must lie in the region dr<1.5 cm and
|dz|<3.5 cm.

• To suppress the background from γγ processes and the beam induced back-
ground, the sum of momentum magnitudes in the z direction, calculated
in the e+e− CMS, must be less than half the total available energy

√
s.

• To further suppress the QED processes, the energy sum of all clusters in
the ECL should be greater than 0.18

√
s.

• To suppress the background from e+e− → τ+τ− processes, the invariant
mass of particles in each of the two hemispheres, divided by a plane per-
pendicular to the boost, must be greater than 1.8 GeV.

These requirements are satisfied by 99% of the e+e−→Υ(4S)→BB events and
79.5% of e+e−→qq events, while keeping only 5% of non-hadronic events. The
efficiencies for various processes are shown in table 4.

47
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process ε σ · ε [nb]
BB 0.991 1.09

qq 0.795 2.70

τ+τ− 0.049 0.05

Bhabha 0.00002 0.001

γγ 0.004 0.04

Beam gas 0.09 0.11

Table 4: Efficiencies of the hadronic event selection for various processes [24].

4.2 reconstruction of the Λc decay chain

To reconstruct the Λc decay chain in each recorded event, we take the recon-
structed charged tracks from the detector and by using the Rf/f ′ probability ra-
tios described in chapter 2.4, identify tracks as pions or protons. For protons we
use the ratios Rp/K and Rp/π, and for both pions the ratios Rπ/K, Rπ/p, Rπ/e and
Rπ/µ. We also separate p+ and p− and π+ and π− by the reconstructed charge
of the track. We then combine the selected p+ and π− to form Λ particles, and
combine the Λ particles with the reconstructed π+ into Λ+

c particles. We form the
Λ

−
c particle in the same way, using the reconstructed charge conjugate particles.

Out of all formed Λ+
c and Λ−

c particles, we select the best signal candidates by
performing vertex fits on the Λ and π tracks, and selecting the combination that
has the best confidence level of the vertex fit.

4.3 construction of the skim sample

We select a sample of events by applying a set of loose selection criteria, from
6 times the available data (streams) of generic MC events that passed preselec-
tion. These are simulated events of all possible physical processes coming from
e+e− → Υ(4S) → BB, or e+e− → qq,q = u,d, s, c. This sample we call a ’skim’
sample. In addition to using cuts on the variables described in section 4.2, we
employ cuts on the invariant mass of the Λ and Λc particles and a cut on the Λc
momentum in the e+e− CMS. The invariant mass of a particle P is defined using
the momentum four-vector PP conservation as:

mP=m(P0...PN)=
√
P2P=

√
E2P−|~pP|2=

√√√√(∑
i

√
|~pi|2+m

2
i

)2
−|

∑
i

~pi|2, (79)

where i runs over all N final state particles Pi that form the particle P.
The loose cuts used to create the skim sample are shown in table 5.
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cut type cut value
Rπ/K, Rπ/p, Rp/K, Rp/π > 0.6

Rπ/e, Rπ/µ 6 0.9
m(pπ) > 1.10 GeV/c2, 6 1.13 GeV/c2

m(pππ) > 2.19 GeV/c2, 6 2.38 GeV/c2

pCMS(Λc) > 1.5 GeV/c

Table 5: Cuts used to make the skim sample out of all generic MC events.

4.3.1 Comparison of Monte Carlo and data event samples

To check the method with a Monte Carlo generated event sample, we need to
ensure that the simulation describes the relevant processes as closely to the real
data as possible. Small differences between MC and real data arise mostly from
inadequate simulation of the fragmentation of cc quarks into hadrons, and need
to be taken into account when estimating the systematic uncertainty of the mea-
surement.

We first look at the Λc mass distribution and separate the reconstructed events
according to their origin, since this way we can explain the features of the distri-
bution. We find out that we can divide the sample into 5 categories (see figure
32) 1:

• Signal - this category consists of the signal events Λ+
c → Λπ+, Λ → p+π−,

with Λc coming directly from the fragmentation (cc → ΛcX), from frag-
mentation via the various Σc (Σ0c, Σ+c , Σ++

c , Σ∗0c , Σ∗+c , Σ∗++
c ) baryons (cc →

ΣcX → Λcπ), which decay strongly exclusively into Λc and a pion, di-
rectly from B mesons (B → ΛcX), or from B mesons via the Σc baryons
(B→ ΣcX→ Λcπ).

• Low mass background - events that fall into this category are events Λ+
c →

Σ0π+, Σ0 → Λγ, Λ → p+π−, where the photon is not reconstructed, thus
resulting in a slightly lower invariant mass.

• High mass background - these events come from decays :

– Ξ0c → Ξ−π+, Ξ− → Λπ−,

– Ξ+c → Ξ0π+, Ξ0 → Λπ0,

– Ξ0c → K
0
Λ, K0 → π+π−,

with Λ reconstructed in the Λ→ p+π− for each decay channel.

• Peaking background - these events are true decays of Λc, with exactly the
same final state (pπ+π−) as the signal decays, but with different intermedi-
ate states:

– Λ+
c → f0p

+, f0 → π+π−,

1 Here, we write only the Λ+
c categories, the categories for Λ−

c are charge conjugates of the Λ+
c

ones.
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Figure 32: Breakdown of the generic MC skim sample according to the origin of final
state particles.

– Λ+
c → K0p+, K0 → K0S → π+π−,

– Λ+
c → p+π+π−,

• Combinatorial background - events mostly from random combinations of
final state particles, or other statistically nonsignificant decays.

Now we can compare the generic MC to the real data Λc mass distribution,
by forming probability density functions (PDFs) out of histograms for the sig-
nal (SIG(m(pππ))), the high mass background (HM(m(pππ))), the low mass
background (LM(m(pππ))) and the combinatorial (C(m(pππ))) background (we
leave out the peaking background, because it is negligibly small for this purpose)
and fitting the combined PDF:

f(m(pππ)) = (80)
a · SIG(m(pππ)) + b ·HM(m(pππ)) + c · LM(m(pππ)) + d ·C(m(pππ)),

to the data histogram. If we divide the coefficients a,b, c and d obtained from
this fit by the total number of events in the combined histogram, we get the scale
factors by which we must multiply the MC events so that they give the best pos-
sible match between MC and data. The scaling coefficients for the signal, low
mass and combinatorial background are, although statistically significant, not
extremely far from unity, and reflect the unperfect modelling of the cc fragmen-
tation and poorly known branching ratios of various charmed baryons entering
the MC simulation. The results of the fit are shown in figure 33 and the scaling
coefficients are written in table 6. We see that the events coming from the high
mas background are not present in the data at all, which shows that the pro-
duction of Ξc and the branching rations for their decays to final states with a Λ
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Figure 33: Fit of the combined histogram PDF (80), obtained from the MC Λc mass
distribution, to the data Λc mass distribution.

event category scaling coefficient
Signal 1.090± 0.010

Low mass bkg 0.726± 0.039
High mass bkg 0.000± 0.009

Combinatorial bkg 1.330± 0.001

Table 6: Scale coefficients between data and MC for different event categories, obtained
from the fit shown in figure 33.

particle are highly overestimated. This overestimation is due to the fact that the
relevant quantities concerning Ξc decays are very poorly known.

4.3.2 Reweighting of the Monte Carlo cos θh angular distribution

In the generic MC, the cos θh angular distribution is flat (see figure 34) - the linear
angular dependence due to parity non-conserving weak decays is not simulated.
To be able to check the method with the generic MC simulation, we have to
reweigh events to the correct angular distribution.

We therefore reweigh the signal for the cc→ ΛcX and cc→ ΣcX→ Λcπ events
(see figure 34), whereas the B → ΛcX, B → ΣcX → Λcπ

2, and the background
events are not reweighted, but scaled, so that the ratio of signal and background
events remains the same.

This is done using a random number generator used to generate a number r be-
tween 0 and 1, which is then compared to the expression y = (1+α cos θh)/(1+
α) for each event in the case of reweighting, and to y = 1/(1+ α) in the case of

2 The events coming from B mesons are not reweighted, since after the cut optimization (see
chapter 4.4.1) we reject almost all of these events.



52 development of the measurement method on monte carlo simulation

Figure 34: Fit with a linear function on cosθh angular distribution of the generic MC for
events with Λ+

c coming from fragmentation. Left - before reweighting, right -
after reweighting.

scaling. If r < y, the event is accepted, otherwise it is discarded. For α we chose
the value 0.5 for both Λ+

c and Λ−
c decays, as obtained in [34] (see figure 34).

Because we use a random number generator, the α coefficients have slightly
different values between streams. Their values are shown in table 7.

In the analysis, there are actually five angles to consider when reweighting the
events - three angles defined in (39), and the two angles from (32) and (35), both
for the decay of Λc and for the decay of Λ in their subsequent CM systems.

The first angle ϑ1 from equations (39) is the helicity angle, and the distribution
of signal events over this angle is independent of the polarization of Λc and must
be reweighted to the distribution described by the equation.

The distributions of events over all other angles is dependent on the polar-
ization of the Λc sample, however, in our case, the Λc either come from the
(cc → ΛcX) fragmentation, which can not produce a polarized Λc sample, or
from B mesons, which in principle could produce a polarized Λc sample, but
after we select the analysis sample with optimizing the selection criteria, we re-
ject almost all of these events (see chapter 4.4.1). We can therefore assume that
the Λc sample is unpolarized: PΛc = 0. With this assumption, the distributions
over the second and third angle from (39) and over the angle from (32) are flat,
whereas the distribution over the angle from (35) is identical to the one over the
helicity angle.

If we plot all the angle distributions in the simulation, we see that the only
distribution we have to reweigh is the helicity angle distribution, as the other
distributions remain flat or reweigh correctly as we reweigh the helicity angle
distribution (see figure 35).

After scaling and reweighting the generic MC, we obtain an equivalent of 4
streams of simulated events. These events are now scaled to match the data and
are reweighted to the correct cos θh angular distribution.
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Figure 35: Angles defined in (39) (a, d, e), (32) (b) and (35) (c) before reweighting the
angle (a) - top row, and after reweighting the angle (a) - bottom row.

stream αΛ+
c

α
Λ
−
c

0 0.5014± 0.0026 0.5048± 0.0026
1 0.4971± 0.0026 0.5006± 0.0026
2 0.5016± 0.0026 0.5035± 0.0026
3 0.4994± 0.0026 0.4944± 0.0026

all 0.4999± 0.0013 0.5008± 0.0013

Table 7: α coefficients used to reweight streams of generic MC.
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cut type cut value
Rπ/K, Rπ/p (for both pions) > 0.6
Rπ/e, Rπ/µ (for both pions) 6 0.9

Rp/K, Rp/π > 0.6
pπ, pππ vertex fit conf. level > 10−3

m(pπ) > 1.1126 GeV/c2, 6 1.1186 GeV/c2

m(pππ) > 2.19 GeV/c2, 6 2.38 GeV/c2

pCMS(Λc) > 2.2 GeV/c

Table 8: Selection criteria used to make the analysis sample out of all generic MC events.

4.4 construction of the analysis sample

4.4.1 Optimization of selection criteria

To create the analysis sample, we perform an optimization of all the selection
criteria used. In addition to criteria used to create the skim sample, we also use
the Λ and Λc vertex fit confidence level.

For optimization, we define a figure-of-merit (FOM) function:

FOM = ε · P (81)

where ε is the efficiency and P is the purity, defined as:

ε =
Nrecsig

N0sig
, P =

Nrecsig

Nrecall
, (82)

withNrecsig denoting the number of reconstructed signal events,N0sig is the number
of all signal events, and Nrecall is the number of all reconstructed events.

A selection criterion is optimized when the FOM calculated with this criterion
is at its maximum value. This definition of the FOM gives us the best signifi-
cance for the signal yield Nrecsig/σNrecsig in the sample. After an automated iterative
procedure, we get the selection criteria shown on figure 36.

Since for all selection criteria except the Λ mass and the Λc momentum in the
e+e− CMS criteria, the FOM does not depend very strongly on the cut, we do not
use the selection criteria suggested by the optimization, to retain a larger number
of signal events. For confidence levels for both vertex fits we use the standard
value > 10−3, and for the three mentioned criteria, we use the value from the
optimization procedure. The results of the procedure are shown in table 8.

4.4.2 Analysis sample

Using the selection criteria shown in table 8, we obtain the Λc analysis sam-
ple. The Λc mass distribution in the simulated sample separated into categories
according to their origin is shown in figure 37.



4.4 construction of the analysis sample 55

Figure 36: The results of an automated iterative optimization of all used selection cri-
teria, showing the value of FOM on the y-axis and the chosen selection crite-
rion on the x-axis. The arrow indicates where the maximum of FOM has been
found, and the value of the selection criterion at maximum is written in the
graph.



56 development of the measurement method on monte carlo simulation

Figure 37: Breakdown of the generic MC analysis sample according to the origin of final
state particles.

skim sample analysis sample
efficiency 0.28 0.18

purity 0.10 0.65
FOM 0.03 0.12
S/B 0.11 1.88

Table 9: Efficiency, purity, FOM and signal-to-background ratio for the [−2σ,+2σ] inter-
val around the Λc signal peak for the analysis and skim samples.

The signal-to-background ratio (S/B) in the analysis sample is now signifi-
cantly better than in the skim sample (see table 9).

4.5 fit of Λc mass in bins of cos θh

In the next step, reconstructed Λc decays are divided into bins according to
cos(θh) values. Since we perform a deconvolution (see chapter 4.6), the chosen
bin width should have no influence on the uncertainty of the result, however we
would nevertheless like to reduce the bin-to-bin event migration due to a finite
cos(θh) resolution 3, while still dividing the cos θh distribution into as many
bins as possible. This is the reason that we choose the width of the bin according
to an estimate of the detector resolution for measuring cos θh. The resolution is
estimated with generic MC simulation by calculating the difference between the
reconstructed and generated values of cos θh in the signal MC sample in bins of

3 The reconstructed value of θh for a given decay may differ from the true one due to the resolution
effects.
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Figure 38: Detector resolution for measuring cos θh.

cos θh, and then taking the root mean square (RMS) of each histogram formed
that way. The results are shown in figure 38.

According to the results, we decided to divide the cos θh distribution into
10 equidistant bins, setting the bin width at 0.2, as this is roughly the largest
resolution estimate in 38.

4.5.1 General fit method

The fit method used to fit the Λc mass histograms in bins of cos θh is the ex-
tended binned maximum likelihood. With this method, we do not define proba-
bility density functions, normalized to 1 to describe the distributions, but models
(Mi), normalized to the expected number of events Nexp(~p) which this model de-
scribes. The model for the whole data sample (M) is thus a sum of individual
models:

M(x;~p) =
∑
i

NiMi(x;~pi),
∫
M(x;~p)dx ≡ Nexp(~p), (83)

here, x is the observable, ~p is the vector of all model parameters, Ni are the
expected numbers of events for each model, and ~pi is the subset of parameters
for the i-th model. The model is normalized to Nexp =

∑
iNi, which is the

number of events in the histogram.
We estimate the parameter values by minimizing the extended likelihood func-

tion in a simultaneous fit to histograms for all cos θ bins:

− lnL(~p) = −

Nbin=10∑
j=1

∑
Hj(xi)

M(xi;~pj) − Poisson(Nobs|
Nbin=10∑
j=1

Nexp,j(~pj)), (84)

where the index j runs over bins in cos θ, Hj(xi) is the histogram for the j-th
cos θ bin with i bins, xi is the i-th bin center in the histogram Hj, ~pj are the
parameters used in the model that describes the histogram in the j-th cos θ bin
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parameter value
n12 0.710± 0.060
n13 0.156± 0.010
s12 1.741± 0.018
s13l 4.008± 0.056
s13r 4.856± 0.071

Table 10: Values of fixed parameters on the generic MC analysis sample fit.

and Nobs is the observed event count in all cos θ histograms, modeled by a
Poisson distribution with the expected event count for all histograms as mean.

4.5.2 Signal MC fit

To ensure the convergence of fits, we need to fix some of the fit parameters. We
do this by first fitting just the signal events (the signal MC) and fixing some of
the fit parameters to the values obtained by this fit when fitting all the events
in the analysis sample. For the signal MC we perform a simultaneous fit to the
m(pππ) mass distribution in all bins of cos(θh), where for each bin, we use two
Gaussian and one asymmetric Gaussian function with a common peak value as
a model, and the ratios of numbers of events and widths between the second
Gaussian and the first Gaussian and between the asymmetric Gaussian and the
first Gaussian are common for all bins:

MS(mpππ;~p) =

Nbin=10∑
i=1

N1,i
[
G(mpππ;mi,σ1,i) +n12G(mpππ;mi, s12σ1,i) +

+n13AG(mpππ;mi, s13lσ1,i, s13rσ1,i)
]
,

G(x;m,σ) =
1√
2πσ

exp

[
−
(x−m)2

2σ2

]
(85)

AG(x;m,σl,σr) =
1√
2πσl

(1− θ(x−m))exp

[
−
(x−m)2

2σ2l

]
+

+
1√
2πσr

θ(x−m)exp

[
−
(x−m)2

2σ2r

]
,

where θ(x) is the Heaviside step function.
We fit the signal MC histograms in the range [2.25 GeV/c2 - 2.33 GeV/c2] and

use streams 0 and 1 of the analysis sample, to increase statistics, which results
in a smaller error for the fixed parameters. The parameters which are fixed on
the generic MC analysis sample fit (see next section), are shown in table 10 and
an example of the fit for bin 4 (−0.2 < cosθh < 0.0) is shown on figure 39. For
all fits and parameter values, see appendix A.1.
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Figure 39: An example of the fit on signal MC for bin 4 (−0.2 < cosθh < 0.0). The black,
blue and red mark the narrow Gaussian, the wide Gaussian, the asymmetric
Gaussian, respectively. The bottom plot shows the fit residuals.

4.5.3 Generic MC fit

For the fit on the generic MC, we perform a simultaneous fit to the m(pππ) mass
distribution in all bins of cos(θh), where for each bin, the model is a sum of the
model for the signal peak, defined in (85) with all the common ratios fixed to
the values determined from the fit on signal MC, a sigmoid function for the
low mass background, and a Chebyshev polynomial of the second order for the
combinatorial background. The common parameters for all bins are the width
and the position of the sigmoid and the two Chebyshev polynomial coefficients:

MG(mpππ;~p) =

Nbin=10∑
i=1

[
N1,i

(
G(mpππ;mi,σ1,i) +n12G(mpππ;mi, s12σ1,i) +

+n13AG(mpππ;mi, s13lσ1,i, s13rσ1,i)
)
+

+Nb1,iS(mpππ;mb,wb) +Nb2,iCH(mpππ; c1, c2)
]
,

G(x;m,σ) =
1√
2πσ

exp

[
−
(x−m)2

2σ2

]
, (86)

AG(x;m,σl,σr) =
1√
2πσl

(1− θ(x−m))exp

[
−
(x−m)2

2σ2l

]
+

+
1√
2πσr

θ(x−m)exp

[
−
(x−m)2

2σ2r

]
,
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Figure 40: An example of the fit on generic MC for bin 4 (−0.2 < cosθh < 0.0). The black,
blue, red, green and purple lines mark the narrow Gaussian, the wide Gaus-
sian, the asymmetric Gaussian (all describing signal events), the sigmoid func-
tion and the 2. order Chebyshev polynom (all describing the backgrounds),
respectively. The bottom plot shows the fit residuals.

S(x;m,w) =
1

1+ exp
[
x−m
w

] ,

CH(x; c1, c2) = 1+ c1x+ c2(x
2 − 1).

The number of signal events (Ri) and the statistical uncertainty on the number
of signal events (σRi) for each bin are calculated as:

Ri = N1,i(1+n12 +n13), σRi = σN1,i(1+n12 +n13), (87)

where σN1,i is the statistical error on the parameter N1,i from the fit on generic
MC. The number of signal events from the generic MC fit for all cos θh bins is
shown in table 41b and figure 41a, and an example of the fit on generic MC
for bin 4 (−0.2 < cosθh < 0.0) is shown in figure 40. For all fits and parameter
values, see section A.2.

To check if the fit correctly reproduces the number of signal events, we look at
the fit residuals, defined as:

Nfit −Nactual
σNfit

, (88)

where Nfit is the number of signal events determined from the fit, Nactual is
the actual number of events determined by counting on the generic MC, and
σNfit is the statistical error on the number of signal events determined from the
fit. The residuals are fitted with a constant function with a χ2 fit. The result is
0.06± 0.32 with a χ2/NDF = 8.75/9, which corresponds to a probability of 0.46,
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Figure 41: Numbers and statistical uncertainties for signal events for each cos θh bin,
determined from the generic MC fit.

hence we can conclude thet the fit model correctly reproduces the number of
reconstructed events (see figure 42).

4.6 deconvolution

The Belle detector has a finite resolution of measurement of the θh angle (see fig-
ure 38), which means that the measured value of cos θh for an event can slightly
deviate from its true value. As a consequence, events migrate across the bins.
Mathematically, this means that the true cos θh distribution is convoluted with a
resolution function:(

dN

d cos θh

)
rec

=

(
dN

d cos θh

)
⊗ Res(cos θh). (89)

To correct this, we deconvolute the reconstructed cos θh distribution, using a
deconvolution matrix determined by Monte Carlo simulation.

First, we determine the event migration from the MC simulation by distribut-
ing signal events into 2D bins according to their reconstructed and generated
cos θh values and counting the number of events that fall into each 2D bin (see
figure 43). As expected, a large majority of events concentrates in the diagonal of
the plot, showing that their cos(θh) value is correctly reproduced. With this, we
get a resolution map in the form of a matrix, which maps the resolution function
into the chosen bins of cos θh. We will denote this map by Mij, where index i
runs over reconstructed cos(θh) bins, and index j over generated cos θh bins.

In order to get the convolution map, we need the probability that after recon-
struction, each event with a generated value of cos θh in the j-th bin will fall into
the i-th bin of cos θh distribution. We know that the probability for an event to
fall into any bin must be 1, since we do not lose events because of the detector
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Figure 42: Residuals between fitted and actual number of events for the generic MC fit,
fitted with a constant function with a χ2 fit.

Figure 43: Distribution of events in bins of reconstructed and generated cos θh. (Note:
the color axis is shown in a logarithmic scale.)
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Figure 44: Convolution (left) and deconvolution (right) matrices in bins of reconstructed
and generated cos θh.

resolution, so for the deconvolution matrix the following normalization must
hold: ∑

i

pij = 1, (90)

where with pij we denoted the element of the convolution matrix, and index i
runs over reconstructed cos(θh) bins, and index j over generated cos θh bins.

To get the convolution map, we must therefore normalize the resolution map
row-wise (see figure 44):

pij =
Mij∑
kMkj

. (91)

Now, the normalization (90) holds, because:∑
i

pij =
∑
i

Mij∑
kMkj

=

∑
iMij∑
kMkj

= 1. (92)

With the convolution matrix P, we can calculate the numbers of reconstructed
events in bins of the cos θh distribution ~R, given the generated cos θh distribution
(~G), from the matrix equation:

~R = P~G. (93)

In our case, we need to determine the generated distribution from the recon-
structed one. We multiply the matrix equation (93) with P−1 from the left side,
and get:

~G = P−1~R = Q~R, (94)

where we defined the deconvolution matrix with Q = P−1 (see figure 44).
The deconvoluted number of events in the i-th bin of the cos θh distribution

(Gi) is calculated from the reconstructed cos θh distribution (Rj) as

Gi =
∑
j

qijRj, (95)

where qij is the element of the deconvolution matrix Q.
The error on the deconvoluted number of events (which we denote as Gi) can

be expressed in terms of convoluted numbers of events and their errors (here
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Figure 45: Errors on the deconvolution matrix coefficients in bins of reconstructed and
generated cos θh.

denoted as Ri and σRi) from (87) and the coefficients of the deconvolution matrix
and their errors (qij and σqij)). For a derivation, see chapter B.3.

σ2Gi =
∑
j

R2jσ
2
qij

+
∑
j

∑
k

qijqikRjkσRjσRk , (96)

where the error on the deconvolution coefficient can be expressed with numbers
of events in bins of the resolution map Mij as (see B.4 for a derivation):

σ2qij =
∑
a

∑
b

q2ia
Mab

∑
c6=aMcb

(
∑
cMab)3

q2bj, (97)

and Rjk is the correlation coefficient between Rj and Rk, which is equal to 1 when
j = k and has a value between −1 and 1 when j 6= k. The variables Rj and Rk are
correlated, because we use a simultaneous fit to all bins to determine them. The
calculated errors on the deconvolution matrix coefficients are shown on figure
45.

4.7 reconstruction efficiency

Efficiency in cos(θh) bins must be determined since the efficiency cos(θh) depen-
dence changes the reconstructed cos(θh) distribution. The efficiency in each bin
is defined as

〈εi〉 =
NR,i

NG,i
. (98)

It is determined by counting the reconstructed (NR) and generated (NG) events
for each bin. For counting the reconstructed events, we reconstruct a generated
sample of reweighted signal MC. The generated events are counted on the same
sample before any selection is used (including Hadron B preselection).
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Figure 46: Reconstruction efficiency for Λc → Λπ,Λ → pπ decays as a function of
cos(θh). Efficiency is determined from MC simulation, the errors are statis-
tical.

The error on the efficiency is calculated as an error of the Poisson distribution,
since for one event it distributes as a binomial distribution (the event either
passes the cuts, or it does not), and we have a large number of events:

σ〈ε〉i =

√
NR,i(NG,i +NR,i)

N3G,i
. (99)

The determined efficiencies for each bin are shown in figures 46a and 46b.

4.8 〈α〉 determination

To determine 〈α〉, we fit the efficiency corrected deconvoluted numbers of events
in bins of cos θh:

Ti =
Gi
〈ε〉i

, (100)

with a linear function of the form:

f(x ;N , 〈α〉) = 1

2
N(1 + 〈α〉x) . (101)

The errors on Gi and 〈ε〉i are not correlated, so the errors on Ti are

σ2Ti = T 2i

(
σ2Gi
G2i

+
σ2〈ε〉i
〈ε〉2i

)
, (102)

with σGi and σ〈ε〉i defined in equations (96) and (99), respectively.
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Figure 47: Fit on efficiency corrected deconvoluted cos θh distribution of events to de-
termine 〈α〉.

The fit we perform is a multi-variate χ2 fit [26], since the errors on Gi are
correlated because of the deconvolution. We minimize the function:

χ2(N , 〈α〉) = (~T − ~f(x ;N , 〈α〉))T V−1(~T − ~f(x ;N , 〈α〉)) , (103)

where ~T is the vector of determined Ti values, ~f is the corresponding vector of
values for the function f(x;N, 〈α〉), defined in (101), evaluated at centers of bins,
and V is the covariance matrix of the Ti values, which can be expressed as (see
B.2 for a derivation):

Vij = TiTj

(∑
k

∑
l qikqjlRklσRkσRl
GiGj

+ δij

∑
k R

2
kσqikσqjk
GiGj

+ δij
σ〈ε〉iσ〈ε〉j
〈ε〉i〈ε〉j

)
(104)

The fit is shown in figure 47. We compare the result to the value obtained by
fitting the true generated distribution (see figure 34 and table 7): for streams 0
and 1, we get a good agreement within the error:

〈α〉rec = 0.498± 0.008, 〈α〉st12gen = 0.501± 0.001. (105)

4.9 fit of Λ+
c and Λ

−
c mass in bins of cos θh

For measuring ACP, we take the same analysis sample as for the 〈α〉 measure-
ment, described in section 4.4. This is a scaled, reweighted MC sample obtained
with optimized cuts.

We divide the analysis sample into separate samples for Λ+
c and Λ−

c , and for
each sample distribute the events according to the bins in cos θh angle, chosen
in section 4.5.
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Figure 48: Examples of Λ+
c and Λ−

c fits on generic MC for bin 7. (0.4 < cosθh < 0.6).
The black, blue, red, green and purple lines mark the narrow Gaussian, the
wide Gaussian, the asymmetric Gaussian (all describing signal events), the
sigmoid function and the 2. order Chebyshev polynom (all describing the
backgrounds), respectively. The bottom plots shows the fit residuals.

Figure 49: Numbers of events in bins of cosθh, determined from the separate fit to Λ+
c

and Λ−
c invariant mass distributions. Left - numbers of events for Λ+

c , right -
numbers of events for Λc−.

We then perform an extended likelihood fit, defined in section 4.5.1, with the
model defined in (86) separately to the Λ+

c and Λ−
c samples. We take the values

for the fixed parameters n12 , n13 , s12 , s13l , s13r from the fit on the signal MC
(table 10) in both cases. Examples of Λ+

c and Λ
−
c fits on generic MC for bin 7

(0 .4 < cosθh < 0 .6) are shown in figure 48. For all fits and parameter values,
see section A.3. With this fit, we calculate the number of signal events Ri,Ri in
each bin for the Λ+

c and Λ−
c samples as:

Ri = N1,i(1+n12 +n13), σRi = σN1,i(1+n12 +n13), (106)

Ri = N1,i(1+n12 +n13), σRi = σN1,i
(1+n12 +n13),

where σN1,i is the statistical error on the parameter N1,i from the fit on generic
MC for the Λ+

c fit, and the corresponding quantities with bars are defined for
the Λ−

c fit (see figure 49 and table 11).
The χ2 fits with a constant function on residuals (see figure 50), defined in the

same way as in (88), yield a result of 0.27± 0.32 with a χ2/NDF = 4.08/9 for the
Λ+
c fit and −0.15± 0.32 with a χ2/NDF = 8.36/9 for the Λ−

c fit, corresponding
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bin Ri Ri

0 8137±174 8013±169
1 9661±177 9747±176
2 11497±188 11147±178
3 13202±191 13018±186
4 15470±200 15144±195
5 17599±207 17306±204
6 19067±211 18629±207
7 21242±216 20770±211
8 23378±222 23364±217
9 25943±222 25190±216

Table 11: Numbers of events in bins of cos θh, determined from the separate fit to Λ+
c

and Λ−
c distributions.

Figure 50: Residuals for: left - fit on Λ+
c cos θh distribution, right - fit on Λ−

c cos θh
distribution, both fitted with a constant function with a χ2 fit.

to probabilities 0.90 and 0.50 respectively, so we can conclude that the method
correctly reproduces the number of signal events.

4.10 deconvolution of Λ+
c and Λ

−
c events and ACP determination

Next we need to use the deconvolution matrix Q, determined from MC (see
figure 44), to get the deconvoluted numbers of events for each bin (Gi , Gi):

Gi =
∑
j

qijRj , Gi =
∑
j

qijRj (107)

To determine ACP, we fit the reconstructed asymmetry distribution in bins of
cos θh:

Ai
rec =

Gi − Gi

Gi + Gi
, (108)
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with a function of the form (compare with equation 69):

g(x ; k , ACP) = k + ACP

x

1 + 〈α〉x
, (109)

where we use the value of 〈α〉, determined in section 4.8, using a joined Λ+
c +

Λ
−
c sample.
The errors on Airec are (see chapter B.6 for a derivation):

σ2
Airec

=
4

(Gi +Gi)4

(
G
2
i

∑
k

∑
l

qikqilRklσRkσRl + (110)

+G2i
∑
k

∑
l

qikqilRklσRkσRl +
∑
k

(RkGi − RkGi)
2σq2ik

)
,

where σRi ,σRi are the errors on the number of signal events in i-th bin for the

Λ+
c and Λ

−
c distributions, respectively, determined from the fit, Rij,Rij are the

correlation coefficients between Ri and Rj and between Ri and Rj, respectively,
determined from the fit, and σqij is the error on the deconvolution matrix ele-
ment, defined in (97).

Since the errors on Airec are correlated, we again use the multivariate χ2 fit,
where we minimize the function:

χ2(k,ACP) = (~Arec − ~g(x;k,ACP))
TV−1(~Arec − ~g(x;k,ACP)), (111)

where ~Arec is the vector of determined Airec values, ~g is the corresponding vector
of values for the function g(x;k,ACP), defined in (109), evaluated at centers of
bins, and V is the covariance matrix of the Airec values, which can be expressed
as (see chapter B.5 for a derivation):

Vij =
4

(Gi +Gi)2(Gj +Gj)2

(
GiGj

∑
k

∑
l

qikqjlRklσRkσRl + (112)

+ GiGj
∑
k

∑
l

qikqjlRklσRkσRl +

+ δij
∑
k

(RkGi − RkGi)(RkGj − RkGj)σqikσqjk

)
.

The fit is shown in figure 51. We compare the result with the value calculated
from the fit on true signal event cos θh distribution (figure 34 and table 7) and
get a good agreement within the error:

ArecCP = 0.004± 0.010 A
gen
CP

= −0.003± 0.003 (113)

4.11 linearity and consistency test

We check the method developed in this chapter with a linearity test - this test
checks if the method gives accurate results regardless of the values of 〈α〉 and
ACP (in the limits of assumptions in (68)). To perform the check, we generated
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Figure 51: Fit for the determination of ACP.

Figure 52: Fit residuals for 〈α〉 - left, ACP - right, defined in (114), of different samples
for the linearity test with the ±1 band marked by green lines and different
sample categories marked by black lines.

analysis samples with different values of 〈α〉 and ACP (see table 12) from streams
0 and 1 and used the same method as described in this chapter to reconstruct
〈α〉 and ACP. The generated samples are divided into two categories, samples
1 − 12 have values of α and/or ACP within 6.3 σ of the original sample, and
samples 13− 22 have either one or both quantities more than 9.7 σ away from
the original sample.

The residuals for both quantities, defined as:

Res
〈α〉
i =

〈α〉0 − 〈α〉i
σ〈α〉0

, Res
ACP
i =

ACP0 −ACPi

σACP0
, (114)

are shown in figures 52.
Next, the method is checked with a consistency test - this test checks if the

method gives accurate results for statistically independent samples. To do this,
we again generated analysis samples with different values of 〈α〉 and ACP (see
table 13), this time only from stream 2 to ensure that the method is accurate
not only for a statistically independent sample, but also for the same number of
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Sample ID αgen αgen 〈α〉gen 〈∆〉 ACPgen ∆CP

0 0.499 0.503 0.501 0.0 −0.003 0.0
1 0.451 0.452 0.451 −6.3 −0.001 0.2
2 0.475 0.474 0.474 −3.4 0.001 0.4
3 0.492 0.493 0.493 −1.0 0.000 0.3
4 0.508 0.510 0.509 1.0 −0.001 0.2
5 0.531 0.531 0.531 3.8 0.000 0.3
6 0.551 0.551 0.551 6.3 0.000 0.3
7 0.474 0.527 0.500 −0.1 −0.052 −4.9
8 0.487 0.520 0.503 0.3 −0.032 −2.9
9 0.499 0.506 0.502 0.1 −0.006 −0.3
10 0.506 0.498 0.502 0.1 0.009 1.2
11 0.518 0.487 0.502 0.1 0.031 3.4
12 0.528 0.478 0.503 0.3 0.049 5.2
13 0.303 0.302 0.302 −24.9 0.002 0.5
14 0.700 0.700 0.700 24.9 0.000 0.3
15 0.349 0.703 0.526 3.1 −0.336 −33.3
16 0.452 0.554 0.503 0.3 −0.100 −9.7
17 0.552 0.453 0.503 0.3 0.099 10.2
18 0.702 0.355 0.528 3.4 0.329 33.2
19 0.301 0.351 0.326 −21.9 −0.077 −7.4
20 0.353 0.303 0.328 −21.6 0.076 7.9
21 0.649 0.700 0.675 21.8 −0.037 −3.4
22 0.702 0.653 0.677 22.0 0.037 4.0

Table 12: Data on different analysis samples used for the linearity test. The 〈∆〉 and ∆CP

are the normalized differences between the current and the original sample,
defined as 〈∆〉i =

〈α〉gen,i−〈α〉gen,0
σ〈α〉0

and ∆CPi =
ACPgen,i−ACPgen,0

σACP0

.
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Sample ID αgen αgen 〈α〉gen 〈∆〉 ACPgen ∆CP

0 0.502 0.503 0.502 0.0 0.000 0.0
1 0.458 0.456 0.457 −4.1 0.002 0.1
2 0.470 0.471 0.471 −2.8 0.000 0.0
3 0.492 0.496 0.494 −0.7 −0.003 −0.2
4 0.512 0.516 0.514 1.1 −0.003 −0.2
5 0.529 0.532 0.531 2.6 −0.002 −0.1
6 0.553 0.554 0.554 4.7 0.000 0.0
7 0.480 0.528 0.504 0.2 −0.047 −3.4
8 0.486 0.519 0.502 0.0 −0.032 −2.3
9 0.497 0.507 0.502 0.0 −0.009 −0.6
10 0.509 0.498 0.504 0.2 0.011 0.8
11 0.515 0.485 0.500 −0.2 0.030 2.1
12 0.528 0.473 0.500 −0.2 0.055 3.9
13 0.300 0.308 0.304 −18.0 −0.012 −0.9
14 0.700 0.700 0.700 18.0 0.000 0.0
15 0.355 0.703 0.529 2.5 −0.328 −23.4
16 0.450 0.549 0.500 −0.2 −0.098 −7.0
17 0.554 0.452 0.503 0.1 0.101 7.2
18 0.704 0.351 0.528 2.4 0.335 23.9
19 0.305 0.352 0.329 −15.7 −0.071 −5.1
20 0.352 0.304 0.328 −15.8 0.073 5.2
21 0.651 0.697 0.674 15.6 −0.033 −2.4
22 0.705 0.653 0.679 16.1 0.038 2.7

Table 13: Data on different analysis samples used for the consistency test. The 〈∆〉 and
∆CP are the normalized differences between the current and the original sam-
ple, defined as 〈∆〉i =

〈α〉gen,i−〈α〉gen,0
σ〈α〉0

and ∆CPi =
ACPgen,i−ACPgen,0

σACP0

.

events as there are in the data sample, and used the same method as described
in this chapter to reconstruct 〈α〉 and ACP. The generated samples are again
divided into two categories, defined in the same way as in the linearity test.

The residuals for both quantities are again defined in (114), and are shown in
figure 53.

4.12 summary

The method developed on simulated data incorporates all sources of statistical
uncertainties and the checks show that the results it gives are accurate and unbi-
ased.

Since the statistical uncertainty of a pure signal sample scales as 1/
√
N, where

N is the number of events in the sample, the expected uncertainty on the data
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Figure 53: Fit residuals for 〈α〉 - left, ACP - right, defined in (114), of different samples
for the consistency test with the ±1 band marked by green lines and different
sample categories marked by black lines.

sample is .
√
2 times the uncertainty obtained from the simulated data, as we

used an equivalent of two times the actual collected data to develop the method
and the fit results for the number of signal events scale more softly with N

because they are correlated with the number of background events in the sample.
For the 〈α〉 measurement, the expected uncertainty is thus . ±0.011 and for

the ACP measurement, . ±0.014.





5
A N A LY S I S O F R E A L D ATA

5.1 mc tuning

In order to use the method developed in chapter 4, we again need to take into
account small differences between MC simulation and data, coming from the in-
adequate simulation of the cc quark fragmentation into hadrons, a consequence
of which is that the produced hadrons have slightly different momenta in the
MC simulation compared to the real data.

The different momentum distribution of the hadrons also reflects in the dif-
ferent cosθh distribution, as the cos θh is calculated from the magnitudes and
directions of the momenta.

Because of these differences, we need to correct the quantities, determined
from the MC, that change in the real data. In our method, there are two such
quantities, the optimized cut on Λc CMS momentum, and the reconstruction
efficiency.

To correct this, we need to tune the MC simulation so that the momentum
distribution of the Λc momentum will match the distribution in the real data.
We can do this by comparing the (pT , cos θ) phase spaces in the MC and data,

where pT =
√
p2x + p

2
y is the transversal momentum of Λc in the e+e− CM system

and θ is the azimuthal angle of the Λc flight direction in the e+e− CM system.
The phase space for simulated and real data is divided into 2D bins of pT and

cos θ. Numbers of signal events in the real data phase space bins are determined
by sideband subtraction.

By fitting the Λc invariant mass distribution the number of signal and back-
ground events in a signal window of ±3σ around the peak value is determined.
A sideband interval in Λc invariant mass is then chosen on both sides of the
signal interval in such a way that the total number of (background) events in the
sideband equals the fitted number of background events in the signal interval
(see figure 54). The 2D (pT , cos θ) distribution of events in the sideband is then
subtracted from the distribution of events in the signal interval thus providing
the (pT , cos θ) distribution of signal events.

The phase space distribution of simulated signal events is shown on figure 55.
The phase space distribution of real data signal events obtained by the above
method is shown in figure 56. The difference with respect to distribution in
figure 55 is small but non-negligible.

75
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Figure 54: Signal and sideband windows of pππ invariant mass used to determine the
(pT , cos θ) phase space distribution in real data.
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Figure 55: The (pT , cos θ) phase space distribution for simulated events for Λc in the
e+e− CM system.
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Figure 56: The (pT , cos θ) phase space determined as the signal - sideband distributions
on real data for Λc in the e+e− system.

The existing sample of simulated events can be tuned to match the data by
appropriately removing simulated events from the sample. For this the following
procedure (also known as "hit-or-miss" method) is applied:

• Because we have bins in the phase space with a small number of events,
which are dominated by statistical uncertainties, we choose a only a section
of the phase space to be tuned: [−0.8, 0.6] for cos θ and [2.0GeV , 3.8GeV] for
pT .

• In this section we normalize both MC and real data phase space distribu-
tions by dividing them with the total number of events in the section.

• We calculate the real data/MC ratio of probabilities for all bins in the sec-
tion, and multiply the number of events in each bin of the MC by this ratio
to obtain the ratio-corrected MC.

• The ratio-corrected/original MC ratio in all bins in the section is used to
tune the MC by generating a random number between 0 and 1 for each
event, which is then kept if the random number is smaller than the ratio
and discarded if the random number is bigger than the ratio.

• For the bins that lie outside the section, we multiply the number of events
for each bin with the ratio of the total number of events in the tuned and
original MC (q = 0.72).

In this way, we obtain a MC with the same (pT , cos θ) phase space distribution
(in the tuned section) as the real data.

The tuned MC (pT , cos θ) phase space is shown in figure 57.
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Figure 57: The (pT , cos θ) phase space distribution in the tuned MC simulation for Λc
in the e+e− CM system.

Figure 58: Result of the automated procedure for optimization of the pCMS(Λc) selec-
tion criterion on tuned MC simulation.

5.1.1 Re-optimization of the Λc CMS momentum selection criterion

Because we tuned the momentum of theΛc, we need to re-optimize the pCMS(Λc)
selection criterion. We use the same automated iterative optimization procedure
as in section 4.4.1 on the tuned MC sample and find the selection criterion where
the FOM = ε · P is maximal. The result is shown in figure 58. We find out that
the criterion has increased from pCMS(Λc) > 2.2GeV to pCMS(Λc) > 2.325GeV ,
because the events in real data have a higher average pCMS(Λc) than events in
the MC simulation.

5.1.2 Real data reconstruction efficiency determination

The reconstruction efficiency, determined from the MC in chapter 4.7, also needs
to be updated, since the cos θh distribution also changes slightly when we tune
the Λc momentum. The procedure is the same as in chapter 4.7, except that we



5.2 Λc fit of the real data analysis sample 79

hθcos
-1 -0.5 0 0.5 1

ef
fic

ie
nc

y

0.12

0.125

0.13

0.135

0.14

0.145

(a)

bin 〈ε〉tuned
0 0.1188±0.0004
1 0.1194±0.0004
2 0.1217±0.0004
3 0.1231±0.0004
4 0.1263±0.0004
5 0.1313±0.0004
6 0.1335±0.0004
7 0.1378±0.0004
8 0.1429±0.0004
9 0.1464±0.0004

(b)

Figure 59: Plot 59a shows the graphical representation of the efficiency and plot 59b the
numerical values in individual cosθh bins. Note that the histogram in 59a has
a suppressed zero and that the total change of the reconstruction efficiency
over the whole cos θh interval amounts to only around 2% − 3%.

selection variable value
Rπ/K, Rπ/p (for both pions) > 0.6
Rπ/e, Rπ/µ (for both pions) 6 0.9

Rp/K, Rp/π > 0.6
pπ, pππ vertex fit conf. level > 10−3

m(pπ) > 1.1126 GeV/c2, 6 1.1186 GeV/c2

m(pππ) > 2.19 GeV/c2, 6 2.38 GeV/c2

pCMS(Λc) > 2.325 GeV/c

Table 14: Selection criteria for the final data sample.

count the reconstructed and generated events on the tuned MC. The results are
shown in figures 59a, 59b.

5.2 Λc fit of the real data analysis sample

We create the real data analysis sample by selecting the events satisfying the
final selection criteria summarized in table 14.

The distribution of the m(pππ) invariant mass in bins of cosθh for the events
in the final data sample is fitted using the extended maximum likelihood method
(see chapter 4.5.1) and the p.d.f. as defined in chapter 4.5.3. Values of parameters
of the p.d.f. which are fixed to the values obtained from MC simulation, are
shown in table 10.

An example of the fit for bin 2 (−0 .6 < cosθh < −0 .4) is shown in figure 60.
Results of fits in all cosθh bins are shown in A.4.
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Figure 60: An example of the fit on real data for bin 2 (−0.6 < cosθh < −0.4). The black,
blue, red, green and purple lines mark the narrow Gaussian, the wide Gaus-
sian, the asymmetric Gaussian (all describing signal events), the sigmoid func-
tion and the 2. order Chebyshev polynom (all describing the backgrounds),
respectively. The bottom plot shows the fit residuals.

We calculate the number of signal events and the statistical uncertainty as in
equation (87), the results are shown in table 61b and figure 61a.

5.3 〈α〉 and 〈αΛc 〉 determination

We now deconvolute the numbers of events obtained from the fit in section 5.2
using the deconvolution matrix as explained in section 4.6, determined from the
MC (see figure 44). To determine the 〈α〉 coefficient, we then fit the efficiency
corrected deconvoluted numbers of events Gi:

Ti =
Gi

〈ε〉tuned ,i
, (115)

with the linear function (101) using the multivariate χ2 fit, defined in (103). The
fit is shown in figure 62.

The result for 〈α〉 is:
〈α〉 = 0.615± 0.009, (116)

where the uncertainty includes the statistical uncertainties from the fit, the de-
convolution matrix, and the efficiency. With this result, we can use the values
of αΛ and AΛ

CP
from (74) and equation (75) to calculate 〈αΛc〉 (look also at the

commentary for equation (74)):

〈αΛc〉 = −0.964± 0.014(stat.)± 0.020(αΛ)± 0.020(AΛCP) = −0.964± 0.032, (117)

where in the first step we divided the uncertainty into three parts; the first part
is the statistical uncertainty of this measurement, the second is the uncertainty
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Figure 61: Numbers and statistical uncertainties for signal events for each cos θh bin,
determined from the real data fit.
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Figure 62: Fit of efficiency corrected deconvoluted cos θh distribution of signal events
on real data for determination of 〈α〉. The 〈α〉 parameter is denoted as k in
the plot.



82 analysis of real data

]2) [GeV/c-π+πm(p
2.2 2.22 2.24 2.26 2.28 2.3 2.32 2.34 2.36 2.38

)2
E

ve
nt

s 
/ (

0.
00

19
 G

eV
/c

0

200

400

600

800

1000

1200

1400
 

bin 4

/NDF = 0.892χ

 

]2) [GeV/c+π-πpm(
2.2 2.22 2.24 2.26 2.28 2.3 2.32 2.34 2.36 2.38

)2
E

ve
nt

s 
/ (

0.
00

19
 G

eV
/c

0

200

400

600

800

1000

1200

 

bin 4

/NDF = 0.962χ

 

Figure 63: Examples of Λ+
c and Λ−

c fits on the real data for bin 4 (−0.2 < cosθh < 0.0).
The black, blue, red, green and purple lines mark the narrow Gaussian, the
wide Gaussian, the asymmetric Gaussian (all describing signal events), the
sigmoid function and the 2. order Chebyshev polynom (all describing the
backgrounds), respectively. The bottom plot shows the fit residuals.

due to the αΛ parameter and the third one due to the uncertainty of the AΛ
CP

parameter.
If we assume no CP-violation in the Λ → pπ decay (i.e. assume AΛ

CP
= 0), we

use the equation (76), and the result is:

〈αΛc〉 = −0.958± 0.014(stat.)± 0.019(αΛ) = −0.958± 0.024, (118)

where the first part of the uncertainty is the statistical uncertainty of this mea-
surement and the second part is the uncertainty of the αΛ measurement.

Both results are in agreement with the ccurrent world average, taken from [26]
(−0.91± 0.15) and have an order of magnitude smaller uncertainty.

5.4 Λ+
c and Λ

−
c fits of the real data analysis sample

In the next step we divide the final data sample used to determine αΛc into
separate samples of Λ+

c and Λ−
c decays.

We fit both samples with the extended maximum likelihood fit 4.5.1, with the
fit function 4.5.3, where we use the values for fixed parameters, determined by
the fit on signal MC simulation, shown in table 10 for both samples.

Additionally, for the Λ+
c fit, we fix the mbl and wbl parameters to the values

obtained from the Λ+
c generic MC fit to ensure the convergence of the fit. The

fixed values are:
mbl = 2.2480 GeV ,wbl = 0.0039 GeV . (119)

Examples of Λ+
c and Λ−

c fits on the real data for bin 4 (−0.2 < cosθh < 0.0)
are shown in figure 63. For all fits and parameter values, see section A.5.

The numbers of signal events and their statistical uncertainties for both Λ+
c

and Λ−
c fits are calculated as in equation (106) and are shown in figure 64 and

table 15.
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Figure 64: Numbers of events in bins of cosθh, determined from the separate fit to Λ+
c

and Λ−
c real data invariant mass distributions. Left - numbers of events for

Λ+
c , right - numbers of events for Λ−

c .

bin Ri Ri

0 3854±116 3571±96
1 4736±114 4475±106
2 5861±123 5559±127
3 7140±130 6826±132
4 8374±137 7894±138
5 9408±141 9016±146
6 10495±145 9963±147
7 12156±152 11456±159
8 13485±157 12950±163
9 15098±158 14352±167

Table 15: Numbers of events in bins of cos θh, determined from the separate fit to Λ+
c

and Λ−
c samples.
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Figure 65: Fit to the reconstructed asymmetry in bins of cos θh on real data to determine
ACP.

5.5 ACP and AΛc
CP

determination

To determine ACP, we first deconvolute (see chapter 4.6)the numbers of signal
events obtained from the fit in section 5.4 for Λ+

c and Λ−
c using the deconvolu-

tion matrix, determined on the MC simulation (see figure 44). With the deconvo-
luted numbers of signal events, we calculate the reconstructed asymmetry Airec,
defined in equation (108), in bins of cos θh.

We then fit Airec with a multivariate χ2 fit, defined in (111) with the function,
defined in (109). The fit is shown in figure 65.

The result for ACP is:
ACP = −0.006± 0.010, (120)

where the uncertainty is statistical only.
With this result, we can use the value of AΛ

CP
from (74) and equation (77) to

calculate AΛc
CP

:

AΛc
CP

= −0.012± 0.010(stat.)± 0.021(AΛCP) = −0.012± 0.023. (121)

where in the first step, we divided the statistical uncertainty into two parts, the
first is the statistical uncertainty of this measurement and the second the uncer-
tainty of the AΛ

CP
measurement.

If we assume no CP-violation in the Λ→ pπ decay, the result is the ACP itself:

AΛc
CP

= −0.006± 0.010. (122)

Both results are consistent with no CP-violation and are in agreement with the
world average (−0.07± 0.19), with a order of magnitude smaller uncertainty.



6
S Y S T E M AT I C U N C E RTA I N T Y

In this chapter, we evaluate the systematic uncertainty of the result. This un-
certainty is due to several sources; for the present analysis we identified the
following possible sources of systematic uncertainty:

• The difference in the tracking efficiency between data and MC simulation
introduces an uncertainty for each charged track used in the reconstruction
of the Λc particle.

• Uncertainty on the deconvolution matrix, which comes from the fact that
we calculated the deconvolution matrix based on the specific number of
events obtained from the MC distribution of events in bins of reconstructed
and generated cosθh.

• Uncertainty of the fit model, which arises because we fixed various param-
eters in the fit function based on the MC simulation.

• Uncertainty due to neglection of the peaking background component in
our fit model.

• Uncertainty due to the assumption that the forward-backward asymmetry
AFB is not a function of cosθh.

• Uncertainty due to the assumption that the particle-antiparticle reconstruc-
tion asymmetry Aε is not a function of cosθh.

6.1 tracking efficiency uncertainty

This uncertainty affects only the measurement of 〈α〉, since for the ACP measure-
ment, it affects the nominator and the denominator in the calculation of the ACP

in the same way and therefore cancels out.
The tracking efficiency systematic error is 0.35% (i.e. the average difference

between the tracking efficiency as estimated in MC events and that of real data
events) for each charged track used in the reconstruction for tracks which have
momentum larger than 200 MeV/c2 [38] 1.

The systematic uncertainty is treated as correlated among different charged
tracks. Since in our measurement we use 3 charged tracks for reconstruction of

1 The difference between the simulated and real events tracks is measured using partially recon-
structed D∗ decays.

85
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Figure 66: Distributions of 〈α〉 - left and ACP - right, obtained by varying the deconvo-
lution matrix and recalculating both quantities. The R.M.S. of the distribution
is used as the systematic uncertainty of the two observables due to the uncer-
tainty of the deconvolution matrix.

the Λc particle, therefore we evaluate the systematic uncertainty of the tracking
efficiency as 1.15%. The efficiency enters directly the estimation of 〈α〉 which
therefore carries the same relative uncertainty. This translates into the absolute
uncertainty of

σ
syst
tracking,〈α〉 = 0.011. (123)

6.2 deconvolution matrix uncertainty

We determined the deconvolution matrix by counting reconstructed and gener-
ated events in bins of cosθh in the MC simulation thus obtaining the resolution
map in chapter 4.6. The procedure depends on the counted numbers of events
in individual "‘D bins of the resolution map. The numbers of simulated events
are subject to statistical fluctuations. These are treated as a source of systematic
uncertainty of the final result.

To evaluate this uncertainty, we varied the number of events in each of the bins
in the resolution map by +σij,−σij or 0, where σij is the standard deviation in
the i, j-th bin of the resolution map, evaluated as

√
Mij, whereMij is the number

of events in the i, j-th bin of the resolution map. For each bin we determined the
variation type randomly.

With the varied resolution map, we again used our measurement method to
determine 〈α〉 and ACP. This procedure was repeated 10000 times, where each
time the deconvolution matrix was varied randomly. The root mean squares of
the 〈α〉 and ACP distribution obtained this way is taken as the evaluation of the
systematic uncertainty (see figure 66):

σ
syst
deconvolution,〈α〉 = 0.001. (124)

The systematic uncertainty on ACP due to this source is negligible.
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Figure 67: Distributions of 〈α〉 - left and ACP - right, obtained by varying the fixed
parameters of the fit model and recalculating both quantities. The R.M.S. of
these distributions are used as the systematic uncertainty of the two observ-
ables due to the uncertainty of the fit model.

6.3 fit model uncertainty

The systematic uncertainty on the fit model comes from the fact that we fixed
the ratios n12,n13, s12, s13l, s13r (see chapters 4.5.2 and 4.5.3) and the sigmoid
function parameters mbl and wbl (see chapter 5.4) to values obtained from the
MC simulation.

We estimate the systematic uncertainty by varying the fixed parameters by
+σ,−σ or 0, where σ is the uncertainty for the fixed parameter, obtained from
the signal MC fit for the fixed ratios and from the generic MC for the sigmoid
function parameters. By forming all possible combinations of the parameter vari-
ations, and for each combination determining the 〈α〉 and ACP parameters with
our measurement method, we obtain a distribution for both parameters (see
figure 67) and the root mean square of these distributions are taken as the sys-
tematic uncertainty.

For the 〈α〉 only the fixed ratios are used, as the mbl and wbl parameters are
fixed only when measuring ACP, hence in this case, the systematic uncertainty
is larger for ACP for 〈α〉, for which it is negligible. The uncertainty on ACP due
to the fit model is:

σ
syst
fit model,ACP

= 0.001. (125)

6.4 peaking background uncertainty

In chapter 4.3.1, we made a breakdown of the m(pππ) distribution on the skim
sample according to the origin of the Λc particle in the MC simulation. We
found out that we have a small number of events which have the same m(pππ)
distribution as the signal, but come from other decays - the peaking beckground.
We neglected these events in the subsequent analysis, and therefore introduced
a systematic uncertainty.

Since these peaking background arises from some rare processes there may be
a difference between the probability for such events as generated in simulation
and the true occurence rate.
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Figure 68: Results of the analysis on MC simulation without the peaking background
events. Left - result for 〈α〉, right - result for ACP.

We estimate this uncertainty by generating the same MC simulation as before
with the peaking background events left out, and repeating the analysis. In this
way, we get the biggest possible difference between the values obtained on the
MC with and without the peaking background events, which we then take as
the uncertainty.

The results of the analysis on MC simulation without peaking background
events are shown in figure 68. Systematic uncertainty is in both cases less than
0.001 and thus negligible.

6.5 uncertainty due to AFB

This uncertainty arises because we assumed that the cosθh distribution doesn’t
depend on the forward-backward asymmetry or, in other words, that the cosθ∗

distribution in the CMS and the cosθh distributions are uncorrelated. In that
case in each bin of cosθh an integral over all cosθ∗ values is present and thus
the forward backward uncertainty cancels out. If not all values of cosθ∗ are
present in each bin of cosθh the integral over those values may not vanish in
this specific bin and this can lead to asymmetries between Λc and Λc. This
uncertainty only affects the ACP measurement.

First, we check that the AFB angular dependence is evened out in cosθh by
generating a large MC signal sample on which no selection is applied (not even
Hadron B preselection). In this sample, we have no ACP and no Aε. We know
that the forward-backward asymmetry is simulated (to the leading order). We
can check this by counting each produced Λ+

c and Λ−
c in bins of cosθ∗, where

θ∗ is the polar angle and calculating AFB as (see figure 69):

AFB =
NΛ+

c
− N

Λ
−
c

NΛ+
c
+ N

Λ
−
c

. (126)

To see if the distribution evens out in the θh angle, we fit the AFB distribution
with a standard χ2 fit in bins of cosθh with the function:

f(x;k,AFB) = k+AFB
x

1+ 〈α〉x
, (127)
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Figure 69: AFB in bins of the polar angle cosθ∗ in a signal MC simulation without any
selection.
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Figure 70: Fit on the AFB distribution in bins of cosθh in a signal MC simulation with-
out any selection to determine the evening out of the AFB distribution in the
Λ CM system.

where we take the value for 〈α〉 from our reweighted skim sample, as it is in this
sample that we would like to check the AFB. The result is (see figure 70):

k = −0.0001± 0.0003 (128)
AFB = −0.0004± 0.0010

The asymmetry in cosθh induced by the forward backward asymmetry is thus
consistent with zero to a high accuracy.

In the next step we check if the selection criteria introduce acceptance effects
that may cause asymmetry in cosθh due to AFB. We fit the function (127) to the
same AFB distribution in cosθh as before, but now on a simulated sample with
all the selection applied (see figure 71). The result is:

k = 0.014± 0.001 (129)
AFB = 0.0009± 0.0041
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Figure 71: Fit on the AFB distribution in bins of cosθh in the analysis sample signal MC
simulation to determine the systematic uncertainty.

We see that again the AFB parameter is consistent with zero. We conservatively
assign the uncertainty of the fit as a possible systematic error of the result:

σ
syst
AFB,ACP

= 0.004. (130)

6.6 uncertainty due to Aε

In order to check the particle-antiparticle reconstruction asymmetry Aε with an
uncertainty at least matching the statistical precision of the result we can not rely
on the MC simulation. The subtle effects can arise due to different interactions
of particles and anti-particles on the material of the detector. These may not be
properly modelled by simulation and hence we have to estimate the effect by
using an appropriate control data sample.

We analyze the decay chain Σ∗ → Λπ,Λ → pπ. The Σ∗+ and Σ∗− particles
are excited baryons with quark contents uus for Σ∗+ and dds for Σ∗−. They
decay strongly with a branching ratio of 0.87 to Λπ. This is a strong decay where
no CP-violation is present, and the consequent decay Λ → pπ has a measured
CP-violating asymmetry of AΛCP = 0.006± 0.021, consistent with 0 [26]. In the
previous section, we have shown that the forward-backward asymmetry evens
out in the system where θh is defined, so the only asymmetry that could be
present in this decay mode is the particle-antiparticle reconstruction asymmetry
Aε.

To measure Aε, we repeat the Λc decay chain analysis for the Σ∗ decay chain.
We construct an analysis sample with the same selection criteria used to obtain
the Λc data sample (see table 14), with pCMS(Λc) replaced by p(CMS)(Σ∗), to
ensure that the momentum distributions of particles are as closely matched to
the Λc sample as possible.

We fit the Σ∗ mass in bins of cos θh, defined in the same way as in the Λc
decay chain analysis (see figure 31). We use the extended maximum likelihood
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fit (see chapter 4.5.1) and fit separately the Σ∗+ and Σ∗− masses separately with
a simultaneous fit to all bins in cos θh.

The fit model we use to fit the Σ∗ mass distributions is:

MG(mpππ;~p) =

Nbin=10∑
i=1

N1,i
(
G(mpππ;mi,σ1,i) +n12G(mpππ;mi, s12σ1,i) +

+n13G(mpππ;mi, s13σ1,i) +
n1b

1+n12 +n13
CH(mpππ; c1, c2)

)
,

G(x;m,σ) =
1√
2πσ

exp

[
−
(x−m)2

2σ2

]
,

CH(x; c1, c2) = 1+ c1x+ c2(x
2 − 1),

where we fix the parameters common to all bins n12,n13, s12, s13 and n1b to val-
ues obtained from fits to the Σ∗ signal and background MC simulation analysis,
done in the same way as the Λc MC simulation analysis.

Next, the numbers of signal events obtained from the fit are deconvoluted
using a deconvolution matrix obtained on the Σ∗ generic MC simulation in the
same way as in chapter 4.6 and from the deconvoluted numbers of signal events
(Gi,Gi), the Aε is calculated for each bin in cos θh as:

Aε =
Gi −Gi

Gi +Gi
. (131)

This distribution is then fitted with multivariante χ2 fit with a function

f(x;k,Aε) = k+Aε
x

1+ 〈α〉x
, (132)

where the value for 〈α〉 is obtained on the Λc data sample, as we want to check
the Aε behaviour on this sample.

The fit is shown in figure 72, and the results are:

k = 0.048± 0.001 (133)
Aε = 0.002± 0.002

For the estimate of the systematic uncertainty, we take the error on Aε from
the fit:

σ
syst
Aε,ACP

= 0.002. (134)

6.7 summary

All the sytematic uncertainties are independent, so they need to be summed in
quadrature to obtain the whole systematic uncertainty. A summary is shown in
table 16.
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Figure 72: Fit on the Aε distribution in bins of cosθh in the σ∗ analysis sample used to
determine the systematic uncertainty.

source σ
syst
〈α〉 σ

syst
ACP

tracking 0.011 n.a.
deconvolution 0.001 negligible

fit model negligible 0.001
peaking bkg negligible negligible

AFB n.a. 0.004
Aε n.a. 0.002

sum 0.011 0.005

Table 16: A summary of systematic uncertainties.
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The systematic errors for 〈α〉 and ACP are therefore:

σ
syst
〈α〉 = 0.011, (135)

σ
syst
ACP

= 0.005.

For 〈αΛc〉 and ACP
Λc , we need to recalculate the systematic uncertainties using

equations (75) and (77):

σ
syst
〈αΛc〉

= 0.017, (136)

σ
syst

ACP
Λc

= 0.005.

If we assume no CP-violation in the Λ → pπ decay, the values for systematic
errors remain the same.





7
S U M M A RY

We present a measurement of the weak asymmetry parameter 〈αΛc〉 and the
CP-violating asymmetry AΛc

CP
for the Λc → Λπ decay.

Our method is based on determining the average weak asymmetry parameter
for joined Λ+

c and Λ−
c decays and using this value, determining the weak asym-

metry parameter. In the measurement of AΛc
CP

some sources of the systematic
uncertainty (tracking efficiency, ....) cancel out.

The values obtained, assuming the measured CP-violation [26] in the Λ→ pπ

decay, are:

〈αΛc〉 = −0.964± 0.014(stat.)± 0.020(αΛ)± 0.020(AΛCP)± 0.017(syst.) =
= −0.964± 0.014(stat.)± 0.033(syst.),

AΛc
CP

= −0.012± 0.010(stat.)± 0.021(AΛCP)± 0.005(syst.) = (137)
= −0.012± 0.010(stat.)± 0.022(syst.),

where in the first step, we separated the uncertainties arising due to the finite
accuracy of the weak asymmetry parameter and CP violating asymmetry in the
Λ decays.

If we assume no CP-violation in the Λ→ pπ decay, the results are:

〈αΛc〉 = −0.958± 0.014(stat.)± 0.019(αΛ)± 0.017(syst.) =
= −0.958± 0.014(stat.)± 0.025(syst.),

AΛc
CP

= −0.006± 0.010(stat.)± 0.005(syst.). (138)

All values agree with the previous measurements [34] and with the world
averages [26] and are consistent with no CP violation in the Λc decays. The
presented measurements are the most sensitive measurements up to date and
are by an order of magnitude more sensitive than the current world averages.

The uncertainties of the results for αΛc and AΛc
CP

are dominated by the statis-
tical errors. In the future the sensitivity can be improved by perfroming mea-
surements at the SuperKEKB collider and Belle II detector which are currently
under construction. Furthermore the sensitivity can be improved by improved
measurements of the asymmetries in Λ decays.
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A
F I T R E S U LT S

a.1 signal mc fit

The parameters obtained from the signal MC fit from section 4.5.2 are listed in
table 17, and the fits for all bins are shown in figures 73 and 74.

a.2 generic mc fit

The parameters obtained from the generic MC fit from section 4.5.3 are listed in
table 18, and the fits for all bins are shown in figures 75 and 76.

a.3 Λ+
c and Λ

−
c mc fit

The parameters obtained from the Λ+
c and Λ−

c MC fit from section 4.9 are listed
in tables 19 and 20, and the fits for all bins are shown in figures 77, 78, 79 and
80.

a.4 real data Λc fit

The parameters obtained from the Λc fit on real data from section 5.2 are listed
in table 21, and the fits for all bins are shown in figures 81 and 82.

a.5 Λ+
c and Λ

−
c real data fit

The parameters obtained from the Λ+
c and Λ−

c fit on real data from section 5.4
are listed in tables 22 and 23, and the fits for all bins are shown in figures 83, 84,
85 and 86.

97



98 fit results

Figure 73: The signal MC fit for bins 0− 5.
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Figure 74: The signal MC fit for bins 6− 9.
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Figure 75: The generic MC fit for bins 0− 5.
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Figure 76: The generic MC fit for bins 6− 9.
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Figure 77: The Λ+
c MC fit for bins 0− 5.
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Figure 78: The Λ+
c MC fit for bins 6− 9.
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Figure 79: The Λ−
c MC fit for bins 0− 5.
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Figure 80: The Λ−
c MC fit for bins 6− 9.
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Figure 81: The Λc real data fit for bins 0− 5.
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Figure 82: The Λc real data fit for bins 6− 9.
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Figure 83: The Λ+
c fit on real data for bins 0− 5.
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Figure 84: The Λ+
c fit on real data for bins 6− 9.



110 fit results

]2) [GeV/c+π-πpm(
2.2 2.25 2.3 2.35

)2
E

ve
nt

s 
/ (

0.
00

19
 G

eV
/c

0

200

400

600

800
 

bin 0

/NDF = 1.032χ

]2) [GeV/c+π-πpm(
2.2 2.25 2.3 2.35

)2
E

ve
nt

s 
/ (

0.
00

19
 G

eV
/c

0

200

400

600

800

 

bin 1

/NDF = 1.022χ

  

]2) [GeV/c+π-πpm(
2.2 2.25 2.3 2.35

)
2

E
ve

nt
s 

/ (
0.

00
19

 G
eV

/c

0

500

1000
 

bin 2

/NDF = 0.622χ

]2) [GeV/c+π-πpm(
2.2 2.25 2.3 2.35

)
2

E
ve

nt
s 

/ (
0.

00
19

 G
eV

/c

0

500

1000

 

bin 3

/NDF = 1.292χ

  

]2) [GeV/c+π-πpm(
2.2 2.25 2.3 2.35

)
2

E
ve

nt
s 

/ (
0.

00
19

 G
eV

/c

0

500

1000

 

bin 4

/NDF = 0.962χ

]2) [GeV/c+π-πpm(
2.2 2.25 2.3 2.35

)
2

E
ve

nt
s 

/ (
0.

00
19

 G
eV

/c

0

500

1000

1500
 

bin 5

/NDF = 1.242χ

  

Figure 85: The Λ−
c fit on real data for bins 0− 5.
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Figure 86: The Λ−
c fit on real data for bins 6− 9.
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bin χ2/NDF N1,i mi σ1,i

0 0.88 8562± 327 2.28705± 0.00004 0.00361± 0.00005
1 1.19 10245± 390 2.28724± 0.00004 0.00363± 0.00005
2 1.13 12266± 466 2.28727± 0.00003 0.00367± 0.00005
3 0.99 14041± 532 2.28731± 0.00003 0.00363± 0.00005
4 1.05 16225± 614 2.28735± 0.00003 0.00364± 0.00005
5 0.85 18523± 699 2.28740± 0.00003 0.00366± 0.00005
6 1.43 20302± 766 2.28737± 0.00003 0.00367± 0.00005
7 1.42 22678± 855 2.28740± 0.00003 0.00362± 0.00005
8 1.41 24917± 938 2.28736± 0.00002 0.00356± 0.00005
9 1.75 27206± 1024 2.28740± 0.00002 0.00345± 0.00004
n12 n13 s12 s13l s13r

0.710± 0.156± 1.741± 4.008± 4.856±
0.060 0.010 0.018 0.056 0.071

Table 17: Values of parameters from the signal MC fit.
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bin χ2/NDF N1,i mi σ1,i

0 1.18 8674± 130 2.28706± 0.00007 0.00369± 0.00006
1 0.91 10424± 134 2.28719± 0.00006 0.00365± 0.00005
2 0.96 12155± 139 2.28728± 0.00005 0.00365± 0.00005
3 0.96 14078± 143 2.28724± 0.00005 0.00363± 0.00004
4 1.09 16431± 150 2.28730± 0.00004 0.00372± 0.00004
5 0.81 18747± 156 2.28737± 0.00004 0.00375± 0.00004
6 0.94 20236± 158 2.28731± 0.00004 0.00367± 0.00003
7 1.06 22553± 162 2.28734± 0.00003 0.00360± 0.00003
8 1.52 25088± 166 2.28733± 0.00003 0.00358± 0.00003
9 0.89 27452± 166 2.28737± 0.00003 0.00351± 0.00002

bin Nb1,i Nb2,i common par.
0 12587± 543 174142± 755 mb = 2.2472± 0.0003
1 12149± 544 176753± 757 wb = 0.0037± 0.0003
2 12767± 548 177257± 763 c1 = −0.184± 0.005
3 12795± 553 179416± 769 c2 = 0.007± 0.002
4 13211± 564 182959± 784
5 14780± 577 184474± 798
6 13609± 575 189205± 798
7 12909± 579 194089± 804
8 13071± 571 190137± 795
9 13404± 544 176755± 759

Table 18: Values of parameters from the generic MC fit.
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bin χ2/NDF N1 ,i mi σ1 ,i

0 1 .25 4360 ± 93 2 .28686 ± 0 .00010 0 .00376 ± 0 .00009
1 0 .80 5178 ± 95 2 .28715 ± 0 .00008 0 .00358 ± 0 .00008
2 0 .97 6162 ± 101 2 .28729 ± 0 .00008 0 .00369 ± 0 .00007
3 1 .44 7075 ± 102 2 .28720 ± 0 .00007 0 .00361 ± 0 .00006
4 1 .19 8290 ± 107 2 .28731 ± 0 .00006 0 .00370 ± 0 .00006
5 1 .03 9432 ± 111 2 .28737 ± 0 .00006 0 .00371 ± 0 .00005
6 0 .95 10218 ± 113 2 .28728 ± 0 .00005 0 .00361 ± 0 .00005
7 1 .01 11384 ± 116 2 .28737 ± 0 .00005 0 .00361 ± 0 .00004
8 1 .40 12528 ± 119 2 .28735 ± 0 .00004 0 .00359 ± 0 .00004
9 0 .81 13903 ± 119 2 .28734 ± 0 .00004 0 .00352 ± 0 .00004

bin Nb1 ,i Nb2 ,i common par.
0 6621 ± 395 89344 ± 547 mb = 2 .2480 ± 0 .0004
1 6346 ± 391 90936 ± 543 wb = 0 .0039 ± 0 .0004
2 6532 ± 393 90686 ± 549 c1 = −0 .181 ± 0 .006
3 6824 ± 399 91870 ± 554 c2 = 0 .003 ± 0 .004
4 6690 ± 408 94171 ± 565
5 7664 ± 413 94785 ± 571
6 6800 ± 413 97816 ± 573
7 7003 ± 417 99285 ± 578
8 6788 ± 414 98136 ± 575
9 7115 ± 392 91057 ± 546

Table 19: Values of parameters from the Λ+
c MC fit.
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bin χ2/NDF N1,i mi σ1,i

0 1.23 4294± 90 2.28726± 0.00010 0.00361± 0.00009
1 1.21 5223± 94 2.28723± 0.00009 0.00372± 0.00008
2 0.81 5974± 96 2.28727± 0.00007 0.00360± 0.00007
3 0.77 6976± 100 2.28727± 0.00007 0.00364± 0.00006
4 0.99 8100± 105 2.28731± 0.00006 0.00374± 0.00006
5 0.83 9275± 109 2.28737± 0.00006 0.00380± 0.00005
6 1.04 9983± 111 2.28734± 0.00005 0.00372± 0.00005
7 1.00 11131± 113 2.28731± 0.00005 0.00358± 0.00004
8 1.33 12521± 116 2.28731± 0.00004 0.00358± 0.00004
9 1.19 13500± 116 2.28741± 0.00004 0.00350± 0.00003

bin Nb1,i Nb2,i common par.
0 5878± 351 84887± 502 mb = 2.2464± 0.0003
1 5708± 355 85910± 509 wb = 0.0033± 0.0004
2 6121± 359 86677± 512 c1 = −0.190± 0.006
3 5901± 357 87610± 512 c2 = 0.011± 0.003
4 6394± 367 88919± 524
5 7005± 376 89806± 536
6 6694± 374 91507± 534
7 5823± 375 94872± 537
8 6183± 369 92100± 529
9 6196± 354 85795± 508

Table 20: Values of parameters from the Λ−
c MC fit.
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bin χ2/NDF N1 ,i mi σ1 ,i

0 1 .25 4004 ± 86 2 .28732 ± 0 .00012 0 .00448 ± 0 .00011
1 1 .16 4960 ± 89 2 .28745 ± 0 .00010 0 .00429 ± 0 .00009
2 0 .99 6162 ± 95 2 .28741 ± 0 .00009 0 .00449 ± 0 .00008
3 0 .91 7544 ± 100 2 .28773 ± 0 .00007 0 .00452 ± 0 .00007
4 1 .03 8778 ± 103 2 .28766 ± 0 .00007 0 .00462 ± 0 .00006
5 1 .23 9927 ± 107 2 .28769 ± 0 .00006 0 .00445 ± 0 .00006
6 1 .09 11034 ± 110 2 .28775 ± 0 .00006 0 .00442 ± 0 .00005
7 1 .16 12730 ± 116 2 .28774 ± 0 .00005 0 .00440 ± 0 .00005
8 1 .03 14261 ± 119 2 .28775 ± 0 .00005 0 .00437 ± 0 .00004
9 1 .44 15866 ± 121 2 .28786 ± 0 .00004 0 .00426 ± 0 .00004

bin Nb1 ,i Nb2 ,i common par.
0 9905 ± 328 56644 ± 447 mb = 2 .2481 ± 0 .0002
1 9796 ± 333 54898 ± 454 wb = 0 .0035 ± 0 .0002
2 10133 ± 326 54390 ± 452 c1 = −0 .196 ± 0 .009
3 10356 ± 328 53934 ± 447 c2 = −0 .005 ± 0 .005
4 10525 ± 330 54182 ± 453
5 10411 ± 338 55662 ± 461
6 9602 ± 346 57774 ± 475
7 10492 ± 352 57970 ± 492
8 9845 ± 350 58971 ± 483
9 10572 ± 337 55564 ± 467

Table 21: Values of parameters from the Λc real data fit.
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bin χ2/NDF N1 ,i mi σ1 ,i

0 1 .15 2065 ± 62 2 .28786 ± 0 .00017 0 .00454 ± 0 .00016
1 1 .07 2538 ± 61 2 .28777 ± 0 .00013 0 .00416 ± 0 .00011
2 1 .19 3141 ± 66 2 .28768 ± 0 .00012 0 .00442 ± 0 .00011
3 0 .94 3827 ± 70 2 .28783 ± 0 .00010 0 .00449 ± 0 .00010
4 0 .89 4487 ± 73 2 .28802 ± 0 .00010 0 .00461 ± 0 .00009
5 1 .07 5042 ± 76 2 .28802 ± 0 .00009 0 .00446 ± 0 .00008
6 1 .24 5624 ± 78 2 .28814 ± 0 .00008 0 .00436 ± 0 .00007
7 1 .11 6514 ± 82 2 .28808 ± 0 .00007 0 .00437 ± 0 .00006
8 1 .09 7227 ± 84 2 .28800 ± 0 .00007 0 .00430 ± 0 .00006
9 1 .42 8091 ± 85 2 .28813 ± 0 .00006 0 .00409 ± 0 .00005

bin Nb1 ,i Nb2 ,i common par.
0 5085 ± 200 29068 ± 293
1 5056 ± 196 28191 ± 284
2 5354 ± 196 27976 ± 288 c1 = −0 .190 ± 0 .009
3 5205 ± 198 28257 ± 292 c2 = −0 .003 ± 0 .006
4 5512 ± 197 27735 ± 291
5 5492 ± 201 28693 ± 296
6 4983 ± 205 30000 ± 302
7 5252 ± 207 30213 ± 305
8 4875 ± 209 30975 ± 309
9 5420 ± 203 29103 ± 296

Table 22: Values of parameters from the Λ+
c fit on real data.
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bin χ2/NDF N1,i mi σ1,i

0 1.03 1914± 51 2.28680± 0.00017 0.00438± 0.00012
1 1.02 2398± 57 2.28707± 0.00014 0.00443± 0.00010
2 0.62 2979± 68 2.28713± 0.00012 0.00455± 0.00012
3 1.29 3658± 71 2.28761± 0.00011 0.00454± 0.00010
4 0.96 4230± 74 2.28730± 0.00010 0.00463± 0.00009
5 1.24 4832± 78 2.28734± 0.00009 0.00443± 0.00009
6 0.99 5339± 79 2.28733± 0.00008 0.00445± 0.00007
7 1.14 6139± 85 2.28736± 0.00007 0.00441± 0.00007
8 1.07 6940± 87 2.28749± 0.00007 0.00443± 0.00007
9 1.16 7691± 89 2.28753± 0.00006 0.00445± 0.00006

bin Nb1,i Nb2,i common par.
0 4932± 343 27019± 405 mb = 2.2477± 0.0003
1 4832± 351 26115± 413 wb = 0.0036± 0.0005
2 4839± 348 25823± 426 c1 = −0.191± 0.022
3 5216± 337 25102± 414 c2 = −0.016± 0.010
4 5102± 341 25806± 421
5 4998± 363 26324± 449
6 4708± 370 27207± 450
7 5353± 383 27165± 474
8 5069± 378 27434± 467
9 5280± 370 25880± 462

Table 23: Values of parameters from the Λ−
c fit on real data.
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D E R I VAT I O N S O F C O VA R I A N C E M AT R I C E S A N D E R R O R S

In this appendix, we give the derivations of covariance matrices and errors of
the efficiency corrected deconvoluted numbers of events used in the fits which
determine the 〈α〉 and ACP.

b.1 error propagation

We have n quantities ~θ = (θ1, ..., θn), and m functions ~η(~θ) = (η1(~θ), ...,ηn(~θ)).

We know the estimated values ~̂θ = (θ̂1, ..., θ̂n) and the covariance matrix Vij =
cov[θ̂i, θ̂j].

The goal of error propagation is to determine the covariance matrix for the

functions ~η(~θ), Uij = cov[η̂i, η̂j], where ~̂η = ~η(~̂θ).

We can find Uij by expanding the functions ~η(~θ) about the estimates ~̂θ to the
first order in a Taylor series:

Uij ≈
∑
k

∑
l

∂ηi
∂θk

∂ηj

∂θl
|θ̂Vkl. (139)

Or in matrix notation:
U ≈ AVAT , Aij =

∂ηi
∂θj

|θ̂. (140)

This approximation is exact if ~η(~θ) is linear, and can break down if it is sig-

nificantly nonlinear close to ~̂θ in a region of a size comparable to the standard

deviation of ~̂θ.

b.2 covariance matrix for the 〈α〉 fit

We fit the quantities

Ti =
Gi
〈ε〉i

=

∑
c qicRc

〈ε〉i
, (141)

so we form the vector ~θ out of:

• 10 quantities Ri with an error of σRi , defined in (87) and the correlation
matrix Rij,
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• 10 quantities 〈ε〉i with an error of σ〈ε〉i , defined in (99) which are not corre-
lated, so the correlation matrix is δij,

• 100 quantities qij with an error of σqij , defined in (97), which are not corre-
lated, so the correlation matrix is Qia,jb = δijδab.

We also know that Ri, 〈ε〉i, and qij are uncorrelated.
The vector ~θ is therefore:

~θ = (R1, ...,R10, 〈ε〉1, ..., 〈ε〉10,q00, ...,q09,q10, ...,q19, ...,q90, ...,q99), (142)

and the covariance matrix for these quantities is

Vij =

RijσRiσRj ∅ ∅
∅ δijσ〈ε〉iσ〈ε〉j ∅
∅ ∅ δijδabσqiaσqib

 (143)

According to (139), we calculate the covariance matrix for Ti as follows:

Uij =
∑
k

∑
l

(
∂Ti
∂θk

)(
∂Tj

∂θl

)
Vkl =

=
∑
k

∑
l

(
∂Ti
∂Rk

)(
∂Tj

∂Rl

)
RklσRkσRl + (144)

+
∑
k

∑
l

(
∂Ti
∂〈ε〉k

)(
∂Tj

∂〈ε〉l

)
δklσ〈ε〉kσ〈ε〉l +

+
∑
k

∑
l

∑
a

∑
b

(
∂Ti
∂qka

)(
∂Tj

∂qlb

)
δklδabσqkaσqlb .

We calculate the derivatives:

∂Ti
∂Rk

=
∂

∂Rk

(∑
c qicRc

〈ε〉i

)
=
δckqic
〈ε〉i

,

∂Ti
∂〈ε〉k

=
∂

∂〈ε〉k

(∑
c qicRc

〈ε〉i

)
=
δik

∑
c qicRc

−〈ε〉2i
= −

δikGi

〈ε〉2i
, (145)

∂Ti
∂qka

=
∂

∂qka

(∑
c qicRc

〈ε〉i

)
= δikδac

Rc

〈ε〉i
.
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We put the derivatives into (144):

Uij =
∑
k

∑
l

δckqic
〈ε〉i

δdlqjd

〈ε〉j
RklσRkσRl +

∑
k

∑
l

δikGi

−〈ε〉2i

δjlGj

−〈ε〉2j
δklσ〈ε〉kσ〈ε〉l +

+
∑
k

∑
l

∑
a

∑
b

δikδacRc

〈ε〉i
δjlδbdRd

〈ε〉j
δklδabσqkaσqlb = (146)

=
∑
k

∑
l

qikqjl

〈ε〉i〈ε〉j
RklσRkσRl +

GiGj

〈ε〉2i 〈ε〉2j
δijσ〈ε〉iσ〈ε〉j + δij

∑
a

R2aσqiaσqja
〈ε〉i〈ε〉j

+

= TiTj

(∑
k

∑
l qikqjlRklσRkσRl
GiGj

+ δij

∑
k R

2
kσqikσqjk
GiGj

+ δij
σ〈ε〉iσ〈ε〉j
〈ε〉i〈ε〉j

)
.

With this, we have derived the equation (104).

b.3 error for the 〈α〉 fit

Errors are defined as the square of the variance, so we just need the diagonal
elements of the covariance matrix (146):

σ2Ti = Uii =

= T 2i

(∑
k

∑
l qikqilRklσRkσRl

G2i
+
σ2〈ε〉i
〈ε〉2i

+

∑
k R

2
kσ

2
qik

G2i

)
. (147)

To get the error on Gi, we just use equations (102) and (100), to get:

σ2Gi =
∑
k

∑
l

qikqilRklσRkσRl +
∑
k

R2kσ
2
qik

. (148)

which is the equation (96).

b.4 error on the deconvolution matrix element

The error on the deconvolution matrix element σqij can be expressed with the
numbers of events in bins of the resolution map Mij in the following way. We
know that the deconvolution matrix is an inverse of the convolution matrix. If
we know the error on the convolution matrix, the error on its inverse can be
calculated as [39]:

σ2qij =
∑
a

∑
b

q2iaσ
2
pab

q2bj . (149)

We know that the the element of the convolution matrix P is calculated from the
resolution map as:

pab =
Mab∑
c Ncb

. (150)
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The Mij are uncorrelated, so the error on pab is calculated as:

σ2pab =
∑
d

(
∂pab
∂Mdb

)2
σ2Mdb

. (151)

For the error onMdb we can just take the square root ofMdb as this is a statistical
error:

σ2Mdb =Mdb. (152)

We also need to calculate the derivative:

∂pab
∂Mdb

=

− Mab
(
∑
cMcb)

2 d 6= a,∑
c6=aMcb

(
∑
cMcb)

2 d = a.
(153)

We can now put (153) and (152) into (150), and get:

σ2pab =
∑
d 6=a

(
−

Mab

(
∑
cMcb)2

)2
Mdb +

(∑
c6=aMcb

(
∑
cMcb)2

)2
Mab =

=
M2
ab

(
∑
cMcb)4

∑
d 6=a

Mdb +
(
∑
c 6=aMcb)

2

(
∑
cMcb)4

Mab = (154)

=
Mab(

∑
c6=aMcb)(Mab +

∑
c 6=aMcb)

(
∑
cMcb)4

=

=
Mab(

∑
c6=aMcb)(

∑
cMcb)

(
∑
cMcb)4

=
Mab(

∑
c6=aMcb)

(
∑
cMcb)3

.

If we put this result into equation (149), we come to the equation (97).

b.5 covariance matrix for the ACP fit

We fit the quantities:

Airec =
Gi −Gi

Gi +Gi
=

∑
j qijRj −

∑
j qijRj∑

j qijRj +
∑
j qijRj

, (155)

so we form the vector ~θ out of:

• 10 quantities Ri with an error of σRi , defined in (106) and the correlation
matrix Rij,

• 10 quantities Ri with an error of σRi , defined in (106) and the correlation
matrix Rij,

• 100 quantities qij with an error of σqij , defined in (97), which are not corre-
lated, so the correlation matrix is Qia,jb = δijδab.
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We also know that Ri, Ri, and qij are uncorrelated. The vector ~θ is therefore:

~θ = (R1, ...,R10,R1, ...,R10,q00, ...,q09,q10, ...,q19, ...,q90, ...,q99), (156)

and the covariance matrix for these quantities is

Vij =


RijσRiσRj ∅ ∅
∅ RijσRiσRj ∅
∅ ∅ δijδabσqiaσqib

 (157)

According to (139), we calculate the covariance matrix for Airec as follows:

Uij =
∑
k

∑
l

(
∂Airec
∂θk

)(
∂A

j
rec

∂θl

)
Vkl =

=
∑
k

∑
l

(
∂Airec
∂Rk

)(
∂A

j
rec

∂Rl

)
RklσRkσRl + (158)

+
∑
k

∑
l

(
∂Airec

∂Rk

)(
∂A

j
rec

∂Rl

)
RklσRkσRl +

+
∑
k

∑
l

∑
a

∑
b

(
∂Airec
∂qka

)(
∂A

j
rec

∂qlb

)
δklδabσqkaσqlb .

We calculate the derivatives:

∂Airec
∂Rk

=
∂

∂Rk

(∑
c qicRc −

∑
c qicRc∑

c qicRc +
∑
c qicRc

)
=

= δdkqid
2
∑
c qicRc

(
∑
c qicRc +

∑
c qicRc)

2
= 2δdkqid

Gi

(Gi +Gi)2
, (159)

∂Airec

∂Rk
=

∂

∂Rk

(∑
c qicRc −

∑
c qicRc∑

c qicRc +
∑
c qicRc

)
=

= δdkqid
−2

∑
c qicRc

(
∑
c qicRc +

∑
c qicRc)

2
= −2δdkqid

Gi

(Gi +Gi)2
,

∂Airec
∂qka

=
∂

∂qka

(∑
c qicRc −

∑
c qicRc∑

c qicRc +
∑
c qicRc

)
=

= 2δikδad
Rd

∑
c qicRc − Rd

∑
c qicRc

(
∑
c qicRc +

∑
c qicRc)

2
=

= 2δikδad
RdGi − RdGi

(Gi +Gi)2
,
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We put the derivatives into (158):

Uij =
∑
k

∑
l

2δdkqidGi

(Gi +Gi)2
2δekqjeGj

(Gj +Gj)2
RklσRkσRl +

+
∑
k

∑
l

−2δdkqidGi

(Gi +Gi)2
−2δekqjeGj

(Gj +Gj)2
RklσRkσRl +

+
∑
k

∑
l

∑
a

∑
b

(2δikδad(RdGi − RdGi)
(Gi +Gi)2

(160)

2δjlδbe(ReGj − ReGj)

(Gj +Gj)2
δklδabσqkaσqkb

)
=

=
4

(Gi +Gi)2(Gj +Gj)2

(
GiGj

∑
k

∑
l

qikqjlRklσRkσRl +

+GiGj
∑
k

∑
l

qikqjlRklσRkσRl +

+δij
∑
k

(RkGi − RkGi)(RkGj − RkGj)σqikσqjk

)
.

With this, we have derived the equation (112).

b.6 error on the ACP fit

Errors are defined as the square of the variance, so we just need the diagonal
elements of the covariance matrix (160):

σ2
Airec

= Uii =

=
4

(Gi + Gi)4

(
G
2
i

∑
k

∑
l

qikqilRklσRkσRl + (161)

+G2i
∑
k

∑
l

qikqilRklσRkσRl +
∑
k

(RkGi − RkGi)
2σq2ik

)
,

With this, we have come to the equation 110.
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