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Abstract

B Factories are particle colliders at which specific subatomic particles - B mesons - are being
abundantly produced. The purpose is to study the properties of their decays in great details
in order to shed light on a mystery of eminently larger scale: why do we live in a Universe
composed of matter and no anti-matter? In expert language the asymmetry between matter
and anti-matter is called the CP asymmetry. It represents a necessary condition for our
Universe to evolve in the way it has, with its visible part being composed almost completely
of particles and no anti-particles. There is an unanswered puzzle, though: the amount of the
asymmetry as measured at the subatomic level is much too small to successfully explain the
matter asymmetry of the Universe.

The B Factories book is an introductory text to physics laws of the CP asymmetry, touch-
ing experimental requirements needed to perform such measurements at the subatomic level,
and illustrating the main findings of the contemporary B factories. Deviations between the
experimental results and predictions based on the current theoretical knowledge are exposed
and discussed in terms of the near future frontier particle physics experimental endeavours.
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Chapter 1

Into the B World

1.1 Heavy Particles

1.1.1 Concept of elementary particles
In terms of understanding the basic constituents of matter we have - through the history of
scientific endeavour - come a long way from, for example, the teachings of Empedocles, in
the 5th century BC. He believed that the world is made of four basic elements: air, fire, water
and earth (see Fig. 1.1).

Figure 1.1: Simplified basic constituents of matter according to teachings of Empedocles.
Also shown are alchemical symbols of individual elements.

Nowadays the picture of elementary particles, the smallest indivisible parts of matter, is
significantly refined. We have developed sophisticated theoretical models based on and con-
firmed by accurate measurements, which prove that atoms of various chemical elements con-
sist of a tiny atomic nucleus, carrying the positive electrical charge, and negatively charged

1



2 CHAPTER 1. INTO THE B WORLD

electrons scattered around a relatively large space enclosing the nucleus. While a typical
dimension of an atom is 10−10 meters, the size of the nucleus is of the order of a femtometer,
10−15 m.

A nucleus is further composed of nucleons - a common name for positively charged
protons and electrically neutral neutrons. Nucleons are composed of quarks. Quarks come
in various flavours. These flavours are, unfortunately perhaps, nothing else but a quantum
number, a property of an individual quark, like the electrical charge, spin and similar. The
basic constituents of matter are sketched in Fig1.2.

Figure 1.2: Basic constituents of matter as revealed by contemporary scientific methods [1].

The dimension of quarks is less than approximately 10−18 m. Why less than? Because
with the contemporary experimental methods one can only probe the structure of matter
down to scales of around 10−18 m. In order to do so, waves with a wavelength of the order of
less than 10−18 m, let’s say 10−19 m are needed. According to the de Broglie relation such a
wavelength corresponds to a momentum of

cp =
ch
λB
∼ 197 MeV fm

10−19 m
∼ 2×1012 eV , (1.1)

where h is the Planck constant, c is the speed of electromagnetic waves in vacuum, and
λB denotes the de Broglie wavelength. Accelerated particles with momentum of 2 Tera1

electronvolts/c thus represent waves by which the smallest details of matter are revealed.

1Tera = 1012.
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Such a value of cp is the capability of the highest energy particle accelerator in the world,
the Large Hadron Collider - LHC2.

The concept of elementary particles is thus a subject of the experimental methods avail-
able for investigations of matter. With the most powerful contemporary microscopes, particle
accelerators, one is able to study details in the structure of matter down to around 10−18 m.
At this point of human scientific ingenuity we believe that the basic constituents of matter
are quarks, like the ones building up nucleons, and leptons such as electrons in the atoms.

Note: Particles that with the contemporary scientific exploration methods appear indi-
visible and are thus regarded as elementary particles are quarks (like the ones making
up protons and neutrons in the atomic nucleus) and leptons (like electrons in the atoms).

1.1.2 Quark World
We mentioned that quarks arise in different flavours. Out of 6 different flavours of quarks one
can combine a rich palette of hadrons - heavy particles, like protons and neutrons, composed
of quarks. We will consider two well investigated types of hadrons, baryons and mesons. In
a simplified quark model the former are composed of three quarks, and the latter from one
quark and one anti-quark3. In this simplified hadron-building exercise a proton is represented
as a |u u d〉 state, i.e. composed of two u and a d quark. u and d stands for up and down
quarks, respectively, two distinct quark flavours. The lightest charged meson, a positive
pion π+, is represented by |u d̄〉. Knowing that each proton carries one positive elementary
charge, e0 = 1.6×10−19 As4 , and the same holds for a positive pion, it is clear that quarks
must carry a non-integer elementary charge. Indeed, u quarks belong to a family of up-like
quarks with charge +(2/3)e0, and d quarks to a family of down-like quarks with charge
−(1/3)e0. Of course anti-quarks have all the quantum numbers of the corresponding quark
reversed, including its electrical charge: ū charge is −(2/3)e0 and for d̄ it is +(1/3)e0. It is
not difficult to envisage the neutron quark composition, |u d d〉, and a neutral pion one, |u ū〉
or |d d̄〉5.

By extending the set of available quark flavours in composing various hadrons the num-
ber of hadron species increases dramatically.... Well, actually, as a power law; when com-
posing baryons from two quark flavours the number of possible combinations is 23, with
three quarks flavours it is 33, etc. Inclusion of strange quarks (s) enriches the hadron
ZOO with kaons (for example a charged kaon, |K+〉 = |u s̄〉), Sigma baryons (for example
|Σ+〉= |u u s〉), and several other species. One should also keep in mind that mesons with a

2The highest achieved energy of the accelerated proton beams in the LHC at CERN, Geneva, is 7 TeV.
However, in collisions of protons at these energies, interactions are taking place among the constituent quarks.
Each of the quarks only carries a fraction - around one third - of the total proton energy.

3The theory describing strong nuclear interaction among the quarks, which binds them into the hadrons -
Quantum Chromodynamics (QCD) - in principle does not preclude heavy particles composed from quarks in
a different manner than baryons and mesons. Indeed such bound states of quarks have been experimentally
observed, perhaps the most well known is X(3872), presumably composed of four quarks.

4In particle physics units for electric charge are not often used, typically charges are expressed simply in
units of the elementary charge e0. We use here Ampere seconds (As), instead of Coulomb (C); the two units
are identical, C=As.

5In the quark model of hadrons, the neutral pion is a linear combination (1/
√

2)[|u ū〉+ |d d̄〉].
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given quark composition in addition appear as spin 0 or spin 1 particles (summing spins of
two quarks - 1/2 - according to the angular momentum summation rules yields the total spin
0 or 1). Note that by the abbreviation spin we refer to the spin quantum number, s, which is
related to the magnitude of the intrinsic angular momentum through ŝ2|ψ〉 = s(s+ 1)h̄2|ψ〉
with ŝ2 representing the operator of the square of the intrinsic angular momentum operator.
Similar to mesons, baryons may carry spin 1/2 or 3/2. Adding charm quarks (c) brings us to
the ground states6 of mesons and baryons shown in Fig.1.3. Axes denoted by I3, S and C7

reflect the number of up and down, strange, and charm quark constituents, respectively.

Figure 1.3: Ground states of mesons (left) with spin 0 (top) and spin 1 (bottom) and baryons
(right) with spin 1/2 (top) and spin 3/2 (bottom), composed of up, down, strange and charm
quarks. Adopted from [2].

It should be noted at this point that the main aim of the contemporary particle physics

6Ground state implies that the orbital angular momentum of constituent quarks is 0. In excited hadron states
the orbital angular momentum of quarks is non-zero (i.e. 1, 2,...).

7These quantum numbers are called the third component of isospin, strangeness and charm, respectively.
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is not of a book-keeping nature, that is to classify all different hadrons (and perhaps adding
some leptons), but rather to understand the basic interactions among elementary particles,
properties of these interactions and understanding of how these properties influence the evo-
lution and the current shape of the universe of our existence. The basic interactions in Nature
are the gravitational interaction, electromagnetic interaction, strong nuclear, and weak nu-
clear interaction. All but the first can be and are studied in the world of subatomic particles.
Properties of the three types of interactions relevant for subatomic particles are also de-
scribed and predicted in the theory called the Standard Model (SM). It is nowadays one of
best experimentally verified theories, nevertheless there are several phenomena that the SM
is unable to fully explain. One of those is the matter / anti-matter asymmetry of the Universe,
discussed in more details in Chapter 2. For this reason for more than a decade both experi-
mental and theoretical effort in particle physics has been focused on finding and eventually
explaining phenomena and so far unknown particles beyond the framework of the SM. These
processes and particles are commonly addressed as the New Physics (NP).

Note: Quarks appear as six different species, called flavours. Three of them have nega-
tive (−1/3 e0) and three of them positive (+2/3 e0) electric charge. They compose heavy
particles - hadrons.

1.1.3 B Mesons
Adding beauty quarks8 (b) to the scheme of hadrons, described in the previous section, ap-
pears to be impossible graphically since the fourth dimension to the existing scheme should
be added (counting the number of b quarks inside a hadron). In the absence of a graphi-
cal representation analogous to the one shown in Fig.1.3, let us focus on the hadron species
most central to further discussion: B mesons. They are composed of a b̄ antiquark and an-
other quark. The rule of calling a B meson the one carrying a b̄ antiquark, and a B̄ antimeson
the one with a b quark is a matter of convention, not really important from the physics point
of view, nevertheless to be remembered for the latter treatment.

For a more rigorous mathematical description various flavours of quarks are described
by appropriate quantum numbers. While the light quarks u and d carry a quantum number
isospin, strange quarks s posses strangeness S = −1, charm quarks are attributed charm
C =+1, and beauty quarks carry beauty B =−1.

While the notation B meson stands for any meson carrying a b̄ quark, specific notations
are used to emphasize the other quark in the meson:

B0
d : |b̄ d〉

B0
s : |b̄ s〉

B+ : |b̄ u〉
B+

c : |b̄ c〉

The existence of the b quarks was predicted in 1973 by Makoto Kobayashi and Toshihide
Maskawa. They realized that in order to theoretically accommodate the violation of the CP

8In the literature the name of b quark often oscillates between ”bottom” and ”beauty”.
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1st generation 2nd generation 3rd generation
e− µ− τ− charged leptons

electron muon tau lepton charge −e0
νe νµ ντ neutral leptons

electron neutrino muon neutrino tau neutrino charge 0
u c t up-like quarks

up charm top charge +2/3e0
d s b down-like quarks

down strange beauty charge −1/3e0

Table 1.1: Three generations of elementary fermions - leptons and quarks.

symmetry, which we describe in Chapter 2, three (instead of just two, as known at the time)
generations of quarks must exist. Known quarks and leptons (all fermions9) are organized
into three generations according to their appearance in interactions and mathematical equa-
tions describing those. Concerning the physical properties, individual generations differ in
the mass of their members. Quark and lepton generations are shown in Table 1.1.

B mesons possess several properties that make this hadron species unique in testing some
predictions of the Standard Model. The constituent bottom quark b is heavy and hence the
mass of B mesons is large, around 5.5 GeV. As a matter of fact, the b quark is the heaviest
quark that can be bound in a hadron. Top quarks are heavier, but do not form any hadron10.
A reader may wonder why the mass of an object is stated in units of energy, electronvolts. It
is common, and quite practical one should say, to use the ”natural” system of units by putting
h̄ = c = 1. By doing that, quantities E (energy), cp (momentum multiplied by the speed of
light) and mc2 (rest energy) are all expressed in units of eV. Also, equations, specifically
those of special relativity, become easier to write. For example the expression for the energy,

E =
√

(mc2)2 +(cp)2 , (1.2)

becomes simply
E =

√
m2 + p2 . (1.3)

When a need for the SI system units occurs, one merely introduces c = 3 · 108 m/s and
h̄c = 197 MeV fm (or powers of those) to regain the ”proper” units.

So the B mesons have roughly a mass of 5-6 protons, or somewhere between a Helium
and a Lithium atom, and are significantly heavier than mesons, composed of charm quarks
c, named D mesons. The latter have around twice lower mass. In decay of a B meson the
constituent b quark must change into another quark which, as we will see in Sect. 1.2.3,
is predominantly a c quark. The only interaction capable of changing the quark flavor (at
the lowest order of a process) is the weak interaction. As the name suggests, processes

9All quarks and leptons have a spin of 1/2. Fermion is a common name for all particles with a half-integer
spin, and which as a consequence follow the Fermi-Dirac statistics.

10Because the t quark is heavier than the charged weak boson W+, the quark decays into a W+ boson and a
b quark before being able to form a hadron.
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mediated by the weak interaction occur with a lower probability than processes which occur
as a consequence of the strong and electromagnetic interactions. A decay of a b quark into
a c quark and two leptons is depicted in Fig. 1.4. In the figure, powers of the weak coupling

Figure 1.4: Feynman diagram of a b quark decay. Weak interaction is the only interaction
that can - at the lowest order of a process - change the flavor of a quark. Denoted are the
powers of the weak coupling constant αW entering the amplitude for the process in each
vertex.

constant αW entering the amplitude M for the process are shown. Each vertex (b− c and
`−− ν̄`) contributes

√
αW to the amplitude and hence M ∝ αw. Probability for the process

is thus w ∝ |M |2 ∝ α2
w. Higher order processes include higher powers of αW . Due to the

small value of αW ∼ 0.03 such higher order process are less probable11. The fact that B
meson decays are governed by the weak interaction reflects in their lifetime τB. Compared
to decays of hadrons mediated by the strong or electromagnetic interaction, decays of B
mesons proceed at a lower rate, and hence they have a longer lifetime. The average lifetime
of various B mesons listed above is around 1.5 ps (1.5·10−12 s, compared to, for example, a
J/ψ meson that decays through the strong and electromagnetic interaction and has a lifetime
of the order of 10−20 s). It should be noted that the mentioned lifetime is a proper lifetime,
i.e. the lifetime of a particle in its rest frame. When a particle is moving, the Lorentz
transformation from its rest frame into the moving frame causes time dilation. The lifetime
in a moving frame is γτ , with γ the appropriate Lorentz factor12.

To summarize, B mesons appear in few variations, with several common properties: be-
ing composed of a heavy quark b they all have large mass, decay through a weak interaction
process, and possess - for particles at the subatomic level - a relatively long lifetime.

Note: B mesons are hadrons composed of a b̄ anti-quark and another quark. They
poses a large mass and relatively long lifetime.

11The weak coupling constant αW is actually larger than the coupling constant of the electromagnetic in-
teraction, α = 1/137. However, mediators of the weak interaction posses a large mass M, contrary to mass-
less photons mediating the electromagnetic interaction. Probability of a process proceeding through the weak
interaction is proportional to α2

W/M2 which causes weak interaction processes to be less probable than the
electromagnetic processes.

12γ = 1/
√

1− v2/c2, where v is the velocity of the moving frame and c the speed of light in vacuum.
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1.2 Weak liaison

1.2.1 Weak Interaction

As mentioned in the previous section the basic interactions influencing the world of elemen-
tary particles are strong, electromagnetic, and weak interaction. The latter exhibits some
specific properties which - at the time they were experimentally revealed - caused a signifi-
cant amount of bewilderment and required much consideration in order to be explained. As
we will also see, nowadays there are experimental facts (indeed perhaps not related exclu-
sively to weak interaction) that the current theoretical knowledge is unable to explain.

Weak interaction is responsible for specific (β ) decays of some of the nuclei. An exam-
ple of such a decay is 10C→10 B e+νe

13, in which a proton inside the initial nuclei decays
into a neutron, positron and a neutrino. In early 1930s Enrico Fermi made a theoretical de-
scription of such β decays in analogy with the already known electromagnetic interaction.
He merely substituted the coupling constant of the electromagnetic interaction (also known
as the fine structure constant, α ∼ 1/137) by a different one, known today as the Fermi cou-
pling constant GF . The description was successful in explaining most of the properties of β

decays, assuming of course that the process is mediated by a so far unknown interaction (i.e.
an interaction with a different coupling constant14). Evidence for another type of interac-
tion becomes perhaps most obvious when comparing lifetimes of charged and neutral pions
(mesons composed of u and d quarks):

τπ± = 2.6 ·10−8 s
τπ0 = 8.5 ·10−17 s .

Why do the lifetimes of the two mesons of similar quark composition differ by 9 orders of
magnitude? Pions are the lightest hadrons and hence can not decay through the strong inter-
action into lighter hadrons. The neutral pion can, however, decay through an electromagnetic
process, π0→ γγ . On the other hand, electromagnetic decays with photons in the final state
are not possible for the charged pion. The decay π+→ e+γ , for example, is forbidden by
the lepton number conservation 15. A possible decay mode of charged pion is π+→ e+νe,
proceeding through the weak interaction (actually, by far the most abundant decay mode of
charged pions is an analogous decay mode π+→ µ+νµ ). Hence the reason for the above life-
time difference is the fact that neutral pions decay through the electromagnetic interaction,
while charged pion decays are governed by the weak interaction. By inspection of Fig. 1.5
one can convince herself that β decays and charged pion decays indeed proceed through the
same weak interaction mediated by charged weak bosons W±.

It should be noted that the term weak interaction encompasses not only the interaction
described, the charged weak interaction propagated by the charged weak bosons W±, but

13Notation AX represents an isotope of the element X with A nucleons. Decays in which positrons are
produced are denoted as β+, and those with electrons in the final state as β−.

14The Fermi coupling constant is related to the ”genuine” weak coupling constant of Fig. 1.4 through GF =√
2α2

W/8M2
W , where MW is the mass of the charged weak boson W±.

15Lepton number is defined as a difference between the number of leptons and the number of anti-leptons.
The lepton number is conserved in all known processes.
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Figure 1.5: Feynman diagram of a charged pion (left) and β+ (right) decay.

also neutral weak interaction, propagated by neutral weak bosons16 Z0. While the former is
of special interest for measurements at the B Factories and as such in the focus of interest
within this book, the latter played an utmost important role in establishing what is nowadays
known as the Standard Model of particle interactions. Properties of Z0 bosons were studied
in great detail at the Large Electron Positron Collider (LEP), the predecessor of the Large
Hadron Collider (LHC) at CERN.

Note: Beside the gravitational, strong, and electromagnetic interaction, also the weak
interaction exists, and is mediated by charged (W±) or neutral (Z0) weak bosons. Pro-
cesses governed by this interaction occur at a lower rate than processes governed by
other interactions.

1.2.2 Parity

Following the postulation of weak interaction, the so called θ − τ puzzle was one of the
important unanswered questions of particle physics in the 1950s. The puzzle consisted of
decays of what was originally believed to be two different particles, θ+ and τ+ (note that
τ+ has nothing to do with the contemporary τ lepton). While the former was decaying into
two pion final state, the latter exhibited decays into three pions in the final state. At that
time experimental evidence for the two particles being actually the same had been building
up. If indeed the same particle exhibited decays into the mentioned two distinct final states
it would represent a violation of the parity conservation, as we will elaborate on further in
Chapter 2.

Conservation of parity assumes that the process under question proceeds exactly in the
same manner when observed in a mirror, i.e. when all quantities are reflected over the co-
ordinate system origin. Various physics observables behave differently under such a trans-
formation. Examples for a few classical variables are shown in Fig. 1.6. Velocity (~v) and
momentum (~p), vector variables, change sign in such inversion. Angular momentum (~L), on
the other hand, is an axial vector and remains unchanged under the parity transformation17.

16At high energies - close to MZ = 91.2 GeV - the Z0 exchange represents the main contribution to, for
example, b quark pair production e+e−→ bb̄.

17Not surprisingly, one should say, since~L =~r×~p. While both, coordinate vector~r and momentum vector
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Although an intrinsic angular momentum - spin - of a particle (~s) doesn’t have any classical
analogy, under parity transformation it behaves in the same manner as the classical angular
momentum, i.e. as an axial vector.

Figure 1.6: Behaviour of some of the physics variables under the parity transformation.
Symbols marked by prime denote the quantities after the transformation.

In 1956 Tsung Duo Lee and Chen-Ning Yang examined the available experimental data
and suggested that the θ − τ puzzle and some similar decays can be interpreted by the weak
interaction that violates parity conservation - the process caused by the weak interaction
does not proceed exactly the same when observed in a mirror. They proposed an experiment
carried out by Chien Siung Wu, the famous Cobalt-60 experiment. It involved a 60Co iso-
tope, decaying through β decay to 60Ni: 60Co→60 Ni e− ν̄e. The idea of the experiment is
sketched in Fig 1.7. A 60Co nucleus carries the spin quantum number s = 5. The Co sample
was put in a strong external magnetic field (~B) and cooled to a low temperature. At low
temperatures almost all nuclei spins align in parallel to the external field. Spin of the final
state nucleus (60Ni) is 4. Hence the electron and the antineutrino in the decay carry away
one unit of spin. In the experiment, the rate of electrons emerging under a given direction
with respect to the direction of the magnetic field has been recorded. In two extreme cases -
electrons flying parallel or anti-parallel to spins of initial nuclei - the projections of the spins
onto the ~B axis are shown in the figure. The measurement results were asymmetric: While
most of the electrons flew in the direction anti-parallel to the Co spin, no electrons were
found emitted in the direction of the Co spin. In case we would be observing the process
in a mirror, electrons would be preferentially emitted in the direction of Co spin (note that
the direction of the spin would not be reversed in the mirror). This represents a violation of
the parity symmetry. The weak interaction responsible for β decays does not preserve this
symmetry.

~p, change the sign, the angular momentum remains unaffected.
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Figure 1.7: Schematics of the Cobalt-60 experiment. Top: Two extremes in the decay
60Co→60 Ni e− ν̄e are shown, electrons flying parallel or anti-parallel to the direction of
the external magnetic field ~B (direction of electron and anti-neutrino momentum is denoted
by thin black arrows). Conservation of the angular momentum requires the spin projections
as denoted by thick blue arrows (note that spin quantum number s is 5 for 60Co, 4 for 60Ni,
and 1/2 for e− and ν̄e). In the measurement electrons were emitted preferentially in the di-
rection opposite to ~B, while no electrons were found to fly in the direction of ~B. Bottom:
Parity transformation P̂ reverses the direction of an electron momentum and leaves spin of a
Co nucleus unaltered. While the situation on the left is observed in the experiment, the one
on the right is not. Hence the process - β decay proceeding through the weak interaction -
does not conserve parity.

T.D. Lee and C.N. Yang shared the Nobel prize in physics in 1957 for the discovery of
parity violation. T.D. Lee was at the age of 30 the third youngest Nobel prize laureate (after
W.L. Bragg, who was 25 in 1915, and W. Heisenberg, aged 30 in 1932).

Note: Weak interaction has several peculiar properties. One of those is the violation
of parity: processes proceeding through the weak interaction do not occur in the same
manner when looked at in the mirror.

1.2.3 Cabibbo-Kabayahi-Maskawa
Nature seems to be playful when determining the properties of charged weak interaction.
Another puzzle that needed to be cracked back in the 1960s was the difference of proba-
bilities for decays that at first sight seemed almost analogous. If one peeks at two decay
modes of a τ lepton, τ+→ π+ντ and τ+→ K+ντ , sketched in Fig. 1.8, at first sight they
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seem very similar18. The only difference appears in the quark content of a pion and a kaon
(c.f. Fig. 1.3), and in the mass difference between the two (which is small, however, com-
pared to the mass of the τ lepton; Mτ = 1.78 GeV, Mπ = 0.14 GeV, MK = 0.49 GeV). The

Figure 1.8: Semileptonic decays of a τ lepton with a pion (left) and a kaon (right) in the
final state. The expected rate proportionality taking into account the Cabibbo angle is shown
below the diagrams.

decay branching fractions, defined as the probability for a specific decay among all possi-
ble decays of a particle, expose a significant difference, though: Br(τ+ → π+ντ) = 0.11
and Br(τ+→ K+ντ) = 7 ·10−3. Difference in rates of such decays proceeding through the
weak interaction required an explanation. In 1963 Nicola Cabibbo introduced an addition
to the weak coupling constant explaining the observed difference. Nowadays Cabibbo’s ex-
planation is interpreted as follows: quark states involved in the charged weak interaction are
a linear combination of those involved in the strong (or, for that matter, electromagnetic)
interaction. The W boson couples to e.g. ud′ or us′ quarks, where[

d′

s′

]
=

[
cosθC sinθC
−sinθC cosθC

] [
d
s

]
=

[
cosθC d + sinθC s
−sinθC d + cosθC s

]
. (1.4)

The rotation angle of down-like quarks involved in charged weak interaction, θC, is called
the Cabibbo angle. Symbolically, in the weak interaction the following quark pairs take part:

[ū, c̄]
[

d′

s′

]
= ū d cosθC + ū s sinθC− c̄ d sinθC + c̄ s cosθC . (1.5)

When a ūd pair couples to a W boson the Fermi coupling constant is multiplied by cosθC.
The same is true in a c̄s weak interaction, while in the case of a ūs and c̄d interaction the factor
is (−)sinθC. Neglecting the small differences in masses of involved particles, the decay rates
for τ+→ π+ντ and τ+→K+ντ are proportional to factors shown in Fig. 1.8. The ratio of the
branching fractions is thus cot2 θC which using the experimentally determined value of θC
(θC ≈ 13◦) amounts to 5 ·10−2, in quite good agreement with the measured value of 6 ·10−2.

18Actually, in the 1960s the two decay modes under consideration were K+ → µ+νµ and π+ → µ+νµ .
However, when comparing probabilities for these purely leptonic decays one has to take into account additional
factors, not present in the τ semileptonic decays suggested as examples.
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The introduction of the Cabibbo angle, or better to say the idea of linear combinations of
down-like quarks entering the charged weak interaction, hence explained another puzzling
behaviour of this type of interactions among the quarks.

In the 1960s, at the time N. Cabibbo offered the above explanation, only three flavours
of quarks - u, d and s - were known to exist. In the following decade a series of experimental
and theoretical breakthroughs, culminating in the 1974 discovery of a particle J/ψ , lead to
evidence of a fourth - charm, c - quark existence. The J/ψ meson is a bound state of a cc̄
quark anti-quark pair. It was discovered simultaneously and independently by the groups
in Stanford Linear Accelerator Center and Brookhaven National Laboratory, lead by Burton
Richter and Samuel C.C. Ting, respectively. The two heads of the groups shared the Nobel
prize in 1976 for their discovery.

One year before the J/ψ discovery, in 1973, an article written by Japanese theorists
Makoto Kobayashi and Toshihide Maskawa appeared in a scientific journal. For reasons to
be explained in section 2.3.2 they expanded a set of quark flavours from four to six (i.e.
they introduced what is nowadays known as beauty, b, and top, t, quarks). Following further
experimental evidence on the properties of the charged weak interaction available at the time
and with a deep and far-reaching insight they suggested a set of rotated down-like quarks
involved in the charged weak interaction to be written asd′

s′

b′

=VCKM

d
s
b

=

Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

 d
s
b

 . (1.6)

The 3×3 matrix denoted by VCKM is known today as the Cabibbo-Kobayashi-Maskawa
(CKM) matrix . In general it has 9 complex elements, denoted by Vi j with i = u, c, t and
j = d, s, b. Squared magnitudes of the elements, |Vi j|2, determine the relative rates of
W+→ q̄iq j processes as sketched in Fig. 1.9.

Figure 1.9: Process W+→ q̄iq j and the corresponding relative rate including the element of
the CKM matrix Vi j.

The CKM matrix must be unitary. Mathematically,

V †
CKMVCKM = I , (1.7)

where I denotes an identity matrix, and V †
CKM is a hermitian conjugate of VCKM. The latter
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means transpose and complex conjugate of the matrix, hence

V †
CKM =

V ∗ud V ∗cd V ∗td
V ∗us V ∗cs V ∗ts
V ∗ub V ∗cb V ∗tb

 . (1.8)

Among else, the unitarity of the CKM matrix describes an experimentally verified fact that
in the nature processes in which the neutral weak interaction would couple two different
flavours of down-type quarks, e.g. Z0 → ds̄, do not exist. Schematically this is easy to
see by writing the possible combinations of down-type quarks involved in the neutral weak
interaction:

[d̄′, s̄′, b̄′]

d′

s′

b′

=
i=3

∑
i=1

q̄′i q′j = [d̄, s̄, b̄] V †
CKM VCKM

d
s
b

=
i, j,k=3

∑
i, j,k=1

q̄i V †
i j Vjk qk . (1.9)

In the equation above we also used a notation explicitly exposing the summation involved in
the multiplication of vectors and matrices. For a given value of i and k the sum entering the
expression is

q̄i

j=3

∑
j=1

[V †
i j Vjk]qk . (1.10)

The sum in the brackets is nothing else but a product of the i-th row of V †
CKM with the k-th

column of VCKM. According to Eq 1.7 this equals 0 for i 6= k and 1 for i = k. The unitarity of
the CKM matrix thus ensures

[d̄′, s̄′, b̄′]

d′

s′

b′

= [d̄, s̄, b̄]

d
s
b

= d̄ d + s̄ s+ b̄ b . (1.11)

There are no neutral weak interaction processes coupling different flavours of quarks. The
described theoretical mechanism is called Glashow-Iliopolous-Maiani (GIM) mechanism.
Thus in the weak interaction the following pairs of quarks appear:

[d̄′, s̄′, b̄′]

d′

s′

b′

+[ū, c̄, t̄]

u
c
t


︸ ︷︷ ︸

neutral weak interaction

+ [d̄′, s̄′, b̄′]

u
d
s


︸ ︷︷ ︸

charged weak interaction

= (1.12)

= d̄ d + s̄ s+ b̄ b+ ū u+ c̄ c+ t̄ t+︸ ︷︷ ︸
neutral weak interaction

+ Vud d̄ u+Vus s̄ u+Vub b̄ u+Vcd d̄ c+Vcs s̄ c+Vcb b̄ c+Vtd d̄ t +Vts s̄ t +Vtb b̄ t︸ ︷︷ ︸
charged weak interaction

.

Magnitudes of the CKM matrix elements determine the relative rate of charged W± bosons
decays into specific quark anti-quark pairs. Elements of the CKM matrix are not known
a priori, i.e. they are not predicted by the theory, they are free parameters. This means
they have to be experimentally determined, measured. Measurements of B mesons decays,



1.2. WEAK LIAISON 15

Figure 1.10: Examples of B meson decays with b→ c and b→ u quark sub-process. Mea-
surements of rates of such decays enable determination of the corresponding CKM matrix
element magnitude.

for example, like the ones depicted in Fig. 1.10, yield the value of the appropriate CKM
element entering the process. Measurements of other hadron decays enable determination of
magnitudes of individual CKM matrix elements.

A surprising feature of the CKM matrix is that the magnitudes of the diagonal elements of
the matrix almost equal unity, next-to-diagonal elements are an order of magnitude smaller in
magnitude, and the most off-diagonal elements have magnitudes of the order of 10−3−10−2.
Numerically, |Vud| |Vus| |Vub|

|Vcd| |Vcs| |Vcb|
|Vtd| |Vts| |Vtb|

=

0.974 0.225 0.004
0.224 0.974 0.042
0.009 0.041 0.999

 . (1.13)

In other words, the charged weak interaction most often couples quarks of the same genera-
tion (see Table 1.1), and less likely quarks from different generations. The former processes
are often addressed as Cabibbo allowed and the latter as Cabibbo suppressed19. Any under-
lying reasons for such an hierarchy are unknown.

The mentioned hierarchy of the CKM matrix elements reflects in decays of B mesons
composed of b quarks. Out of elements related to b quarks - Vtb, Vcb and Vub - the first
one has the largest magnitude. Top (t) quarks are not produced at the energies involved at
B Factories and hence direct quark decays t → b are not present there. This element does,
however, importantly influence some of the processes with B mesons. Despite their (too)
high mass t quarks appear in some higher order processes, in accordance with the Heisenberg
uncertainty principle:

∆x∆p≥ h̄/2 . (1.14)

The principle relates indefiniteness of position and momentum determination in quantum
mechanics. Once the position of any quantum system is determined to ∆x, momentum is
inherently undetermined to at least h̄/(2∆x), and vice versa. The principle is valid for any
pair of complementary variables, also for energy and time. For the latter it is formulated as

19The Cabibbo suppressed decays are sometimes further divided into singly Cabibbo suppressed - those
which include quarks of neighbouring generations, e.g. b and c - and doubly Cabibbo suppressed - those
including quarks from non-neighbouring generations, e.g. b and u.
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∆E∆t ≥ h̄/2. Let us interpret it using a specific example of a process shown in Fig. 1.11.
This higher order weak interaction process (M ∝ α4

W ) causes a B0
d meson in the course of

Figure 1.11: One of Feynman diagrams contributing to B0
d → B̄0

d transition, known as B0
d

oscillations.

its lifetime to change into it’s antiparticle and vice versa. The phenomena is called B meson
mixing or oscillations. It appears not only in the system of neutral B mesons (for B0

d and
B0

s mesons) but for all neutral mesons20. We will discuss the B meson oscillations further in
Sect. 3.3. At this place we note the contribution of quarks with positive charge (q = u, c, t)
in the process. Although the t quark is too heavy to appear as a decay product of any B
meson, it can appear, for example, in the d →W−t vertex as shown, in accordance with
the uncertainty principle. Energy conservation in the vertex is violated by an amount ∆E
(because the rest energy of W− and t is much larger than that of a d quark). Nevertheless the
process can proceed as long as the two heavy particles are reabsorbed within a time interval
∆t ∼ h̄/(2∆E). This is what indeed happens, t quark is immediately afterwards involved in
a tW+→ b vertex. Particles that appear in the process possible only within the realm of the
uncertainty principle, and do not satisfy the usual relativistic relation E =

√
p2 +m2, are

called virtual particles.
Coming back to the CKM matrix elements related to b quarks, from the remaining two

elements the |Vcb| is around ten times larger than |Vub|, causing the quark transitions b→ c
around two orders of magnitude more frequent than b→ u. For example, B0

d → D̄0e+νe
decay occurs in around 2% of all B0

d decays, while B0
d → π0e+νe only once in around every

104 decays.
A careful reader may notice that so far we’ve only discussed the magnitudes of the CKM

matrix elements despite the fact that in principle the elements are complex. As any complex
number z they can be described by the magnitude and a phase, in a form z = |z|eiφ . The
complex phase of the CKM matrix elements is indeed of utmost importance, closely related
to the violation of CP symmetry, discussed further in Chapter 2.

Note: Quark states involved in the charged weak interaction are linear combinations of
quarks involved in the strong interaction. These linear combinations, and consequently

20Also for K0 and D0 mesons. It doesn’t exist for mesons composed of a qq̄ (where q denotes quark and anti-
quark of the same flavour), because such mesons (e.g. π0 mesons, or quarkonium) are their own antiparticles
(e.g. π̄0 = π0).
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rates of decays of W± bosons into different quark anti-quark pairs are governed by the
Cabibbo-Kobayashi-Maskawa (CKM) matrix.

1.3 Frontiers
The mentioned hierarchy in the magnitudes of the CKM matrix elements, which is an exper-
imental fact and no interpretation based on physical laws exists for it, is one of the reasons
to believe that our current understanding of the basic interactions among the elementary par-
ticles (Standard Model) is not the ultimate one. There may exist some kind of underlying
symmetry, so far unknown to us, that results in the observed CKM matrix elements hierarchy.
There are several other shortcomings of the SM. The fact that roughly one quarter of the Uni-
verse is composed of a Dark Matter21, the substance of which is still completely unknown,
but cannot be of the SM particles, is clearly one of those. To continue, the SM does not
explain the gravity, the fourth elementary interaction in Nature. And the coupling constants
of the three types of interactions included in the SM, are - at least in processes taking place
at the currently achievable energies - quite different. The question remains if at some high
energy the strengths of interactions unify22. Unexplained but extremely pronounced hierar-
chies, like the ones in the CKM matrix, appear elsewhere. Masses of the elementary fermions
(Tab. 1.1) span roughly a range from 0,5 MeV (e±) to 170 GeV (t), interval of six orders of
magnitude, not including the neutrinos23. What are deeper reasons for this? Already Richard
Feynman, one of the fathers of quantum electrodynamics, considered this to be an important
and interesting question. And, last but certainly not least, the observed dominance of matter
over anti-matter in the observable Universe can not be explained by the current measurement
results at the level of elementary particles and their theoretical description.

These and similar, within the SM unanswered questions have been a clear and present
motivation for ongoing efforts of both, theoretical and experimental high energy physicists
for over a decade. The efforts in searching for so far unknown processes and particles beyond
the framework of the SM, the ones that constitute what is often addressed as ”New Physics”.
Since the SM is clearly not the ultimate theory yielding answers to some basic questions but
rather an - indeed extremely successful - effective theory describing majority of the so far
observed phenomena in the world of subatomic particles, scientists are seeking for effects
that would a) constitute an evidence of physics processes beyond the SM, and b) shed light
on the ”inner workings”, i.e. help in understanding the basic physics laws of New Physics
(NP).

Numerous experiments in the field of contemporary high energy physics can be grouped
into several categories. The Energy Frontier experiments exploit highest achievable ener-

21The current cosmological knowledge tells that around 70% of the Universe is Dark Energy, 25% is Dark
Matter, and only around 5% of the Universe is composed of the matter familiar to us.

22Coupling constants of individual interactions are not completely constant, they depend on the energy at
which a certain process takes place. In theories that go beyond the SM (Grand Unified Theories) the coupling
constants of strong, weak and electromagnetic interaction unify - they become equal - at an energy scale of
around 1016 GeV. These interactions are assumed to further unify with the gravitational interaction at the so
called Planck scale, 1019 GeV.

23Neutrinos are massless within the SM. Measurements of the neutrino oscillations phenomena have shown
that they do have a small mass.



18 CHAPTER 1. INTO THE B WORLD

gies to search for heavy particles that can only be produced at such energies. The Intensity
Frontier experiments, on the other hand, are performing measurements of unprecedented ac-
curacy and comparison of results to the existing theories (most notably the SM), to search
for possible deviations of the results from the predictions and by that identifying NP. The
Cosmic Frontier experiments make use of measurements of phenomena in the Universe in
trying to interpret those in terms of NP (e.g. Dark Matter). The three categories of scientific
endeavour are not strictly divided and, more importantly, are complementary. Most probably
it will not be possible to understand laws of NP without experimental results and theoretical
interpretation of evidences from all three categories.

Note: The Standard Model (SM) of interactions among elementary particles has sev-
eral serious shortcomings. Processes involving particles beyond those described within
the SM must exists in Nature but have not been observed so far. Physicist are searching
such New Physics processes at the Energy, Intensity and Cosmic Frontier.



Chapter 2

Into the Mirror

2.1 C & P
In Sec. 1.2.2 we discussed the operation of parity and non-conservation of parity in processes
mediated by the weak interaction. The experiment with 60Co established the parity violation
in weak interaction processes. We can now formulate the parity operation, discussed so far in
terms of observing a given process in the mirror, in a slightly more mathematical terms. The
parity transformation reflects a chosen coordinate system through the origin. Denoting the
parity operator by P̂, the effect of the operation on a given function describing some quantum
state (wave function) |ψ(~r)〉 is

|ψ ′(~r)〉= P̂|ψ(~r)〉= eiφ |ψ( ~−r)〉 . (2.1)

eiφ in the above equation must be added since the operator can - beside reversing all coor-
dinates - also change the overall phase of a state. Applying operator P̂ once again on the
already transformed function |ψ ′(~r)〉 one obtains

P̂|ψ ′(~r)〉= P̂2|ψ(~r〉= e2iφ |ψ(~r)〉 . (2.2)

On the other hand, it’s clear that reversing the coordinates twice does not have any effect and
hence

P̂2|ψ(~r〉= |ψ(~r)〉 . (2.3)

Comparing Eqs. 2.2 and 2.3 we find e2iφ = 1, hence φ = 0, π and

P̂|ψ(~r)〉=±|ψ(−~r)〉 . (2.4)

The value of ei0 = +1 or eiπ = −1 is called an intrinsic parity of a particle. By convention
we assign a positive parity to fermions (electrons, neutrinos, protons,....), while anti-fermions
(positrons, anti-protons, anti-neutrinos,...) have negative parity1. Unlike fermions, bosons
and corresponding anti-bosons have the same intrinsic parity.

Parity can be determined also for compound states, for example for a state of two par-
ticles, a and b, with a relative orbital angular momentum L. The spatial part of the wave

1The fact that a fermion and its anti-particle have opposite parities arises from the relativistic quantum
mechanics, specifically from the Dirac equation.

19
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function describing such a state is composed of spherical harmonics Y L
m(θ ,φ), where θ and

φ represent two of coordinates in a spherical coordinate system2. It can be shown that the
parity transformation on a spherical harmonic results in

P̂Y L
m(θ ,φ) = Y L

m(π−θ ,φ +π) = (−1)LY L
m(θ ,φ) . (2.5)

Parity is a multiplicative quantum number and hence the total parity of such a system is
PaPb(−1)L, with Pa,b denoting the intrinsic parities of involved particles.

Parities for some particles can be determined experimentally, using parity conserving
processes - those mediated by strong or electromagnetic interactions. Parity of charged pions,
for example, can be determined from the pion capture on deuteron resulting in a two neutrons
final state, π− 2

1H→ n n. Details of this measurement and of logic leading to the conclusions
that the intrinsic parity of a pion is negative (Pπ = −1) go beyond the scope of this book3.
We will rather use the findings to explain the θ − τ puzzle, mentioned in Sect.1.2.2.

The two decays in question were τ+→ π+π−π0 and θ+→ π+π0. The two initial state
particles, at that time called τ and θ , were both determined to have spin s = 0 and consistent
masses and lifetimes. Nevertheless, the former decays into a three pion final state, and the
latter into a two pion final state. Pions in the final state have null orbital angular momentum
(since the initial state particles as well as pions are spin zero particles) and hence the parity of
the three pion state is P3π = P3

π (−1)0 =−1 and that of the two pion state P2π = P2
π (−1)0 =

+1. If θ and τ are the same particle, there must be an interaction that does not conserve
parity, a fact put forward and proved by T.D. Lee, C.N. Yang and C.S. Wu. Pions, as well as
other mesons with null orbital angular momentum, depicted in Fig. 1.3(left), all have negative
intrinsic parity. Specifically, this is true also for kaons, about which we shell discuss further
in the next section.

In description of the Cobalt-60 experiment we were looking into the process through a
space mirror. At this point we can imagine another mirror, a particle mirror - a mirror which
changes all particles into their anti-particles and vice versa. The transformation replacing
particles with anti-particles is called charge conjugation. Denoting the operator of charge
conjugation by Ĉ, the effect on a particle state |ψ〉 is

Ĉ|ψ〉= eiϑ |ψ̄〉 , (2.6)

where |ψ̄〉 denotes the state of an anti-particle. The operation of charge conjugation changes
an electron into a positron, a proton into an anti-proton, etc. All additive quantum numbers,
like electric charge, baryon number, lepton number, ... change sign under the transformation.
The charge conjugation does not affect momentum and spin, though. Similarly as with the P̂
operator, applying Ĉ twice to some state leads back to the original state. Hence e2iϑ = 1 and
ϑ = 0, π .

There is an important distinction between the parity and the charge conjugation operators,
P̂ and Ĉ: elementary fermions (quarks and leptons) are not eigenstates of the later. Hence
the C-parity of fermions can’t be determined, nor does their relative C-parity with respect

2Spherical harmonics are eigenfunctions of the orbital angular momentum operator L̂2Y L
m(θ ,φ) = L(L+

1)Y L
m(θ ,φ)
3The same is true for a parity of a neutral pion, which can be determined using rare decays π0→ e+e−e+e−

to be negative as well.
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to their anti-particles follow from some underlying physics law as does for the P. Only
neutral particles which are their own anti-particles are eigenstates of Ĉ. Such a particle is
a photon, for example. Properties of electromagnetic field reflect in its negative C-parity4.
Also a neutral pion is self conjugated (a common term for particles that are eigenstates of the
charge conjugation operator). Due to the electromagnetic π0→ γγ decay, the C-parity of a
π0 follows from Cπ0 =CγCγ =+1. Bound states of heavier same flavour quarks, cc̄ and bb̄,
are also eigenstates of Ĉ. Such states are commonly named quarkonium, with charmonium
denoting the charm and bottomonium the beauty quarks bound states. C transformation of
such a state switches the q and q̄, and is thus effectively equal to the parity operation (see
Fig. 2.1). Because of this the C eigenvalue receives a factor of (−1)L. Furthermore, if the
quark pair is in a spin S = 1 state the q↔ q̄ transformation has no effect, while it does make
a change for the state with S = 1. This brings another factor of (−1)S+1 to the C-parity.
Finally, the transformed wave function receives additional factor of −1 due to the fermion
anti-fermion exchange. Altogether the C parity of such a state is (−1)L+S.

Figure 2.1: Left: The operator Ĉ effectively reverses the momenta in a bound state of quarko-
nium (shown here is an example for charmonium, cc̄). Right: In case of a state with spin 1
the operator Ĉ has no effect on spin configuration, while in the case of spin 0 the quarks spin
configuration is changed.

Although charged pions, for example, are not eigenstates of Ĉ operator, one can still
determine a C eigenvalue of a composite system, like π+π−. The latter is composed of
two bosons with spin 0, and hence the Bose-Einstein5 statistics must apply to such a state.
Treating the two charged pions as indistinguishable particles, i.e. taking their charges as one
of components of their wave function, the latter must be symmetric under an interchange of
the two particles. In the absence of spins the wave function consists of a spatial part and
a charge part. An exchange of particles is just the inversion of spatial coordinates and of
charge, in other words exactly what the ĈP operator does. We can thus conclude that a CP
eigenvalue of a π+π− system is positive. Adding an additional neutral pion to the system
changes the situation. If the relative angular momentum of a π0 with respect to the charged
pions is 0 (which is the most probable case if the three pions arise from a decay of a spinless

4Very generally one can say that the electromagnetic field is caused by (moving) charges which under the
Ĉ transformation change sign, and hence C(γ) =−1.

5As opposed to fermion systems to which the Fermi-Dirac statistics apply.
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particle, for example) we need to take into account Cπ0 and Pπ0 , adding Cπ0Pπ0 = 1 · (−1) =
−1 to the CP value of the two pion system. Hence the CP value of π+π−π0 system is
negative.

We mentioned some quantum numbers, specifically the baryon (Nb) and lepton (Nl) num-
ber, which we will use in the later chapters and should look at them in some more details.
Every baryon (like proton) is assigned a baryon number Nb(B) =+1. Every anti-baryon (like
anti-proton), on the other hand, is assigned a negative baryon number, Nb(B̄) =−1. Consid-
ering the quark model we can also assign a baryon number Nb(q) = 1/3 to every quark and
Nb(q̄) = −1/3 to every anti-quark. The total baryon number, the sum of baryon numbers
of all particles in an initial state of a process, is conserved in all known processes among
elementary particles. The baryon number conservation is a consequence of the fact that me-
diators of all interactions couple to qq̄ pairs, and never to qq or q̄q̄ pairs. In weak interaction
one always encounters Z0→ qq̄ or W±→ qq̄′ processes, in strong interaction g→ qq̄ and in
electromagnetic interaction γ→ qq̄. The baryon number conservation has some far reaching
consequences, stability of protons, for example. Proton, as the lightest baryon, can not de-
cay. Its decay would lead to a final state without baryons (since all of them are heavier than
a proton) and would thus constitute a baryon number violating process.

In a similar manner as the baryon number one defines the lepton number: all leptons (like
electron or electron neutrino) are are assigned Nl(`) = +1 and all anti-leptons (like positron
or electron anti-neutrino) are assigned Nl( ¯̀) = −1. Like the baryon number also the lepton
number is conserved in all known processes.

The result of the Cobalt-60 experiment (sketched in Fig. 1.7) showed that there are no
electrons flying in the direction of the magnetic field. Looking at the sketch of the two lim-
iting situations one observes that this implies no anti-neutrino with the direction of its spin
anti-parallel to the momentum direction being observed. The projection of particle’s spin
onto its momentum direction is called helicity. In the Cobalt-60 experiment only the positive
helicity anti-neutrinos are observed, and no negative helicity ones. This fact establishes the
violation of parity in the process, since as shown in the uppermost row of Fig. 2.2, the parity
operator changes a positive helicity anti-neutrino into a negative helicity one. The opposite
is true for neutrinos: while neutrinos with negative helicity exist, neutrinos with positive
helicity are not observed (Fig. 2.2, second row). This implies that the weak interaction vi-
olates another symmetry: the symmetry under the charge conjugation Ĉ. Namely, if one
starts with a positive helicity anti-neutrino and performs the charge conjugation transforma-
tion (Fig. 2.2, third row) the result is a non-existing positive helicity neutrino. Analogously,
starting with a negative helicity neutrino (Fig. 2.2, bottom row) one arrives to a non-existing
negative helicity anti-neutrino6.

The weak interaction thus violates both, the P as well as the C parity symmetry. In 1957
Lev Landau proposed that the true symmetry which is preserved (also) by the weak inter-
action is the symmetry under a combined CP transformation: first the parity operator P̂ is
applied to a state, followed by the operator Ĉ. This is shown between the first two lines of
Fig. 2.2. By this an initial positive helicity anti-neutrino is changed into a negative helicity

6Actually, the terminology here is not completely correct. What one observes is that in the charged weak
interaction only negative helicity neutrinos and positive helicity anti-neutrinos are involved. Since the neutrinos
interact only through the weak interaction one can do a slightly sloppy generalization about the existence of the
two mentioned states and non-existence of the other two.
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Figure 2.2: Effect of parity (P̂) and charge conjugation (Ĉ) operators on (anti-)neutrinos
with negative and positive helicity. Thin black arrows denote the direction of momentum
and thicker blue arrow the projection of a spin onto the momentum direction.

neutrino. The idea of CP conservation lasted for only seven years, as we shall explain in the
next section7.

Note: Weak interaction does not only violate parity, the processes governed by it also
depend on particle / anti-particle nature of involved elementary constituents. In expert
language the weak interaction violates also the C parity. For a brief time in history
there was an idea, however, that it might preserve a combined CP symmetry.

2.2 Strange Particles

After establishing the parity violation in weak interaction in 1950’s, surprises regarding the
processes induced by this force have not diminished. In 1963 Val L. Fitch and James Cronin
started a program of studies of neutral kaons in Brookhaven. Neutral kaons are composed of
an s̄ anti-quark and a d quark, |K0〉 = |s̄ d〉. Their anti-particles, anti-kaons, are composed
as |K̄0〉 = |s d̄〉. These hadrons can be produced in strong interaction processes, for exam-
ple in π−p→ Λ0K0 and π+p→ K+K̄0 p, depicted at the quark level in Fig. 2.3. Hadrons

7It should be mentioned that some physicist, Lev Okun, for example, already at that time argued that the
CP conservation should be experimentally verified.
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composed of strange s quark are always produced in pairs due to the fact that a gluon (g) can
only produce quark anti-quark pairs of the same flavour (uū, dd̄, ss̄, etc.). This fact can be
formulated mathematically in the conservation of strangeness: assigning the quantum num-
ber strangeness (S) to strange quarks (S = −1 for s and S = +1 for s̄ quark), this quantum
number is conserved in all processes mediated by the strong interaction. The always-in-pair
production is not the only reason why hadrons with s quarks are called strange; their decay
properties, especially those of neutral kaons have been a serious puzzle in the second half of
the 20th century.

Figure 2.3: Examples of strong interaction processes in which neutral kaons are produced.
Below the diagrams values of baryon number (B) and strangeness (S) are shown for the initial
and final state.

Remembering the properties of P̂ and Ĉ operators it is easy to establish for neutral kaons8

P̂|K0〉 = −|K0〉, Ĉ|K0〉= |K̄0〉 ⇒ ĈP̂|K0〉=−|K̄0〉
P̂|K̄0〉 = −|K̄0〉, Ĉ|K̄0〉= |K0〉 ⇒ ĈP̂|K̄0〉=−|K0〉 . (2.7)

Hence neutral kaons are not eigenstates of the ĈP̂ operator. As such their CP eigenvalue is
not determined. One can, however, construct a linear combination of |K0〉 and |K̄0〉 which is
an eigenstate of ĈP̂:

|K0
1 〉 =

1√
2
[|K0〉− |K̄0〉]

|K0
2 〉 =

1√
2
[|K0〉+ |K̄0〉] . (2.8)

The two linear combinations denoted by |K0
1 〉 and |K0

2 〉 are eigenstates of the ĈP̂ operator
with eigenvalues +1 and −1, respectively9. Neutral kaons decay into final state with pions

8Note that due to indefiniteness of C-parity for fermions we could also choose ĈP̂|K0〉(|K̄0〉) =
+|K̄0〉(|K0〉). However, the choice of this phase does not affect the physics observables. The phase convention
is discussed further in Sect. 3.3.

9This is easily verifiable using the properties of |K0〉 and |K̄0〉 under the ĈP̂ transformation from Eq. 2.7.
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through the weak interaction (pions contain no strange quark, hence the quark flavours must
be changed in the decay, and the only interaction capable of producing this is the charged
weak interaction). If the CP symmetry is preserved in the weak interaction processes this
implies that in such processes combinations |K0

1,2〉 instead of states |K0〉, |K̄0〉 take part. In
such a case |K0

1 〉 decays into final states with CP quantum number +1, and |K0
2 〉 into states

with CP =−1.
Nature has been kind in providing a possibility of disentangling the scenario in the neutral

kaon system. The three pion final state possesses a negative CP value while the two pion
state has a positive CP value, as explained in Sect. 2.1. Rest energy of three pions amounts
to around 420 MeV, only slightly below the kaon mass of 498 MeV. Hence the decay of
a neutral kaon into a three pion final state is significantly less probable than a decay into
two pion final state, for which the available phase space is much larger (m2π ∼ 280 MeV�
mK ∼ 498 MeV). In the absence of other possible decays |K0

2 〉 thus decays into a 3π state
(both with CP =−1) with relatively low probability and consequently a long lifetime, while
|K0

1 〉 decays into 2π (both with CP =+1) with a relatively short lifetime.
To understand the principle of the measurement performed by the group led by Cronin

and Fitch one has to dwell into some numeric values. The short-lived combination of neutral
kaons (|K0

1 〉) has a mean decay distance, cτ1, of around 3 cm. On the other hand, the long-
lived combination (|K0

2 〉) has cτ2∼ 15 m. Neutral kaons, produced at x= 0 through the strong
interaction as |K0〉 and |K̄0〉, decay through the weak interaction process, exponentially as
|K0

1 〉 and |K0
2 〉. The number of initially produced neutral kaons decreases exponentially with

distance from the production point as e−x/γcτ1,2 , where γ is the appropriate Lorentz factor, γ =
EK/mk. Due to τ1� τ2, after long enough decay distance (x� cτ1) one expects only |K0

2 〉
combination to survive resulting in decays to three pions only. The idea of the measurement
is sketched in Fig. 2.4.

Cronin and Fitch performed the experiment in 1963 at the Alternating Gradient Syn-
chrotron, a 30 GeV proton accelerator. The program of studies was by no means devoted to
the study of CP symmetry alone. As Val Fitch said in his Nobel lecture:”Not many of our col-
leagues would have given us much credit for studying CP invariance, but we did anyway...”
[14]. Protons were used to bombard a Be target to produce neutral kaons. These were in turn
left to propagate through a ∼17 m decay tunnel, at the end of which detectors to reconstruct
neutral kaons decays were installed. From experimental point of view an essential ingredient
making the measurement possible was an optical spark chamber10 enabling reconstruction
of kaon decays in a rather high background environment. Taking into account the average
Lorentz factor γ of kaons, the 17 m tunnel represented around 300 decay lengths γcτ1 of the
short-lived neutral kaon component [15]. At the end of the tunnel one thus has a ratio of the
|K0

1 〉 to |K0
2 〉 of around e−300/e−300 τ1/τ2 = e−300(1−τ1/τ2) ∼ e−300. If |K0

1 〉 only decays into
2π final state, and |K0

2 〉 only to 3π , the same ratio is of course expected for the numbers of
detected two- and three-pion decays. Definitely a neglectably small number... The result of
the experiment was shocking. Among around 23 · 103 3π decays they found around 45 2π

decays. A small ratio, indeed, but far from 10−300 (i.e. from zero)!

10Spark chamber is composed of a set of metal plates at high electric potential, with the intermediate space
filled with gas. A traversing charged particle produces ionization of gas resulting in sparks between the plates.
The sparks can be detected with an optical system.
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Figure 2.4: Experiment by Cronin and Fitch. Top: Produced neutral kaons decay into two-
and three-pion final state. After long enough decay distance only the long-lived component
of neutral kaons survive, which in case of CP conservation decays into the three-pion final
state only. Bottom: The actual experiment schematics at the Brookhaven National Labora-
tory [13].

The result11 [15] clearly showed that also the long-lived component of neutral kaons
decays with a non-negligible probability12 into a two-pion final state. In turn this means
that an initial state with CP = −1 (|K0

2 〉) decays into a final state with either CP = +1 (two
pions) or CP =−1 (three pions). The interaction responsible for the decay process, the weak
interaction, does not conserve the CP symmetry. Assumption made by Lev Landau was thus
shown to be wrong. But much more than that, the observed violation of the CP symmetry
is linked in an essential way to the evolution of the Universe, as we will discuss in the next
section. For their discovery Val Fitch and James Cronin received the Nobel prize in physics
in 1980.

Nowadays, results of the Cronin-Fitch and follow-up experiments are incorporated in the

11The results of the experiment, performed in 1963, were published in 1964; the latter year is generally
considered as the year of CP violation discovery.

12In the experiment, they determined the branching fraction for these decays of 2 ·10−3, while a contempo-
rary average of measurements yields a value of (1.967±0.010) ·10−3 [2].
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following parametrization of the neutral kaons system:

|K0
S 〉 =

1√
1+ |ε|2

[|K0
1 〉+ ε|K0

2 〉] =

=
1√

2(1+ |ε|2)
[(1+ ε)|K0〉− (1− ε)|K̄0〉]

|K0
L〉 =

1√
1+ |ε|2

[|K0
2 〉+ ε|K0

1 〉] =

=
1√

2(1+ |ε|2)
[(1+ ε)|K0〉+(1− ε)|K̄0〉] . (2.9)

In the above parametrization distinction is made between the short- and long-lived com-
ponent of neutral kaons, |K0

S 〉 and |K0
L〉 on one hand, and ĈP̂ eigenstates, |K0

1 〉 and |K0
2 〉

on the other. The parameter ε incorporates the experimentally determined violation of the
CP symmetry in the neutral kaons system13. The magnitude of the parameter is small,
|ε| ∼ 2.2 · 10−3; |K0

L〉 almost equals |K0
2 〉, and thus decays much more abundantly to three-

pions than to two-pions final state.

Note: Experiments with neutral kaons, or better to say with the long- and short-lived
component of K0 and K̄0, proved that in the weak interaction processes also the com-
bined CP symmetry is violated: a process in which all particles are replaced by corre-
sponding anti-particles, and the process is observed in the mirror, does not proceed in
exactly the same manner as the original process.

2.3 Humans, not Anti-humans

2.3.1 Sakharov Conditions

Nowadays the observable Universe - part of it which is accessible through the measurements
using various contemporary experimental methods - is composed almost entirely of mat-
ter (particles) and no anti-matter (anti-particles). Evidently, our solar system is composed
of particles, by which we mean mainly baryons as they build up the vast majority of mass
we can observe in the Universe. If this would not be the case, any space mission coming
into contact with bodies in our solar system would annihilate. Interacting particles and anti-
particles annihilate into photons, as sketched in Fig. 2.5(left). Luckily this was not the case
for the space missions. Furthermore, dedicated experiments in space have not detected any
anti-nuclei. Specifically, the Alpha Magnetic Spectrometer (AMS) detector installed upon
one of the space shuttle missions detected no anti-Helium nucleus and constrained the ra-
tio of such nuclei to the Helium nuclei to less than one in a million, i.e. less than 10−6

[16]. Probes of possible anti-matter in other parts of our galaxy include studies of cosmic

13ε actually parametrizes only one of the CP violations forms. Various types of CP violation are discussed
further in Sect. 3.3.2.
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Figure 2.5: Left: Particles (B) and anti-particles (B̄) annihilate into photons (γ). Right:
Conversely, photons can create particle anti-particle pairs. The latter process can only take
place in the presence of another (heavy) particle, denoted by Z, to conserve energy and
momentum.

rays14 in which fraction of positrons and anti-protons is found. While at the moment these
are the only detected anti-particles not produced in the laboratories, their abundance can
within the current measurement uncertainties be explained as a product of pair production
(see Fig. 2.5(right)) in various astrophysics processes15. A possibility of the Universe being
composed of large regions dominated by either matter or anti-matter, averaging the baryon
number to zero, has been discussed. Remember that the total baryon number is the difference
between the number of baryons (nbar) and the number of anti-baryons (nantibar),

Ntot
b = nbar−nantibar = Nb(B)+Nb(B̄) . (2.10)

Nb(B) and Nb(B̄) denote the baryon number of baryons and anti-baryons, respectively, as
defined in Sect. 2.1. It might be possible that in a given region of the Universe one encoun-
ters nbar >> nantibar while in some other region nbar << nantibar, resulting in Ntot

b = 0 when
averaged over all of the Universe. At the borders of such regions, however, particles and
anti-particles would annihilate resulting in strong sources of gamma rays. These have not
been observed. Studies of such scenarios conclude that if such regions indeed exist their di-
mensions should be comparable to the size of the known Universe [19]. All in all, ever since
the discovery of positron by Carl D. Andersen in 1932, there is no experimental evidence
that any anti-matter is present in the Universe that we observe, apart from the anti-particles
produced in known processes (positrons that brought the 1936 Nobel prize in physics to
Anderson were part of cosmic rays, and originated from pair creation process).

The Universe, according to the contemporary wisdom (and available experimental ver-
ifications16) originated in a Big Bang. Immediately after its creation it underwent a rapid
expansion, known as the inflation. After the period of inflation the Universe was expanding

14Charged particles, mainly electrons and protons, originating from sources within as well as outside of our
galaxy. Upon the impact on Earth’s atmosphere they produce showers of particles from secondary interactions
on the nuclei composing the atmosphere.

15A significant positron excess compared to theoretical expectations in the cosmic ray spectra has been
observed by the Pamela experiment [17]. Current explanations include several possible sources (pulsars, dark-
matter candidates,...). Also the upgrade of the AMS experiment, AMS02 installed on the International Space
Station, observed some anti-Helium nuclei [18], the origin of which is unclear.

16It goes far beyond the scope of this book to discuss experimental evidence of what is nowadays called
Inflationary Big Bang models. Nevertheless, one should mention that the smoking gun evidence for such
models arises from the measurements of cosmic expansion and of the Cosmic Microwave Background.
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at a much slower rate, and cooling down. The energy density was gradually decreasing. At
that time, when the Universe was around 10−32 s ”old”, it was filled with a hot plasma of
quarks, anti-quarks and gluons. Plasma means that the particles mentioned, due to much
too high energies, did not form any bound states. Production and disappearance of quarks
and anti-quarks through the processes of annihilation and pair creation were in equilibrium.
Binding of quarks and anti-quarks into baryons and anti-baryons happened only much later,
about 10−6 s after the Big Bang, when the Universe cooled down to around 1013 K17. It
should be noted that the process of pair creation (Fig. 2.5(right)) requires a minimum energy
of photons to create pairs. The energy should be larger than the rest energy of created parti-
cles, Eγ > 2mB. As the Universe cooled down the energy became too low for pair creation of
baryons. Only annihilation continued, until there were still pairs of baryons and anti-baryons
that could annihilate.

Eventually, all baryon anti-baryon pairs annihilated into radiation (photons). Even today
this radiation fills the Universe and is called the Cosmic Microwave Background (CMB).
As the matter of fact, CMB is an extremely important tool for astrophysicists, offering an
insight into conditions in the early Universe. Moreover, one can determine the density of
these photons compared to the density of matter (baryons) in the current Universe:

nbar

nγ

∣∣∣∣
now
≈ 10−10 . (2.11)

Since there are no anti-baryons observed in the Universe today, one can write

nbar−nantibar

nγ

∣∣∣∣
now
≈ 10−10 , (2.12)

where nantibar denotes the density of anti-baryons.
As usually, the devil is in the detail... Note that we said that all baryon anti-baryon ”pairs”

in the early Universe annihilated. If there were isolate baryons in excess of anti-baryons they
could not annihilate. It is those solitary baryons that make up all the matter in the Universe
today. From the ratio 2.11 it is clear that a vast majority of pairs annihilated in the early
stages. For each approximately 1010 pairs of baryons and anti-baryons there was a single
baryon that did not have an anti-particle counterpart. Since almost all pairs in the early
Universe annihilated into photons,

nbar−nantibar

nγ

∣∣∣∣
now

=
nbar−nantibar

nbar +nantibar

∣∣∣∣
early

. (2.13)

Hence the question arises what caused the tiny excess of baryons in the early Universe, which
make all the greatness of the matter in today’s Universe. Or, analogously, what caused the
change of the total baryon number from Ntot

b = 0, in an early symmetric state of the Universe,
to a positive Ntot

b .
In 1967 Andrei Sakharov18 postulated three necessary conditions for the Universe to

evolve into the matter / anti-matter asymmetric state which we observe nowadays. These
17Conversion into temperature is made from an average energy of particles present, using the Boltzman

constant k = 8.6 ·10−5 eV K−1, and corresponds to energies of around 100 MeV to 1 GeV.
18A. Sakharov, Russian nuclear physicist significantly participating in the building of the Soviet hydrogen

bomb, was awarded the Nobel Peace Prize in 1975 for his work for human rights.
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conditions are [20]

• non-conservation of the baryon number;

• violation of CP and C symmetry;

• period of departure from thermal equilibrium during the Universe evolution.

The first two necessities can be understood in terms of an (over)simplified model. Let’s
assume the existence of a particle P in the early Universe. For simplicity let it have only two
decay modes: the first one into a final state f1, that has a baryon number Nb1, and the second
one into a final state f2 with Nb2. Rates of probabilities for the two decays are denoted r and
1− r, respectively. Particle P had its anti-particle P̄, decaying into f̄1 with probability r̄ and
into f̄2 with probability 1− r̄. The two anti-particle final states posses baryon numbers−Nb1
and −Nb2. Can decays of these model particles P and P̄ change the total baryon number?

∆Ntot
b = r Nb1 +(1− r) Nb2 + r̄ (−Nb1)+(1− r̄) (−Nb2)

= (r− r̄) (Nb1−Nb2) . (2.14)

In the above equation we wrote the change of the baryon number, ∆Ntot
b , due to the assumed

decays. It is evident that ∆Ntot
b 6= 0 if r 6= r̄ and Nb1 6= Nb2. The latter requirement states

that the hypothetical particle P must decay into states with different baryon number (non-
conservation of baryon number). The former requirement postulates C and CP violation as
the necessary condition for the baryon number change. To see this explicitly we need to dig
just a little bit deeper.

Imagine a specific decay of a hypothetical particle into a - for example - two quark final
state, P→ q1 q2. Probability for such a decay (branching fraction) is the ratio of the specific
partial decay width, Γ(P→ q1 q2), and the total decay width, ΓP. The latter is a sum of all
of its partial decay widths, and is related to the lifetime of the particle through τ = 1/Γ19.
Hence

r =
Γ(P→ q1 q2)

ΓP
, r̄ =

Γ(P̄→ q̄1 q̄2)

ΓP̄
. (2.15)

Since particle and anti-particle lifetimes are equal we have ΓP = ΓP̄
20. The rate difference is

thus

r− r̄ =
Γ(P→ q1 q2)−Γ(P̄→ q̄1 q̄2)

ΓP
. (2.16)

Under the Ĉ transformation P, q1, and q2 transform into P̄, q̄1, and q̄2, respectively, and
Γ(P→ q1 q2)→ Γ(P̄→ q̄1 q̄2). Hence a conservation of the C symmetry would mean

19In accordance with the prescription mentioned in Sec. 1.1.3, the proper units of τ are obtained by multipli-
cation with a conversion factor, h̄c = 197 MeV fm, and division by c = 3 ·108 m/s

20We dealt with this issue ignorantly. Actually, particle anti-particle lifetime equality, as well as the equality
of their masses is a consequence of symmetry of physics laws under the ĈP̂T̂ transformation. The latter is a
combination of the already known ĈP̂, and of T̂ , the operator that reverses the arrow of time, t→−t. The CPT
conservation theorem is basis of all relativistic quantum field theories; if CPT symmetry is violated almost
none of the contemporary theories is valid anymore. Needless to say that currently no experimental evidence
of CPT violation exists.
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Γ(P→ q1 q2) = Γ(P̄→ q̄1 q̄2). Therefore if there’s no C violation then r = r̄ and the baryon
number is not changed.

In writing the partial decay width we can be more specific and separate quarks into those
with negative (qi,L) or positive (qi,R) helicity (note that this is true only in the limit of ul-
trarelativistic quarks, i.e. when Eq � mq; otherwise subscripts L and R denote left- and
right-chirality of quarks21). The partial decay width can be decomposed as

Γ(P→ q1 q2)=Γ(P→ q1,L q2,L)+Γ(P→ q1,R q2,R)+Γ(P→ q1,L q2,R)+Γ(P→ q1,R q2,L) .
(2.17)

The rate difference can also be detailed into

r− r̄ =
Γ(P→ q1,L q2,L)+Γ(P→ q1,R q2,R)+Γ(P→ q1,L q2,R)+Γ(P→ q1,R q2,L)

ΓP
−

−
Γ(P̄→ q̄1,L q̄2,L)+Γ(P̄→ q̄1,R q̄2,R)+Γ(P̄→ q̄1,L q̄2,R)+Γ(P̄→ q̄1,R q̄2,L)

ΓP
. (2.18)

The ĈP̂ operator changes qi,(L,R) → q̄i,(R,L) (see Fig. 2.2 and description there), and hence
Γ(P → q1,L q2,L) → Γ(P̄ → q̄1,R q̄2,R), etc. In the case of the CP conservation one has
Γ(P→ q1,L q2,L) = Γ(P̄→ q̄1,R q̄2,R), etc. By inspection of the above equation we see that
in this case individual partial decay widths in the numerator pairwise cancel. Like in the
case of C violation we conclude that if there’s no CP violation then ∆Ntot

b = 0. By this we
demonstrated the first two of Sakharov’s conditions.

What we also learn from the example is that in case the partial width of the original
decay mode in any sense differs from the partial width of the CP conjugated decay mode,
Γ(P→ f ) 6=Γ(P̄→ f̄ ), this is a manifestation of both CP and C violation. Detailed studies of
partial decay widths (i.e. of specific decay modes) hence offer a possibility of CP violation
determination. This is also true for decay time dependence of the partial decay widths, i.e.
for dΓ(P→ f )/dt.

The third Sakharov condition - departure from thermal equilibrium - may be understood
naively from the fact that in a thermal equilibrium any potentially baryon number violating
process would be in equilibrium with an opposite process; if the first one would change the
baryon number by ∆Nb, the later would change it by−∆Nb. The two processes in equilibrium
have the same rate and hence the net change in baryon number is zero. In other words, while
the Universe is in thermal equilibrium, the baryon number can not change.

Violation of the CP symmetry is thus a necessary condition for the evolution of Universe
into a state in which matter (particles) dominate over anti-matter (anti-particles). In a more
poetic way one might say it’s the reason why we are all humans and not anti-humans. In the
next section we should make a connection between the CP violation in the subatomic world
(described by the CKM matrix within the Standard Model) and the matter asymmetry of the
Universe.

Note: Nowadays the matter in the observable Universe is composed almost entirely
of particles and no anti-particles. One of the necessary conditions for the Universe to
evolve into such a state is the violation of the CP symmetry.

21If E� mq does not hold, chirality does not equal helicity. The following argument about the CP violation
still holds, nevertheless.
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2.3.2 Small and Large
Let us return once again to the CKM matrix, introduced in Sect. 1.2.3. Specifically we
need to talk about the so far forgotten complex phase of the CKM matrix elements. The
CKM matrix is a unitary 3× 3 complex matrix, describing the couplings of quark pairs to
the charged W± bosons. In general, a complex square matrix of dimension 3 has 18 real
parameters (9 complex elements, each described by the real and the imaginary component -
Re(z)+ i Im(z), or, alternatively, by its magnitude and phase - |z|eiφ ). Let’s afford to be even
a bit more general, and - not a subject to a lengthy debate, probably - conclude that a general
square matrix of dimension n with complex elements is described by 2n2 real parameters
(instead of only 3 generations of quarks we assumed n generations). The fact that the matrix
is unitary (see Eq. (1.7)) leads to n2 relations among these parameters (product of each row
and complex conjugate column equals either 0 or 1). An example of such a relation22 is:

VudV ∗ub + VcdV ∗cb + VtdV ∗tb = 0 (2.19)

With n2 relations among 2n2 parameters we are left with 2n2− n2 = n2 free parameters.
Now we take into account that we are dealing with quarks, described by quantum mechanics,
where only probability matters. Hence multiplication of any of the quark fields in Eq. (1.13)
by an arbitrary phase eiφ j , where j denotes the quark flavour, is unobservable. In other words,
if we make substitutions q j → q jeiφ j for j = u,d,c,s, t,b in Eq. (1.13), the description of
processes is not changed, for any value of individual φ j

23. The symbolic expression for the
charged weak interaction (Eq. (1.13)) is then written as (taking into account q̄ j→ q̄ je−iφ j):

Vud d̄e−iφd ueiφu +Vus s̄e−iφs ueiφu +Vub b̄e−iφb ueiφu +Vcd d̄e−iφd ceiφc + (2.20)
+Vcs s̄e−iφs ceiφc +Vcb b̄e−iφb ceiφc +Vtd d̄e−iφd teiφt +Vts s̄e−iφs teiφt +Vtb b̄e−iφb teiφt .

By inspection of the above expression one can see that multiplication of each of the quarks
by an arbitrary phase effectively adds a difference of two complex phases to each of the
CKM matrix elements: Vud is multiplied by ei(φu−φd), etc. Since the phases φ j are arbitrary,
they may be chosen so that they cancel any potential complex phase that the CKM matrix
element carries. Is by this possible to cancel all phases of the CKM matrix elements? Clearly
not, we only have six quark flavours and hence six individual arbitrary phases. Moreover,
there are only five independent phase differences. For example, φu− φd ca be expressed
as φu− φs− (φc− φs) + φc− φd . Three more phase differences (out of nine appearing in
Eq. (2.21)) can be expressed in such a way. Altogether we have a freedom of cancelling
6−1 = 5 potential CKM elements’ complex phases. In generalization to n generations this
means 2n− 1 less free parameters (phases) to describe the n× n unitary matrix. We are
down to n2− (2n−1) = (n−1)2 free parameters. For n = 3 one is left with four parameters
to describe the CKM matrix. Finally, the CKM matrix describes rotations among (down-
like) quarks (see Eq. (1.6)). Rotations in n dimensions (remember, n = 3 in nature, as we
understand it today) can be described using 1/2 n (n−1) Euler angles (= 3 for n = 3). The

22Not randomly chosen; this specific relation is especially important for the processes in which B mesons
are involved, as we shall see.

23A correct statement also from mathematical point of view is that the Standard Model Lagrangian remains
invariant under such a transformation.
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remaining parameters are complex phases, (n− 1)2− 1/2n(n− 1) = 1/2(n− 1)(n− 2) in
number. For n = 3 we need 3 angles and a single complex phase to parametrize the CKM
matrix.

The CKM matrix parametrized in the above terms reads [21]

VCKM =

 c12c13 s12c13 s13e−iφ

−s12c23− c12s23s13eiφ c12c23− s12s23s13eiφ s23c13
s12s23− c12c23s13eiφ −c12s23− s12c23s13eiφ c23c13

 . (2.21)

In the above notation si j = sinθi j and ci j = cosθi j for i j = 12, 13, 23, are the sine and cosine
of the three angles, and φ is the complex phase. Such parametrization is not the only one
possible. In Sect. 1.2.3 we mentioned a pronounced hierarchy in magnitudes of the CKM
matrix elements (see Eq. (1.13)). A widely used parametrization, specifically exposing this
hierarchy, is the Wolfenstein parametrization [22]. It is actually a Taylor expansion of the
matrix elements in parameter λ = |Vus| ∼ 0.2 up to the 3rd order:

VCKM =

 1−λ 2/2 λ Aλ 3(ρ− iη)
−λ 1−λ 2/2 Aλ 2

Aλ 3(1−ρ− iη) −Aλ 2 1

+O(λ 4) . (2.22)

Instead of a complex phase φ one encounters here a real and an imaginary part of individ-
ual elements, ρ and η . Of course, also in this parametrization, together with A there are
four parameters altogether. In this parametrization it is easy to spot diagonal elements with
magnitude of the order of 1, first off-diagonal elements of the order of λ or λ 2, and second
off-diagonal elements of the order of λ 3.

We started the section by mentioning the complex phase of the CKM matrix elements,
the close relation of which to the violation of CP symmetry has also been mentioned before.
Not only is the complex phase of the CKM matrix related to the CP violation; there would be
no violation if the matrix was real. This is illustrated in Fig. 2.6. In a transition of a downlike

Figure 2.6: Transition of an uplike to a downlike quark and a transition of an uplike anti-
quark to a downlike anti-quark. The CKM matrix elements appearing in the two processes
are complex conjugates of one another.

quark (any quark with the charge−1/3 e0, qd) to an uplike quark (any quark with the charge
+2/3 e0, qu) the Vquqd CKM matrix element is present in the amplitude. In the CP conjugated
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transition q̄d → q̄u its complex conjugate, V ∗quqd
, appears. Hence if V ∗quqd

= Vquqd , i.e. if the
CKM matrix is real, the two processes will proceed in an exactly the same manner and no
CP violation can occur. V ∗quqd

6=Vquqd is within the Standard Model a necessary condition for
CP violation.

Now one can understand better the decision of the Nobel Committee to award the Nobel
prize to Kobayashi and Maskawa. With two generations of quarks, as suspected at the time
of their postulation of the CKM matrix, the quark rotation matrix Eq. (1.4) has no complex
phase. This can be easily verified employing the calculated number of angles and phases
needed for parametrization of an n×n unitary matrix, given at the beginning of this section
(number of complex phases is 1/2(n−1)(n−2), which for n = 2 vanishes). To describe the
CP violation through a complex phase of the quark rotation matrix the number of generations
must be at least three (resulting in a single complex phase). Realizing this, Kobayashi and
Maskawa dared to predict the existence of further, experimentally yet to be observed quark
flavours.

Let us now turn our attention to one of the unitarity relations for the CKM matrix el-
ements, Eq. (2.19). Any complex number z = Re(z) + i Im(z) = |z|eiφ can of course be
presented as a vector in the complex plane, as illustrated in Fig. 2.7 (left). Unitarity relation

Figure 2.7: Left: Representation of a complex number in the complex plane. Right: Sum of
three complex numbers with their sum equal to 0.

is a sum of three complex numbers, adding to zero. Hence in the complex plane they rep-
resent a triangle (Fig. 2.7 (right)). We can divide relation (2.19) by the middle term, VcdV ∗cb.
thus obtaining

VudV ∗ub
VcdV ∗cb

+1+
VtdV ∗tb
VcdV ∗cb

= 0 . (2.23)

The above is still a sum of three complex numbers (one of them real, actually, i.e. with
the null imaginary component). They form a triangle in the complex plane, presented in
Fig. 2.8 (left). In studies of B mesons this triangle is called the unitarity triangle. Elements of
the CKM matrix entering the unitarity relation can be expressed in terms of the Wolfenstein
parameters. It is easy to obtain Eq. (2.23) in these terms:

ρ + iη−1+(1−ρ− iη) = 0 . (2.24)
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Figure 2.8: Left: The unitarity triangle. Right: The unitarity triangle expressed in Wolfen-
stein parametrization.

Ploting the sum of these three complex numbers (ρ + iη ,−1 and 1−ρ− iη , Fig. 2.8 (right))
in the complex plane one realizes that the uppex of the unitary triangle is positioned at
(ρ,η)24. The axis of the coordinate system are thus annotated according to this. An-
gles of the triangle denoted by ϕ1, ϕ2 and ϕ3

25 in the left plot, are just the complex phases
of combinations of the CKM matrix elements:

ϕ1 = Arg
[
−

VcdV ∗cb
VtdV ∗tb

]
ϕ2 = Arg

[
−

VtdV ∗tb
VudV ∗ub

]
ϕ3 = Arg

[
−

VudV ∗ub
VcdV ∗cb

]
. (2.25)

These can be also expressed using the Wolfenstein parameters. The expressions are shown in
the right plot of Fig. 2.8. If η = 0, that is if the complex phase of the CKM matrix vanishes,
angles ϕ1 and ϕ3 become zero, and ϕ2 = π . This means that in the case of no CP violation
(i.e. if φ of (2.21) is 0) the area of the unitarity triangle is null.

It should be noted at this point that there are several other unitarity triangles. Every
relation following from the unitarity of the CKM matrix (Eq. (2.5) can be represented in a
form of the triangle in the complex plane. However, the one discussed here involves the
CKM matrix elements appearing in various processes with B mesons. As we will see these
elements can be determined through measurements of these processes. All possible unitarity
triangles have the same area. With some algebra it can be shown that the area of any of the
triangle is

S =
1
2

A2
λ

6
η (2.26)

No CP violation, or equivalently η = 0, means S = 0. S is in some sense a measure of CP vi-
olation. The elements of the CKM matrix must be experimentally determined. We have seen

24There is a subtlety to this: sometimes instead of ρ and η renormalized parameters ρ̄ ≈ ρ(1− λ 2) and
η̄ ≈ η(1−λ 2) are used. By this the equations used are valid to a higher order in λ .

25In some literature on the subject the angles are commonly denoted by α = ϕ2, β = ϕ1 and γ = ϕ3.
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that actually all elements can be expressed with four independent parameters. Measurements
of individual CKM matrix elements hence yield values of these four parameters. Looking
slightly ahead let us quote the value of S following from the measured values of A, λ and η :
S≈ 2 ·10−5.

This appears to be a small value; however, to make such a claim we first need to know
what to compare the value to. If one expresses S not in terms of the Wolfenstein parameters
but rather using the parametrization (2.21), it reads S = (1/2)c12c23c2

13s12s23s13 sinφ 26. The
expression contains sines and cosines of angles; since these functions have a limited interval
of values also the expression for S is limited. It turns out that the maximum value S can
attain is Smax = 1/(12

√
3) ∼ 0.05. The measured value is indeed more than three orders of

magnitude smaller than the possible maximum value. Taking S as a general measure of CP
violation we can now foresee that effects of CP violation are indeed small.

We established that S 6= 0 is necessary to account for CP violation. This condition is not
enough, though. If any pair of quarks with the same charge would have equal mass, it would
be possible to use transformations of the type q j → q jeiφ to cancel also the only remaining
complex phase in the CKM matrix. Hence a necessary condition for CP violation to occur is

J = (m2
t −m2

c)(m
2
t −m2

u)(m
2
c−m2

u)(m
2
b−m2

s )(m
2
b−m2

d)(m
2
s −m2

d) S 6= 0 . (2.27)

The constant J, appearing in the world of elementary particles, the smallest indivisible
constituents of matter, can be related to the baryon asymmetry (2.13) of the Universe, the
largest entity we can imagine. We will discuss this further in chapter 5.

Note: The CKM matrix can be parametrized with four parameters, the values of which
must be experimentally determined. The unitarity of the matrix can be represented by
the unitarity triangle. One of the free parameters of the CKM matrix is a complex
phase which is within the Standard Model the only source of CP symmetry violation.

26This constant is often referred to as the Jarlskog invariant [6].



Chapter 3

Down the Rabbit Hole

3.1 Accelerating Science

3.1.1 Acceleration

Currently, the most prominent representatives of the Energy Frontier experiments are the ex-
periments at the Large Hadron Collider (LHC) at CERN in Geneva. The collider is used to
collide protons with protons, accelerated to the highest energy ever achieved by humans in
an accelerator. Individual colliding protons have each an energy of 7 TeV. The accelerated
protons are not continuously distributed along the collider. They are grouped into bunches.
In each accelerated bunch there is around 1011 protons, and typically there are around 2800
bunches circulating in each direction along the collider1. Two general purpose experiments
are positioned at the LHC to detect and analyse processes taking place in this high energy
collisions: ATLAS (A Torodial LHC Apparatus) and CMS (Compact Muon Solenoid)2. Ex-
periments in the Energy Frontier category search for new particles to be produced in colli-
sions at the center-of-mass (CMS) energy E. The CMS frame is defined as the one in which
the total momentum of particles under study is zero, ∑i~p = 0. In the case of the LHC the
laboratory frame (the frame in which the detectors reside, i.e. the Earth) coincides with the
CMS frame, since the colliding protons have momenta equal in magnitude and of opposite
directions. In principle at the CMS energy E a particle of mass mc2 = E can be produced.
In principle, because typically processes are more complex resulting in (many) more than a
single particle. Moreover, at such high energies interactions take place among constituents
of protons instead of protons themselves. An example of such a process is the production
of a Higgs boson, discovered by ATLAS and CMS in 2012, shown in Fig. 3.1. The Higgs
boson is produced through an interaction of the constituents of the two colliding protons,
quarks or gluons3. The remaining particles in a process (quarks from disintegrated protons)
carry a part of the CMS energy. Hence the energy available for production of new particles
is smaller than the total proton - proton collision energy.

1The energy of a single bunch of protons accelerated to 7 TeV is similar as the kinetic energy of a 1.5 t car
driving at 45 km/h.

2Two more experiments are recording data at the LHC, the LHCb experiment devoted to precision measure-
ments in physics of B mesons, and ALICE, predominantly studying processes in heavy ion collisions.

3Gluons are carriers of the strong interaction that binds the quarks inside a proton.

37
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Figure 3.1: Feynman diagrams of dominant Higgs boson (H0) production processes at the
LHC.

Charged particles like protons are accelerated to high energies using electric field. A
classic Coulomb force (electromagnetic interaction) experienced by a point electric charge e
(particle) in an electric field of strength ~E,

~FC = e~E , (3.1)

causes the charge to accelerate. When traversing a potential difference U its kinetic energy
is increased by (1/2)mv2− (1/2)mv2

0 = eU , as sketched in Fig. 3.2 (left). Gain in the energy

Figure 3.2: Left: Under the influence of a Coulomb force a charged particle is accelerated.
Right: A superconducting radiofrequency cavity used at the LHC [7].

for a particle carrying the elementary charge e0 = 1.6 ·10−19 As when traversing the potential
difference of 1 V is 1 eV. Performing the acceleration to 7 TeV in a sketched way would be
impossible, one would need a potential difference of 7 · 1012 V. For this reason a different
configuration of an electric field is used: electric field in a standing electromagnetic wave.
Standing electromagnetic waves are produced in a resonator (similar as standing sound waves
in an acoustic resonator) as the one shown in Fig. 3.2 (right). Charged particles entering
such a resonator experience time and space dependent electric field of an electromagnetic
wave. The time dependence of E is shown in Fig. 3.3. If a particle arrives into the cavity
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at the right time (when the field is positive for positively charged particles or negative for
negatively charged ones) the field accelerates it. Moreover, particles that are slower (arrive
to the cavity at a later time) experience a larger field and are thus accelerated more, while
the faster ones (arriving to the cavity at an earlier time) experience a lower field strength and
are thus accelerated less. Typical frequencies of standing waves in the resonant cavities are

Figure 3.3: Time dependence of the electric field strength E in a radio-frequency resonant
cavity. Particles arriving late experience a stronger field and are thus accelerated more.

of the order of 100 MHz. Hence the cavities are called radio-frequency (RF) cavities.
In order to keep the particles accelerated, passing through the RF cavities many times

and to collide bunches of accelerated particles at high frequency, the particles’ orbits are
constrained to a circle. This is achieved by means of magnetic field in which a point charge
experiences the magnetic part of the Lorentz force

~FB = e~v×~B , (3.2)

where ~B is the magnetic flux density. Since this force is perpendicular to particle’s velocity~v
it causes the trajectory to bend (see Fig. 3.4). Using dipole magnets the particles’ trajectories
can thus be made circular. Dipole magnets are not the only type of magnets used in contem-
porary accelerators. Accelerated bunches contain thousands of billions of charged particles
(electrons, protons). Due to the same Coulomb force enabling their acceleration, there is a
repulsion among particles of the same electric charge that would cause bunches to be blown
up. Also, if such bunches collide, a collision probability for particles within the two bunches
accelerated in the opposite directions is too small to produce collisions at an interesting rate.
In order to keep the bunches spatially constrained and especially to squeeze them as much as
possible in front of the designated interaction points, around which detectors are positioned,
higher multipole (quadrupole, sextupole,...) magnets are used. The effect of those is to focus
particles’ trajectories in coordinates perpendicular to the direction of their velocity. Hence
they perform a similar role as optical lenses do with the light.

In an accelerator one encounters a complicated lattice of RF cavities, magnets and other
equipment (e.g. pumps to sustain a high vacuum in order for the accelerated particles not to
interact with molecules of air), an example of which is shown in Fig. 3.5.



40 CHAPTER 3. DOWN THE RABBIT HOLE

Figure 3.4: Left: Force acting on a point charge in a magnetic field ~B. When passing through
a magnetic field of a dipole magnet the trajectory of a charged particle is bent. Note that
this example is shown for a negatively charged particle. Right: An example of a sextupole
magnet, used in the SuperKEKB accelerator [9].

At the Intensity Frontier experiments the emphasize is on accurate measurements of pro-
cesses that are typically rare within the SM. For such processes any NP contribution, even
if tiny, might be relatively important compared to the SM one. Beside the experimental in-
gredient - a measurement of high accuracy - for the Intensity Frontier to be successful in the
hunt for NP another component is needed: a firm theoretical prediction for the measurement
result derived within the framework of the SM. Comparison of the two, or better to say any
deviation between them can then be interpreted in terms of possible NP contributions.

Any experimental measurement unavoidably includes a finite precision by which the
result - value of some physical observable - is determined from the data. The precision
depends on the quality of data, measurement method, experimental conditions and other
factors. All these needs to be evaluated in order to claim a reliable estimate of the accuracy of
an individual result. In experimental particle physics it is common to separate an uncertainty
of a measurement into a statistical and systematic part. The former is a consequence of
performing a measurement using a dataset of limited size. Since processes in quantum world
are subject to stohastic fluctuations a repeated measurement on a different dataset would
yield a slightly different result. The statistical uncertainty is a measure of this variation
and is decreased as the two data sizes are increased. For large enough datasets the relative
statistical uncertainty of a measured quantity x decreases as

σstat(x)
x

∝ 1/
√

N , (3.3)

where N is the number of observations of a measured observable in a given dataset. The
systematic part of the uncertainty depends on the properties of the apparatus used for the
measurement, the method used in performing the measurement and interpreting the result. In
mathematical terms it is less defined than the statistical uncertainty and it is hence important
for each experiment to report as accurately as possible the way in which this part of the
measurement uncertainty was determined.

The average rate at which a certain process occurs in collisions of particles in an accel-
erator is given by

dNp

dt
= L σp . (3.4)
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Figure 3.5: Schematics of a part of the SuperKEKB electron positron collider [8], showing a
sophisticated lattice of magnets and other equipment. It should be noted that the part shown
represents only around 2% of the full circular arrangement of one of the two beam lines (the
one for electrons).

In the above equation L is the luminosity of the accelerator and σp is a cross-section for
a process p. The product of the two yields the rate of the occurrence of events of such a
process (Np) in an interval of time (t).

Luminosity is a property of the accelerator and a measure of the intensity of its beams.
For colliders4 the luminosity can be expressed as

L =
N1N2νNb

2πσxσy
. (3.5)

Here, N1,2 is the number of particles in the accelerated bunches, ν is the frequency of revo-
lutions of a single bunch, and Nb is the number of bunches in a single beam. It is intuitive
that the intensity of beams is proportional to these factors. On the other hand, probability
of two particles inside opposite beams to collide is inversely proportional to dimensions of
the colliding bunches in the plane perpendicular to the direction of acceleration (x and y)
denoted by σx,y. The above equation is strictly correct for head-on bunch collisions of iden-
tical beams, assuming that the distribution of particles inside a bunch is Gaussian, i.e. that
the density of particles inside a bunch follows a Gaussian distributions in the x and y coor-
dinate5. Appropriate units in which the luminosity is measured are cm−2s−1. Luminosity of
the LHC has currently reached around 2 · 1034 cm−2s−1 and is expected to be significantly
increased in the future. The record luminosity of a collider has been achieved by the KEKB
electron positron collider, operating in Tsukuba, Japan, between 1999 and 2010. It reached
the value of 2.1 ·1034 cm−2s−1.

The final dataset available from an accelerator of course depends on the amount of time
for which the accelerator is operating. Since a cross-section in Eq. 3.4 is a time independent
quantity, integration of the equation yields the total number of events of a given process Np,

Np = σp

∫ t

0
L dt , (3.6)

where t represents the time of accelerator operation. The quantity
∫ t

0 L dt is called the inte-
grated luminosity.

4Colliders are accelerators in which particles accelerated in the opposite directions collide, as opposed to a
fixed target experiments in which a beam of accelerated particles is directed onto a target of certain material,
fixed in the laboratory frame.

5A Gaussian or a normal distribution means that a probability of finding a particle in such a bunch in an
interval [x,x+dx] is given by dw = (dx/

√
2πσx)e−(x

2/2σ2
x ).
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While the luminosity in some way represents a technical specification of an accelerator,
laws of physics are incorporated in the cross-section appearing in Eq. 3.4. Semi-classically
one can think of a cross-section as of an area that can be hit by a projectile. For example, ra-
dius of a nuclei is roughly 10−15 m= 1 fm. A cross-sectional area covered by such a nucleus
is πr2 = π fm2. Hence a cross-section for a process to occur on such a nucleus would be
π fm2, or in more convenient units 0.0314 b. Here, b stands for ”barn”, b=10−28 m2. In order
to calculate a cross-section for a given quantum mechanical process quantum mechanics has
to be applied. A cross-section is proportional to the amplitude squared of a given process,
|M |2, like the one denoted in Fig. 1.9. Multipliying the cross-section σp with luminosity L
yields the rate of the process p in units of s−1.

Combining the dependence of the statistical uncertainty of a given measurement on the
number of observations, Eq. 3.3, and the rate of a given process, Eq. 3.4, it becomes clear
why the experiments performing high accuracy measurements are called Intensity Frontier.
In order to decrease the statistical uncertainty one needs a large number of recorded process
of a given type. This, on the other hand, is possible if the luminosity (intensity) of a collider
is high.

Note: Charged particles can be accelerated by means of electric field, and constrained
to move in circular orbits by means of magnetic field. The highest energies of acceler-
ated particles were achieved at the Large Hadron Collider (CERN). Beside the energy,
luminosity is an important property of a particle collider. The larger the luminosity, the
larger is the rate of production of individual processes in the collisions of accelerated
particles, and the better the precision by which these process can be measured.

3.1.2 B Factories
Prominent examples of the Intensity frontier experiments are the LHCb experiment at the
LHC collider, and Belle II experiment at the SuperKEKB collider. The later is an electron
positron collider, operating mainly at the CMS energy of 10.58 GeV. This energy corre-
sponds to the rest energy of ϒ(4S), a bound state of a bb̄ quark pair. It’s mass is just slightly
larger than the sum of a pair of B+B− or B0B̄0 mesons, 2 ·5,28 GeV= 10.56 GeV. The cross-
section for an e+e− interaction at a given CMS energy is shown in Fig. 3.6. While generally
decreasing with the CMS energy, the cross-section exhibits huge increases at certain ener-
gies, when the energy corresponds to a rest energy of a particle that can be produced in an
e+e− collision. For example, at the energies around 90 GeV the cross-section increases due
to the production of an intermediate neutral weak boson Z0. The increase of the cross-section
is due to the process shown in Fig. 3.7 (top left). Similarly, at the energy of around 10.5 GeV,
the ϒ(4S) state is produced (Fig. 3.7 (top right)). This bound state promptly6, in more than
96 % of cases decays into a pair of BB̄ mesons, where B = B+ or B = B0

d . Hence operating an
electron positron collider at the energy of ϒ(4S) resonance represents an abundant source of
B mesons. We called the bound state of a bb̄ pair, ϒ(4S), a resonance7. The reason lies in a
resonant energy shape of the cross-section in the vicinity of mϒ(4S). The energy dependence

6Lifetime of ϒ(4S) meson is around 3 ·10−23 s [2].
7Another term, used specifically for bound states of b and b̄ quarks, is bottomonium (an analogy with

positronium, a bound state of e+e−).
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Figure 3.6: Cross-section for electron positron collisisons as a function of the CMS energy
[2].

can be parametrized as σ(E) = σmax[Γ
2/4]/[(E−mR)

2 +Γ2/4], with E denoting the CMS
energy, mR the rest energy of a short-lived intermediate state - resonance, like ϒ(4S), and Γ

the width of the curve at half maximum. The latter represents also a natural decay width of
a resonance, related to the lifetime through τ = 1/Γ. The described energy dependence is a
typical resonance curve with a maximum at E = mR. A closer look at the energy dependence
of the cross-section is shown in Fig. 3.9. There, a graphic illustration of the cross-section
division is presented. The resonant part, marked in red, corresponds to a production of ϒ(4S)
and its decay into a pair of B mesons (process in Fig. 3.7 (top right)). Beside the resonance
production also an electromagnetic annihilation of the colliding electron and positron into
a virtual photon8 may occur (process in Fig. 3.7 (bottom)). In this case the final state is
composed of lighter quark pairs (q′ = u, d, s or c), or charged leptons. As opposed to the
resonant production the latter process is called the continuum production. The lower mass
bottomonium states do not decay into pairs of B mesons because their mass is below the
threshold of 2 mB. Due to the properties of the strong interaction among quarks they never
appear isolated in nature. Quarks are always bound within hadrons. In the case of a con-
tinuum production of lighter quarks, formation of hadrons from the initial quarks happens
in the process of fragmentation. As the initial quark and anti-quark in the CMS move away
from each other, new quark pairs are produced in the vacuum, combining with the already
existing ones into final hadrons. The process is sketched in Fig. 3.8.

The resonant cross-section in the peak of the ϒ(4S) resonance amounts to around 1.1 nb.
The cross-section for the continuum production of cc̄ or uū pairs is around 2.0 nb, while that
for the dd̄ or ss̄ production is 0.5 nb.

At an electron positron collider with a luminosity of 2 · 1034 cm−2s−1 the cross section
σ(e+e−→ ϒ(4S)→ BB̄) = 1.1 nb means that around 20 BB̄ meson pairs are produced every

8Virtual particle is a particle for which the usual relation E =
√

p2 +m2 does not hold, see discussion in
Sect. 1.2.3. In this specific case, the energy of the photon E = ECMS, while its momentum in the CMS frame is
zero.
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Figure 3.7: Top left: Electron positron annihilation into a neutral weak boson, producing qq̄,
`+`− or νν̄ pair (where q = u, d, s, c or b, `= e, µ or τ , and ν = νe, νµ or ντ ). Top right:
Electron positron collision producing ϒ(4S), a bound state of bb̄ which decays into a pair
of B+B− or B0B̄0 mesons. Bottom: Electron and positron can annihilate through a virtual
photon to produce q′q̄′ or `+`− pair (where q′ = u, d, s or c, and `= e, µ or τ).

second (as well as, for example, around 35 cc̄ pairs). By BB̄ from now on we mean either
B+B− or B0

dB̄0
d mesons, i.e. any B mesons that can be produced in the ϒ(4S) decays. Also,

we will use a short notation B0(B̄0) to denote B0
d(B̄

0
d) meson. Heavier B mesons (B0

s and B+
c )

are too heavy to be produced at this CMS energy: mBs = 5.37 GeV and mBc = 6.27 GeV. The
most important ingredient of a collider called ”B Factory”, a production of B mesons at a high
rate, is thus fulfilled by operating an e+e− machine at the ϒ(4S) resonance. Moreover, at this
precise energy, a BB̄ meson pairs are produced without any additional final state particles,
because the mass difference mϒ(4S)−2 mB ∼ 20 MeV does not allow for that. The B mesons
from ϒ(4S) are produced almost at rest in the CMS. B mesons are abundantly produced also
in other processes, in proton proton collisions for example. The latter production is exploited
by LHCb detector at the LHC collider. However, there are further specific properties, and
requirements on the B meson production that must be satisfied for a successful operation of
a B Factory, as discussed below.

The SuperKEKB collider is an upgrade of its predecessor, KEKB collider, which was in
operation in the High Energy Accelerator Research Organization (”Koh-eh-nel-ghi ken-cue-
kikoh”, KEK for short) in Tsukuba, Japan, from 1999 until 2010. The collider had a twin
brother named PEP-II operating in the Stanford Linear Accelerator Center (SLAC) in Stan-
ford, USA, in the period 1999 - 2008. The description of the main ideas and methods behind
the B Factories is common for the previous (KEKB and PEP-II) and present (SuperKEKB)
generation of colliders. The difference is nevertheless huge: while the previous generation
factories were colliding beams with luminosites of around 2 · 1034 cm−2s−1, the present
super B factory is expected to reach a 40 times higher luminosity, L = 8 · 1035 cm−2s−1

(remember that the highest luminosity ever achieved in any collider is 2.1 ·1034 cm−2s−1!).
At KEKB one gathered a dataset corresponding to an integrated luminosity (see Eq. (3.6))
of around 1 ab−1. At SuperKEKB the plan is to reach a dataset of 50 ab−1. The prefix ”a”
in ab denotes atto, a unit prefix of 10−18. For a physics process with a cross-section of 1 nb,
an integrated luminosity L = 1 ab−1 corresponds to Np = 109 events of the process under
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Figure 3.8: In the process of fragmentation the initial quarks qq̄ are combined with new
quark pairs produced in vacuum to form hadrons. Mi denotes a meson, and Bi a baryon.

question.
Belle II detector (Fig. 3.10) begun to take data in 2018, still awaiting a completion of its

semiconductor detector. It is expected to reach an integrated luminosity of its predecessors
in about a year time. In the book we discuss selected methods and results of the previous
generation B Factories (KEKB and PEP-II, with the detectors recording data there, Belle
and BaBar, respectively), applicable with some improvements also to the present one (Su-
perKEKB and Belle II detector). In the final chapter we also touch several expectations for
the results from the latter. Interested readers with some advanced knowledge may find a
comprehensive description of the detectors and measurement results of the B Factories in
[5].

B Factories provide for an additional property of colliding electron and positron bunches,
energy asymmetry. As will be discussed in Sect. 4.1, without the beam energy asymmetry
the most important measurements at B Factories would not be possible. Colliding electrons
have higher, and positrons lower energy in the laboratory frame. Denoting the former by E−
and the latter by E+, the CMS collision energy is obtained as

(ECMS,0)2 = (E++E−,~p++~p−)2

E2
CMS = 2m2

e +2E+E−−2~p+ ·~p− ≈ 4E+E− . (3.7)

The first line above is the equality of the square of the momentum 4-vectors of colliding
particles in the CMS frame and in the laboratory frame9. In the second line we neglected
electron and positron rest energy in comparison to their total energy. Most of the time the
KEKB collider operated with E−= 8 GeV and E+= 3.5 GeV, and thus ECMS = 10.58 GeV10.
It should be understood, though, that the energy of electrons and positrons can be adjusted in
some interval in order to yield various ECMS. Perhaps most importantly, the CMS energy can
be raised to the rest energy of ϒ(6S), in decays of which beside B+B− and B0

dB̄0
d pairs also

B0
s B̄0

s pairs are produced. At PEP-II, E−= 9 GeV and E+= 3.1 GeV, and ECMS = 10.56 GeV.

9Remember that a dot product of two 4-vectors, and hence also a square of any 4-vector, is a Lorentz
invariant quantity.

10In this simplified calculation we neglected the finite crossing angle of electron and positron beams. The
crossing angle at KEKB was 11 mrad, while at PEP-II the crossing angle was zero.
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Figure 3.9: Measured cross-section for e+e− → hadrons at CMS energies around
10 GeV [10]. Prominent resonant peaks are observed, exposing four bound states of bb̄,
denoted by ϒ(1−4S). The total cross-section at ECMS ∼mϒ(4S) is a sum of the resonant one
(red), corresponding to the process in Fig. 3.7 (top right), and the continuum one (blue) for
the process depicted in 3.7 (bottom).

Why the beam energy asymmetry is needed? Because in the CMS frame B mesons are
produced almost at rest. If the CMS frame coincides with the laboratory frame (no energy
asymmetry), B mesons have negligible momentum and decay at almost the same spot at
which they were produced. With asymmetric beam energies the CMS frame is boosted with
respect to the laboratory frame. Dimensionless velocity of ϒ(4S) in the laboratory frame is
β = p4S/E4S = (p−− p+)/(E−+E+) ≈ (E−−E+)/(E−+E+) = 0.391. Lorentz factor
γ = 1/

√
1−β 2 = 1.086 and hence βγ = 0.425 (at PEP-II the boost factor was even larger,

βγ = 0.56). A BB̄ meson pair is produced with a boost in the direction of the electron beam,
and each of the B mesons travels a certain distance before decaying. The distance is indeed
short, typically around 200 µm, nevertheless long enough to be reconstructed by precise
semiconductor detectors, as described in Sect. 3.2.3.

Note: B Factories are electron positron colliders operating at the center-of-mass energy
of ϒ(4S) resonance which decays into a pair of B mesons. Due to the high accelerator
luminosity, during their operation B mesons are produced abundantly at a rate of sev-
eral tens per second. Asymmetric beam energies at B Factories enable measurements
of B mesons’ decay distance.
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Figure 3.10: A photograph of Belle II detector. Photo: M. Friedl

3.2 Quantum measurements
In order to study processes involving B mesons produced at the B factories, particle detec-
tors reconstructing their decay products are needed. Requirements for detectors depend on
the physics goals of measurements to be performed and on the operating environment - the
accelerator. Detectors at B factories were designed to measure CP violation in the system of
B mesons, and in the course of a decade long data taking proved to be capable also of several
other intriguing measurements. In the transition to the new generation of B factories (Belle
II detector at the SuperKEKB collider) physicists profited from experiences with the previ-
ously operating detectors (Belle at KEKB and BaBar PEP-II) in development of improved
instrumentation, capable of operation in harsher environment (significantly higher luminos-
ity reflecting in higher radiation to be sustained by the detector) and of even more precise
measurements.

Let us introduce the detectors first in general, to help the conceptual understanding, and
explain some basic principles of operation afterwards. A schematic cross-section of the
Belle and BaBar detectors are shown in Figs. 3.11 and 3.13, respectively. Each schematic
illustration is followed by a photo of the detector. The detectors are of cylindrical shape
built around the collision (or interaction) point of accelerated electrons and positrons. They
are composed of a barrel part and two end-caps. For reasons to be explained below the
detectors are placed in a strong11 magnetic field pointing along the symmetry axis of the
detector.

At the interaction point either the ϒ(4S) resonance is formed, or fermion pairs are pro-
duced (see Sect. 3.1.2). The former immediately decays into a BB̄ pair, and in the latter
case in the process of fragmentation new pairs of quarks are formed, eventually grouped
into various species of hadrons. B mesons have a lifetime of the order of ps and, as we

11The magnetic flux density is 1.5 T.
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Figure 3.11: A cross-section of Belle detector [5]. Detector modules include Silicon Vertex
Detector (SVD), Central Drift Chamber (CDC), Aerogel Cherenkov Counter (ACC) and
Electromagnetic Calorimeter (ECL).

will discuss further in the next section, on the average decay at a distance of 200 µm. One
can only detect hadrons and charged leptons12 that have lifetimes long enough to reach the
active parts of the detector. These particles are produced in decays of heavier, shorter lived
particles or in fragmentation, and are listed in Tab. 3.1. Short lived particles produced in var-
ious physics processes are reconstructed from their decay products, detected in a detector.
For such reconstruction typically an observable called the invariant mass is used. Consider
a decay of an initial particle P to several final state particles fi (i = 1, ...n). The final state
particles 3-momenta, ~pi, are measured in the detector. fi’s are also identified, i.e. as we clar-
ify below, their masses mi are determined. Energies of final state particles are thus known,

Ei =
√

m2
i + p2

i . 4-momentum of P, (
√

m2
P + p2

P,~pP), is unknown. Since energy and mo-
mentum in decay are conserved, we can write:

(
√

m2
P + p2

P,~pP)
2 =

[
n

∑
i=1

(Ei,~pi)

]2

m2
P =

n

∑
i=1

m2
i +∑

j>i
2(EiE j−~pi · ~p j) . (3.8)

12We specifically mention charged leptons, because neutral leptons - neutrinos - are not detectable with
general purpose detectors described here. They only interact weakly and hence special detectors with a large
amount of material are required for ν detection.
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Figure 3.12: A view of one of the end-caps of Belle detector [11].

Mass of the initial state particle can be calculated using the measured momenta of its decay
products. In this case mP is called the invariant mass13.

Taking into account the physics program of two international collaborations gathered
around the Belle and BaBar detector14, the detectors needed to fulfil some general require-
ments:

• ability to detect particles in the largest possible fraction of the solid angle around the
e+e− interaction point (hermeticity);

13Invariant because it represents the square of a magnitude of a Lorentz vector, which is invariant under
Lorentz transformations.

14Collaborations evolved during time, at the maximum each consisted of 500 to 600 collaborators, from
more than 70 institutions worldwide.

particle cτ [m]
e− ∞

µ− 659
π− 7.8
K− 3.7
K0

L 15.3
p ∞

n 2.6 ·1011

γ ∞

Table 3.1: Particles stable enough to be detected in the detectors (corresponding anti-particles
are implied). Their average decay length is γβcτ , where γ is an approriate Lorentz factor
and β their velocity in units of the speed of light c. cτ = ∞ means a stable particle.
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Figure 3.13: A cross-section of BaBar detector [5]. Various subdetectors are marked on the
plot.

• excellent precision in spatial determination of B meson decay vertices, with resolution
of around 100 µm (for decay time dependent studies);

• good separation among various types of particles, especially between kaons and pions
(particle identification);

• capability of efficient and precise photon energy reconstruction (calorimetry).

For most of the particle detectors three groups of detector modules (subdetectors) are
mandatory, performing three distinct tasks: charged particles momentum determination,
charged particle identification, and neutral particle energy determination and identification.

3.2.1 Momentum

The first task from the list above is achieved using the already mentioned bending of charged
particles trajectories in a magnetic field (Eq. (3.2)). Assuming the particle’s initial velocity
being perpendicular to the direction of magnetic field (Fig. 3.15 (left)), particle will travel
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Figure 3.14: View of BaBar detector during installation [12].

along a circular orbit with radius R:

evB = m
v2

R
R =

p
eB

, (3.9)

where we used the centripetal acceleration v2/R. Generalizing the expression to the case
of non-perpendicular initial velocity, radius R is related to the component of momentum
perpendicular to ~B,

R =
pt

eB
. (3.10)

In such a case a particle would travel along a 3-dimensional helix, as sketched in Fig. 3.15 (right).
Hence by measuring the radius of a charged track in a magnetic field one can determine pt .
The component of momentum parallel to ~B can be obtained from the angle the track makes
with the axis of the magnetic field

p‖ = pt tanθ . (3.11)

Determination of charged particle’s momentum thus reduces to spatial determination of its
trajectory.

Trajectory of a charged particle is typically reconstructed using various types of gaseous
detectors. A basic principle can be understood using an example of a cylindrical proportional
counter cell (Fig. 3.16 (left)). A charged particle traversing the sensitive volume filled with
gas ionizes gas molecules (primary ionization). An anode wire and a cathode enclosure



52 CHAPTER 3. DOWN THE RABBIT HOLE

Figure 3.15: Left: In a plane perpendicular to the direction of magnetic field charged particle
moves along a circular line. Right: In three dimensions the trajectory of a charged particle is
a helix.

produce a radial electric field, with stregth E =V0/[r log(b/a)], in which the ion pairs move.
Due to collisions with the gas molecules the drift velocity of electrons and positive ions is
approximately ve,ion = µe,ionE, where µe,ion denotes the electron or ion mobility. The effect of
a specific radial dependence of the electric field strength in cylindrical geometry (E ∝ 1/r)
is multiplication of ion pairs, due to secondary ionization by electrons from the primary
ionization, in the vicinity of the anode. Performance of such a counter can be extended
by using several anode wires, as sketched in Fig. 3.16 (right). This constitutes a multiwire
proportional chamber which enables determination of a spatial coordinate of the traversing
ionizing particle. Invention of the latter is attributed to Georges Charpak, French physicist
who at the time of invention worked at CERN. Multiwire proportional chambers caused
a small revolution in experimental particle physics and played also an outstanding role in
enabling new diagnostic methods in medicine. G. Charpak received the Nobel prize for
physics in 1992. If the time of the ionizing particle’s crossing is known, the position can be
determined even more precisely by integration of ion pairs velocity over the time. In order
to achieve a good accuracy with this method, the mobility of electrons and ions in the gas,
as well as the electric field strength must be precisely known. Such variant of the chamber
is called the drift chamber. Both Belle and BaBar detectors successfully used drift chambers
as the main tracking devices to determine momenta of the charged particles. Belle II uses an
upgraded version of the same device as used in Belle detector. A general idea on geometry
of the devices is shown in Fig. 3.17 (left). The Belle Central Drift Chamber is denoted by
CDC in Fig. 3.11, and BaBar’s Drift Chamber by DCH in Fig. 3.13. Each of the chambers
incorporated several thousands of anode wires. The accuracy by which the momentum of
charged particles is measured depends mainly on two effects: the intrinsic resolution of a
given device (determined by wire spacing, gas mixture used, etc.) and multiple scattering
of ionizing particle. The latter is due to scattering of particle in the material of detector
and causes its trajectory to deviate from an ideal helix. The first effect results in a relative
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Figure 3.16: Left: A gaseous cylindrical proportional counter, with a charged track produc-
ing primary ionization. Electrons travel towards the anode and positive ions towards the
cathode. In the vicinity of the anode a secondary ionization takes place. Right: A single
counter cell can be evolved into a multiwire chamber that enables determination of a spatial
coordinate.

accuracy of the transverse momentum component determination (σ(pt)/pt)) proportional to
pt . The second is inversely proportional to the velocity of the particle. The total relative
accuracy is a quadratic sum of both terms:

σ(pt)

pt
=
√

(a pt)2 +(b/v)2 (3.12)

For Belle detector a = 0.0019 GeV−1 and b = 0.0030 c. For a charged pion with pt = 1 GeV
the relative accuracy is around 0.4%. In order to be able to deduce signals from all the anode
wires, as well as to provide high voltage to them, a lot of cables must be connected to the
back plate of a drift chamber. A photo of cables used for the drift chamber of Belle II detec-
tor is shown in Fig. 3.17 (right), and a nice example of reconstructed tracks in Belle CDC in
Fig. 3.18 (left).

Note: Charged particles’ momenta determination with a sub-percent relative accuracy
is achieved by measuring the curvature of their trajectories in a magnetic field.

3.2.2 Identification
The second group of detector modules is used for charged particle identification (commonly
abbreviated as PID). There are several physics principles to achieve this goal. But first we
need to clarify what is meant by ”identification”. Individual hadrons and charged leptons
are best distinguishable according to their mass. Once the mass of an individual particle
is known, for example 106 MeV, 140 MeV or 494 MeV, one can easily deduce from the
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Figure 3.17: Left: Geometrical principle of momentum determination using drift chambers.
Trajectory of a charged particle originating from the interaction point is curved due to mag-
netic field. The ionizing particle produces ionization in the gas of the chamber, which is
detected by anode wires. Note that in realistic chambers the number of wires is much larger.
Right: A view of Belle II CDC backward plane after connection of all cables. Photo: Van
Thanh Dong.

already known particle properties that she is dealing with a muon, charged pion or charged
kaon, respectively. On the other hand, once the momentum of a particle is known (from the
measurements described before), the mass follows from the relation

p = γmv

m =
p

γv
. (3.13)

The relation shows that in order to determine particle’s mass, beside its momentum we need
to know also the velocity. PID is hence a synonym for velocity measurements. Let us
mention only one of the principles of velocity determination used in both, BaBar and Belle
detectors.

The method is based on the effect of Cherenkov radiation. It is named after Pavel
Cherenkov, a Russian physicist, who first experimentally observed this kind of radiation.
It is emitted by any charged particle travelling through a medium at a speed greater than the
speed of light in the same medium. By denoting the latter by c′, to be distinguished from the
speed of light in vacuum, c, we have the following relation between the two:

c′ =
c
n

. (3.14)

The refractive index of a medium, n, is always greater than unity, and hence c′ ≤ c. With the
velocity of a particle v greater than c′ we have a situation sketched in Fig. 3.19 (top left). A
charged particle emits radiation at an angle θC with respect to the direction of its velocity. If
a particle emits a photon at t = 0, after δ t it travels the distance vδ t, while the photon in the
same time moves by c′δ t = cδ t/n. Hence

cosθC =
c/n
v

=
1

βn
. (3.15)
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Figure 3.18: Left: Reconstructed tracks of charged particles in the volume of Belle CDC.
Full lines are trajectories of particles fitted through the measured hits, represented by circles.
Right: Zoom of interaction region with extrapolated tracks (the event is not the same as on
the left plot). Note the change of scale between the plots, marked by red arrows. Points on
particles tracks measured by SVD enable extremely precise determination of decay vertices
of short lived particles. A sub-milimeter distance between decay vertices of two B mesons
(one decaying into K−π+µ−µ+ and the other into K−π+π−π+) is clearly visible [23].

The light is only emitted if v ≥ c′ or β ≥ 1/n, and thus of course cosθC ≤ 1. The angle θC
is called the Cherenkov angle. P. Cherenkov was for his discovery awarded the Nobel prize
in physics in 1958. He shared the prize with I. Tamm and I. Frank who described the effect
theoretically.

Cherenkov angle, and Cherenkov effect in general depend on the velocity of a particle
emitting the radiation. Determination of the Cherenkov angle (and knowledge of the material
in which the radiation was generated, i.e. of the refractive index) leads to particle’s velocity,
and - in the sense of what was discussed just after Eq. (3.13) above - eventually to the mass
of the particle.

In BaBar, the DIRC detector module (Detector of Internally Reflected Cherenkov Light)
was performing exactly this - measurements of Cherenkov angle and by that identification
of charged particles. The ingenious principle of operation is illustrated in Fig. 3.19 (top
right). A charged particle entered an almost 5 m long quartz bar (n≈ 1.5) in which it emitted
Cherenkov light15. The emitted photons propagated by means of internal reflection through
the quartz to one end of the bar. At the end they were detected by photon detectors (photo-
multipliers) measuring the position of the exiting photons as well as the time of their travel
through the bar. From the measured Cherenkov photon information and known impact point
of a charged track on the surface of the quartz bar one can reconstruct the Cherenkov angle.
A geometrical configuration of the DIRC is sketched in Fig. 3.19 (bottom).

The performance of the DIRC subdetector is illustrated in Fig. 3.20 [24]. The efficiency

15If its velocity was larger than c/1.5, which is, for example, fulfilled for charged kaons with p≥ 450 MeV.
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Figure 3.19: Top left: to derivation of the Cherenkov angle. Top right: Principle of BaBar
DIRC operation. Bottom: A sketch of geometrical configuration of DIRC subdetector in
BaBar detector. Note that the sketch is not to scale, DIRC was actually composed of 144
quartz bars.

for charged kaon identification, defined as the probability for a true kaon entering the DIRC
system to be actually identified as such, is very high (> 95 %). It depends on the criteria
(number of detected Cherenkov photons, accuracy of the Cherenkov angle determination, ...)
used to select identified kaons, and should hence always be presented with another quantity,
for example a probability for a charged pion to be identified as a kaon; with tighter selection
criteria the efficiency drops, but also the latter probability is lower. The efficiency as well as
the pion misidentification rate depend on the momentum of the particle. This follows from
the dependence of the number of radiated Cherenkov photons on particle’s velocity. It is
proportional to sin2

θC:

Nγ ∝ Lsin2
θC = L

(p2/E2)− (1/n2)

p2/E2 , (3.16)

where L is the distance travelled by the charged particle in the radiator material, and β = p/E
was used. Note that for a charged kaon with p = 1 GeV and in a material with n = 1.5, the
average number of radiated Cherenkov photons is only around 220 cm−1 (thickness of the
quartz bars in DIRC was around 1.7 cm). Due to a finite photon detection efficiency of
photomultipliers the actual number of detected photons per charged track was only few tens
in BaBar [25]. This is comparable to a sensitivity of a human eye (as one of the most sensitive
light sensors), which responds to around 10 incident photons16[26].

16The sensitivity strongly depends on the wavelength of the incident photons; human eye is most sensitive
to green light, i.e. photons with wavelengths of around 550 nm. Photomultiplier tubes, on the other hand, at
least the ones used in DIRC, are most sensitive to blue light, λ ∼ 450 nm and less.
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Figure 3.20: Left: Efficiency for correct identification of K± using DIRC subdetector in
BaBar, and probability for misidentification of π± as K± [24]. Right: Invariant mass distri-
bution for D0→ K−π+ decays, with or without using DIRC identification [24].

From the point of view of physics performance, Fig. 3.20 (right) shows an interesting
comparison. The plot shows a distribution of invariant mass (Eq. (3.8)) of the final state
particles in decays of charm mesons D0 to K−π+ pairs. In case of correct reconstruction -
combination of two reconstructed tracks which actually belong to a kaon and a pion from D0

decay - the invariant mass equals the nominal mass of a D0 meson. Such combinations form
the observed peak at the mass of around 1.87 GeV. Wrong, mainly random combinations of
tracks do not form such a peak but rather a smooth background distribution. When using
the identification provided by DIRC, i.e. dividing the set of tracks to pions and kaons, the
amount of such random combinations is largely reduced by a factor of ∼5, while the yield
of correctly reconstructed decays is reduced by only a small fraction.

In Belle II detector a similar principle as in DIRC is used for PID. The internal reflection
of light in quartz bars of Belle II detector is photographed in Fig. 3.21. Note though that
what is seen in the photo is a laser light and not Cherenkov photons.

Note: Identification of charged particles - determination of their mass - is possible
through various methods, one of the most accurate ones being a measurement of the
Cherenkov radiation. It only appears for charged particles travelling through a medium
at a speed greater than the speed of light in the same medium.
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Figure 3.21: Laser light being internally reflected in a quartz bar of Belle II PID subdetector.
Photo: K. Inami

3.2.3 Compactification
Looking at Fig. 3.11 and realizing that Belle CDC encompasses roughly 5 m3 of gas17,
it’s hard to imagine that in modern times, when everything is compact but yet capable and
efficient, one needs such a relatively bulky device to perform a precise measurement. To per-
form measurements of quantum mechanical objects - particles momenta with a sub-percent
relative precision, at an affordable price, such a device is nevertheless needed. However,
compactification has been present in experimental particle physics long before than in smart
phones. Semiconductor detectors are used in many experiments, also in Belle and BaBar.
These detectors are denoted as SVD (Silicon Vertex Detector) in Fig. 3.11 and as SVT (Sil-
icon Vertex Tracker) in Fig. 3.13. As the name suggest they are made of semiconductor -
Silicon. Principle of operation is rather similar as in gaseous detectors. In semiconductor an
ionizing particle instead of ion pairs produces electron - hole pairs. In a junction of a p- and
n-doped semiconductor (a p-n junction) a region depleted of any free charge carriers (elec-
trons or holes) is established. Across the depleted region an electric field is built up which,
similarly as in a cylindrical proportional counter, scrolls electrons and holes to the appropri-
ate side of the junction. Thin metallic electrodes on the surface of the semiconductor act in
a similar manner as the cathodes and anodes in a drift chamber. In contemporary detectors
orthogonal strips of heavily doped semiconductor (denoted as p+ and n+) are implanted on
each side of the bulk of semiconductor material (Fig. 3.22). By this a 2-dimensional infor-
mation on the coordinate can be obtained, and such detectors are called Double Sided Silicon
Detectors (DSSD).

Semiconductor detectors are capable of measuring trajectories of charged particles with
significantly better precision then gaseous detectors. Typical distances among the wires in
drift chambers are of the order of 10 mm, while the widths of semiconducting strips and their
separations are of the order of 0.1 mm. This delicate and precise devices are installed closest
to the interaction point. A longitudinal and transverse cross-section of BaBar’s SVT is shown

17The gas in CDC was 50% He and 50% C2H6.
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Figure 3.22: A schematic illustration of a double sided silicon strip detector. p+ and n+

denote a heavily p- and n-doped semiconductor, respectively. A traversing ionizing particle
produces electron-hole pairs in a depleted region, and the released charge carriers are moving
in the electric field across the region.

in Fig. 3.23. By extrapolation of tracks reconstructed with the help of silicon detectors it is

Figure 3.23: Longitudinal (top) and transverse (bottom) cross-section of BaBar’s SVT [5].
It consisted of five cylindrical layers of double sided silicon detectors, extending in radius
from around 3 cm to around 15 cm.

possible to determine intersections of groups of particles originating from decays of a single
short lived particle, like a B mesons. These common points are called vertices. An example
of such a vertex reconstruction is presented in Fig. 3.18 (right).
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Belle II is equipped with four layers of DSSD and in addition two innermost layers of
new type of detectors, in which strips are replaced by pixels. The latter provide even more
precise spatial information. A photo of the assembled half-shell of these semiconductor
detectors is shown in Fig. 3.24 (left), together with BaBar’s SVT during maintenance (right).

Figure 3.24: Left: An assembled half-shell of Belle II vertex detector, composed of pixel
and double sided silicon strip detectors [27]. Right: BaBar’s SVT (together with magnets of
interaction region) during maintenance [5].

Precision of tracking can be verified using cosmic rays penetrating through the detector.
Track reconstruction algorithm reconstructs tracks from the interaction point outwards. This
is true also for a cosmic ray particle, the track of which is hence reconstructed as two inde-
pendent halves. Any discrepancy between the starting points of the half-tracks is a measure
of the tracking resolution. Resolution of Belle SVD determined with such a method is shown
in Fig. 3.25. In both independent coordinates (r−φ in the plane perpendicular to the direc-
tion of magnetic field, and z in the direction of ~B) the accuracy reaches around 30 µm for
particles momenta above 2 GeV.

Note: Semiconductor detectors enable precise determination of B meson decay vertices,
with a spatial precision below 100 µm.

3.3 Entanglement

3.3.1 BBbar
In decays of ϒ(4S) pairs of B mesons are produced. These pairs are not just any pairs of
B mesons, they posses some special properties enabling specific methods for studies of CP
violation. Every pair of B mesons from ϒ(4S)→ BB̄ carries the same quantum numbers as
ϒ(4S), specifically spin J = 1, parity P =−1, charge conjugation parity C =−1, and beauty
B = 018. Parity and C-parity of ϒ(4S) can be deduced from the explanations in Sect. 2.1,

18We use the same symbol B to denote the baryon number and the beauty quantum number. The reader
should be careful not to confuse the two.
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Figure 3.25: Tracking resolution in r−φ and z coordinate at Belle estimated using cosmic
rays [28].

taking into account that the quark pair in the meson is in a spin 1 state. The transfer of C and
P from ϒ(4S) to a pair of B mesons is possible because the decay is mediated by the strong
interaction which conserves both parity and C parity. Hence any pair of B mesons produced
in a decay of ϒ(4S) must be treated as a unique quantum system, and not as a pair of indi-
vidual mesons. Such a pair is an example of quantum entanglement. It means that properties
of an individual meson in a pair are not independent of the properties of the other meson,
because together they have to be in agreement with the properties of the ϒ(4S). To illustrate
the fact, let us consider a production of a pair of neutral B mesons, B0B̄0, in an ϒ(4S) decay.
First, in order the two final state mesons with spin 0 to conserve the angular momentum (re-
member, the spin of ϒ(4S) is 1), they must carry a relative orbital angular momentum L = 1.
According to the discussion in Sect. 2.1 a quark (fermion) and an anti-quark (anti-fermion)
in a meson have opposite intrinsic parities. Hence a B0 as well as B̄0 have negative intrinsic
parity - as stated in the mentioned section, bosons and corresponding anti-bosons have the
same intrinsic parity. The total parity of the meson pair is PB0PB̄0(−1)L = −1, the same as
the one of the mother ϒ(4S) meson. A very similar argument follows for the C parity of
the mesons system. Exchanging B0 ↔ B̄0, which is what the Ĉ operator does, effectively
swaps the positions of the two mesons and hence the effect is the same as that of the parity
operation: it introduces a factor (−1)L to the eigenvalue of C parity. The C parity of the final
state is thus −1, in agreement with Cϒ(4S). Last but certainly not least, ϒ(4S) composed of
a bb̄ quark pair has beauty quantum number B = 0. In the final state this is divided between
the B0 (composed of a b̄ anti-quark) with BB0 = 1 and the B̄0 (composed of a b quark) with
BB̄0 =−1. The total beauty of the final state is thus 0.

The mentioned facts simply represent conservation of various quantum numbers and are
not related to quantum entanglement. Now remember a phenomenon briefly described in
Sect. 1.2.3, the neutral meson oscillations (see also Fig. 1.11). Although rare, the process
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may cause one of the B mesons, e.g. B0, to oscillate into its anti-particle, B̄0. Does this mean
that at a certain point the final state of an ϒ(4S) decay is a B̄0B̄0 and not B̄0B0? And that
B =−2, different than the one of ϒ(4S)? No, because the quantum entanglement prevents it.
In case one of the mesons oscillates, simultaneously also the other meson oscillates into its
anti-particle. This is the meaning of what we said earlier: the properties of the two mesons in
an entangled pair are not independent but correlated. Hence the final state remains composed
of a B0 and B̄0 as long as one of the two mesons doesn’t decay. At that time the coherence
of the final state wave function is destroyed, the wave function of a quantum entangled state
collapses.

The question of quantum entanglement played (and actually still does) an important role
in the history of quantum mechanics development. Even the great Albert Einstein had diffi-
culties with contra-intuitive fact that one of the objects in an entangled state ”knows” what
are the properties of the other, or better to say ”feels” when a partner object was being
measured and its properties revealed to an outside observer. And all this regardless of the
distance between the two objects, on a time scale in which a signal - even if travelling with
the speed of light - can not travel the distance between the two objects. It was a subject of the
so called Einstein-Podolsky-Rosner (EPR) paradox, which the three great minds described
in a scientific paper in 1935 [29]. Since then it has been experimentally proven on many
occassions (among else also with the measurements at the B Factories [30]) that the quantum
entanglement is a fact of Nature.

The quantum entanglement and the neutral (B) meson oscillations lie in the heart of the
most prominent CP violations studies at the B Factories. In the following we will take a
slightly deeper look into the time evolution of any short-lived neutral meson P0 undergoing
oscillations. A more impatient reader can jump to Eq. (3.46) in which the time evolution is
given.

Assume an initial state |ψ(t = 0)〉 which is a superposition of a neutral meson P0 and its
anti-particle P̄0:

|ψ(t = 0)〉= a(0)|P0〉+b(0)|P̄0〉 . (3.17)

Note that the above equation includes cases when the initial state is a pure |P0〉 or |P̄0〉
(i.e. a(0) or b(0) equals 0), and may obtain the other component at a later time. In time
the state - considering possibility of oscillations as well as decays - will evolve and obtain
parts corresponding to various possible decay final states, |ψ(t)〉 = a(t)|P0〉+ b(t)|P̄0〉+
∑i ci(t)| fi〉, where fi’s represent possible final states that |ψ〉 can decay into. For the moment
we are not interested in any specific final state but rather only in |P0〉 and |P̄0〉 components
of |ψ(t)〉. In this case one can use a simplified description, by writing components of |ψ(t)〉
in the subspace of |P0〉 and |P̄0〉 only:

|ψ(t)〉=
[

a(t)
b(t)

]
. (3.18)

The time evolution of the state is governed by an effective Hamiltonian

Ĥ = MMM− i
ΓΓΓ

2
. (3.19)

The effective Hamiltonian Ĥ is represented by a 2× 2 complex matrix, and as such can



3.3. ENTANGLEMENT 63

be written as a sum of two Hermitian matrices MMM and ΓΓΓ19. The diagonal elements of Ĥ
describe the flavour-conserving transitions |P0〉→ |P0〉 and |P̄0〉→ |P̄0〉, and the off-diagonal
elements the flavour-changing oscillations |P0〉 ↔ |P̄0〉. Since MMM and ΓΓΓ are hermitian, MMM† =
MMM and ΓΓΓ

† = ΓΓΓ, their elements satisfy M∗12(Γ
∗
12) = M21(Γ21). We can calculate expectation

values 〈P0|Ĥ|P0〉 and 〈P̄0|Ĥ|P̄0〉:

〈P0|Ĥ|P0〉= [1,0]
[

M11− iΓ11/2 M12− iΓ12/2
M∗12− iΓ∗12/2 M22− iΓ22/2

] [
1
0

]
= M11− iΓ11/2

〈P̄0|Ĥ|P̄0〉= [0,1]
[

M11− iΓ11/2 M12− iΓ12/2
M∗12− iΓ∗12/2 M22− iΓ22/2

] [
0
1

]
= M22− iΓ22/2 . (3.20)

The conservation of CPT symmetry (see discussion around Eq. (2.16)) requires equality of
masses and lifetimes for a particle and its antiparticle, and hence M11 = M22 and Γ11 = Γ22.

The oscillations are described by

〈P0|Ĥ|P̄0〉= M12− iΓ12/2 . (3.21)

The eigenvectors of Ĥ, which are written as linear combinations

|P1,2〉= p|P0〉∓q|P̄0〉 , (3.22)

have well defined masses and decay widths, expressed in terms of the elements of MMM and ΓΓΓ.
Parameters p and q must satisfy the normalization condition |p|2+ |q|2 = 1. In the |P0〉, |P̄0〉
basis the eigenvectors are written as

|P1〉=
[

p
−q

]
, |P2〉=

[
p
q

]
. (3.23)

The eigenvector and eigenvalue problem

Ĥ|P1,2〉= λ1,2|P1,2〉 (3.24)

involves solving the determinant equation∣∣∣∣M11− iΓ11/2−λ1,2 M12− iΓ12/2
M∗12− iΓ∗12/2 M11− iΓ11/2−λ1,2

∣∣∣∣= 0 , (3.25)

resulting in the eigenvalues

λ1,2 = M11− iΓ11/2±
√
(M12− iΓ12/2)(M∗12− iΓ∗12/2) . (3.26)

With these eigenvalues one can determine q and p from Eq. (3.24) written as[
M11− iΓ11/2 M12− iΓ12/2
M∗12− iΓ∗12/2 M22− iΓ22/2

][
p
∓q

]
= λ1,2

[
p
∓q

]
. (3.27)

19It should be understood that this effective Hamiltonian is not Hermitian; a corresponding time evolution
in the chosen 2-dimensional subspace is not unitary and consequently the probability density |ψ(t)|2 is not
conserved.
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After some algebra this brings us to

(q
p

)2
=

M∗12− iΓ∗12/2
M12− iΓ12/2

. (3.28)

Together with the normalization condition the above expression fixes values of q and p in
terms of MMM and ΓΓΓ elements; hence the eigenvectors (3.22) and their eigenvalues (3.26) are
determined. The latter we write as a sum of a real and an imaginary part,

λ1,2 ≡ m1,2− iΓ1,2/2 , (3.29)

where m1,2 and Γ1,2 are masses and decay widths of the eigenstates |P1,2〉, respectively. The
time evolution of these states is simple,

|P1,2(t)〉= e−iλ1,2t |P1,2(t = 0)〉= e−i(m1,2−iΓ1,2/2)t |P1,2(t = 0)〉 . (3.30)

Time dependent probability density is

|〈P1,2(t = 0)|P1,2(t)〉|2 = e−Γ1,2t (3.31)

Hence the eigenstates |P1,2(t)〉 exhibit a simple exponential time evolution. Note that this
is true for the eigenstates of the effective Hamiltonian Ĥ, but not for the physical states
|P0(t)〉, |P̄0(t)〉, which are the states of definite flavour (for example B0 and B̄0).

Time evolution of states |P0(t)〉 and |P̄0(t)〉 is, on the other hand, nontrivial because of
a possibility of oscillations. It can be derived by reverting the expression Eq.(3.22) which is
valid at any time:

|P0(t)〉 =
1

2p

[
|P2(t)〉+ |P1(t)〉

]
|P̄0(t)〉 =

1
2q

[
|P2(t)〉− |P1(t)〉

]
. (3.32)

To make the time evolution explicit we introduce new parameters:

m≡ m1 +m2

2
, Γ≡ Γ1 +Γ2

2
∆m≡ m1−m2, ∆Γ≡ Γ1−Γ2 . (3.33)

We assume m1 > m2 and hence ∆m > 0. This is a choice we are free to make, but once this is
assumed the sign of ∆Γ must be experimentally determined. The fact that the choice ∆m > 0
can be made may perhaps not be completely obvious. There is an observable distinction
between |P1〉 and |P2〉: if p = q (a limit in which CP is conserved, as we will show below)
it follows from Eq. (3.22) that ĈP̂|P1,2〉 = ±|P1,2〉. |P1〉 and |P2〉 are thus even and odd
eigenstates of ĈP̂, respectively. In the case of neutral K mesons (see Sect. 2.2 and discussion
there), |K0

1 〉 decays into 2π and |K0
2 〉 decays to 3π . Even if CP symmetry is not conserved

(ε 6= 0 in Eq. (2.9)), |K0
S 〉 decays predominantly to two pions and |K0

L〉 decays to three pions
in majority of decays. It may seem we’ve arbitrarily decided that the mass of one state
(which is CP-even in case of CP conservation) is larger than the mass of the other (which is
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K0 D0 B0
d B0

s

∆m/Γ 1 5 ·10−3 0.8 27
∆Γ/Γ -2 0.02 0 0.1

Table 3.2: Approximate values of ∆m and ∆Γ (in units of the average decay width Γ) for
various neutral mesons.

CP-odd). However, one should note that the eigenvalue problem in Eq. (3.27) yields (q/p)2,
and hence we have a choice of sign for the physical solution of q/p. Beside q/p = 1 also
q/p = −1 leads to CP conservation, causing an interchange |P1〉 ↔ |P2〉 with respect to the
former case. Hence the choice of the sign for ∆m doesn’t constrain and is not in a potential
conflict with any of the observable. The sign of ∆Γ and the answer whether the heavier state
is more CP-even or CP-odd is left to the experiment.

In the neutral kaon system the long-lived component (|K0
L〉, which is predominantly CP-

odd) has obviously a much smaller width than the short-lived component (|K0
S 〉, which is

predominantly CP-even). On the other hand, |K0
L〉 is slightly heavier than |K0

S 〉. With positive
∆m this means ∆Γ< 0. In the system of B0

d mesons the width (or equivalently the decay time)
difference between the two mass eigenstates is much smaller. The sign of ∆Γ has so far not
been determined yet20. We have made an explicit notation for the B0

d mesons since for the B0
s

mesons the situation is somewhat different. There, ∆Γ has been measured rather precisely
and is known to be positive. Also in the system of neutral D mesons the more CP even
component is heavier and has a shorter decay time. Approximate vales of ∆m and ∆Γ for
various neutral meson systems are given in Tab. 3.2.

Using (3.26) and (3.33) with some algebra21 we can also relate ∆m, ∆Γ, M12 and Γ12:

(∆m)2− 1
4
(∆Γ)2 = 4|M12|2−|Γ12|2

∆m∆Γ = 4Re(M12Γ
∗
12) (3.34)

It should be noted that ∆m and ∆Γ are measurable quantities, as explained later.

Note: Pairs of B mesons produced at B factories are an example of quantum entan-
glement. Specifically, a neutral B meson from such a pair can freely oscillate only after
its partner decayed. Entanglement and oscillations lead to a non-trivial decay time
dependence of decay rates.

20Current experimental results [2] show that ∆Γ/Γ for B0
d mesons is less than around 1%.

21Relations that are helpful in the derivation are Re(z2) = (Re(z))2− (Im(z))2 and Im(z2) = 2iRe(z) Im(z),
for any complex number z.
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3.3.2 Evolution in time
Returning to the time evolution of flavour states, it can be economically written as

|P0(t)〉 = g+(t)|P0(t = 0)〉− q
p

g−(t)|P̄0(t = 0)〉

|P̄0(t)〉 = g+(t)|P̄0(t = 0)〉− p
q

g−(t)|P0(t = 0)〉 , (3.35)

with g±(t) given by

g±(t) =
1
2

e−im1te−Γ1t/2[1± ei∆mte∆Γt/2] . (3.36)

Time dependent states |P0(t)〉 and |P̄0(t)〉 denote the states which were |P0〉 and |P̄0〉, re-
spectively, at time t = 0 (because g+(t = 0) = 1 and g−(t = 0) = 0). In order to reduce the
notation we can skip the ”(t = 0)” to emphasize the state at an initial time, and simply write
|P0〉 and |P̄0〉.

Consider, for example, a decay P0 → f , where f is a final state accessible only to P0

and not to P̄0 (i.e. 〈 f |P̄0〉 = 0). Such final states are called flavour specific, because from
detecting | f 〉 or | f̄ 〉 one can deduce whether the decaying meson was a |P0〉 or a |P̄0〉. A time
dependent decay width for decay to such a final state is

dΓ(P0→ f )
dt

= N+|〈 f |P0(t)〉|2 = N+|g+(t)|2|〈 f |P0〉|2 . (3.37)

N+ denotes the necessary normalization, ensuring
∫

∞

0
dΓ(P0→ f )

dt dt = |〈 f |P0〉|2. The instanta-
neous probability |〈 f |P0〉|2 is related to the decay branching fraction, Br(P0→ f )∝ |〈 f |P0〉|2.
Performing the integration one finds22

N+ =
2
Γ

[1+(∆m/Γ)2][1− (∆Γ/2Γ)2]

2+(∆m/Γ)2− (∆Γ/2Γ)2 (3.38)

An explicit calculation of the decay width yields

dΓ(P0→ f )
dt

= N+e−Γt[cosh
(

∆Γt
2

)
+ cos(∆mt)

]
|〈 f |P0〉|2 . (3.39)

The time dependence is exponential (depending on the average decay width Γ), but mod-
ulated by the cosine and hyperbolic cosine terms; these appear because of possibility of
oscillations, i.e. intermediate transitions of |P0〉 → |P̄0〉 and vice versa. They depend on ∆m
and ∆Γ, which are often called the mixing parameters23. The decay rate for P̄0 is analogous
with reversed sign of the cosine term.

The time dependence of the derived decay width is shown in Fig. 3.26 as a solid line.
It is an oscillatory function, with its amplitude decreasing exponentially (the exponential
envelope is shown with a green dotted line). One notices time intervals at which decay rate

22The following equation is written in a form usually used when further notation reduction is exploited, using
x≡ ∆m/Γ and y≡ ∆Γ/2Γ. Then, N+ = (2/Γ)(1+ x2)(1− y2)/(2+ x2− y2).

23Mixing indicates the fact that an initial |P0〉 state is at a later time a mixture of |P0〉 and |P̄0〉.
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Figure 3.26: The time dependent decay width dΓ/dt (Eq. (3.39)). Solid green line shows the
time dependence for ∆m/Γ = 5 and ∆Γ/Γ = 0.1. Dotted green line is the exponential enve-
lope. Solid blue line is the same function with ∆m/Γ = 3 and ∆Γ/Γ = 0.1 (note the reduced
frequency of oscillations in this case), and blue dashed line for ∆m/Γ = 5 and ∆Γ/Γ = 0.9.

is low. At given instances the rate drops to 0, since the initial |P0〉 at that times exists as a pure
|P̄0〉, which does not decay to | f 〉. The effect of ∆m, acting as the frequency of oscillations,
can also be seen in the figure by comparing the examples for different values of ∆m/Γ. Time
dependent probability to find an initially produced |P0〉 after time t in a |P0〉 or |P̄0〉 state
is illustrated in Fig. 3.27 for various neutral meson systems. The plot exposes a diversity
of oscillation phenomena among various meson species. To make the described oscillations
less abstract, Fig. 3.28 (left) shows results of one of the measurements, performed by the
LHCb experiment [31]. It demonstrates the rapidity of oscillations of B0

s mesons on one
hand, and on the other the clearness by which the semiconductor detectors (see Sect. 3.2.3)
are able to reconstruct the decay vertices and by that the decay time of such mesons.

Decay-time dependent rate (3.39) can be used to measure ∆m and ∆Γ. Examples of
flavour specific decays of B mesons are B0→ D−π+ and B̄0→ D+π−, semileptonic decays
B0 → `+ν`X and B̄0 → `−ν̄`Y , and many others. By reconstructing decays of this type it
is possible to group B meson pairs at B Factories into unmixed, B0B̄0, and mixed, B̄0B̄0 or
B0B0, where at least one of the B mesons undergoes an oscillation after the other decayed.
An asymmetry between the number of decays belonging to each group, defined as Aflav =
(Nunmix(t)−Nmix(t))/(Nunmix(t)+Nmix(t)) has the following time dependence:

Aflav =
cos(∆mt)

cosh
(

∆Γt
2

) , (3.40)

which for small ∆Γ reduces to
Aflav = cos(∆mt) . (3.41)

Measured asymmetry by BaBar (using semileptonic decays) is shown in Fig. 3.28 (right) [32].
Two clarifications should be made: as we explain below, at B factories instead of time t ac-
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Figure 3.27: Probability for an initially produced oscillating meson |P0〉 to be found in its
original state (green) or in a state of its anti-particle (blue) after time t (i.e. |〈P0|P0(t)〉|2 and
|〈P̄0|P0(t)〉|2, respectively) for various mesons. Note that the vertical axis for the case of D0

mesons is logarithmic.

Figure 3.28: Left: Measurement of B0
s oscillation frequency (∆m) [31]. Data points represent

number of decays of B0
s mesons in a given decay time interval. Red data points denote decays

of B0
s mesons which oscillated and decayed as B̄0

s , and blue points those which decayed as
B0

s . Deviations from theoretical probability shown in Fig. 3.27 (bottom right), especially the
truncated exponential envelope at low decay times, is a consequence of detection capability
(efficiency of reconstruction). In comparison note that the full scale (4 ps) corresponds
to around 2.7 units in Γt. Right: Asymmetry Aflav (3.40) [32] measured by BaBar using
B meson semileptonic decays. The asymmetry exhibits a pure cosine behaviour with the
oscillation frequency ∆m, indicating that ∆Γ≈ 0.
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tually the time difference between decays of two B mesons in a pair, ∆t, appears. Second,
the asymmetry shown was fitted24 with ∆Γ = 0 approximation for Aflav. Because ∆Γ for B0

d
mesons is small, decays into self conjugated final states are more sensitive to it than decays
to flavour specific final states, as we also explain below. As indicated in Tab. 3.2, current
averages of measurements of ∆m and ∆Γ yield values of 0.770±0.004 and −0.002±0.010,
respectively [2]. ∆Γ is thus within the measurement accuracy consistent with 0.

The time dependence of the decay width is even richer if one considers a final state
into which both, |P0〉 and |P̄0〉 can decay. Let us denote such a state by fCP. An example
of such a state, to be specific, is J/ψK0

s , into which B0 and B̄0 can decay (see Fig. 3.29).
The subscript CP in fCP signifies that the chosen type of final state is an eigenstate of CP.

Figure 3.29: Decay of B0 and B̄0 to J/ψK0
S . The CKM matrix elements entering the ampli-

tude are shown. The dashed line denotes a time evolution of a neutral kaon.

Considering the specific example of fCP = J/ψK0
S : charmonium state J/ψ is an eigenstate

of CP as discussed in Sect. 2.1. On the other hand, K0
S is not an eigenstate of CP, due to CP

violation described by the parameter ε in Eq. (2.9). However, since ε ∼ O(10−3) we can
neglect a small component of |K0

2 〉 in |K0
S 〉, as long as we are discussing effects significantly

larger than ε . As we will see this is indeed the case when discussing CP symmetry violation
in the system of neutral B mesons. For this purpose |K0

S 〉 can be regarded as a CP eigenstate;
so is the J/ψK0

S in this approximation. Angular momentum conservation in B0(S = 0)→
J/ψ(S = 1) K0

S (S = 0) requires orbital angular momentum of L = 1 in the final state (spins of
involved particles are written in parenthesis). Hence CP(J/ψK0

S ) =C(J/ψ)C(K0
S )(−1)L ≈

C(J/ψ)C(K0
1 )(−1)L =−1 ·1 · (−1) = 1.

In obtaining the time dependence of P0 and P̄0 decays to fCP we proceed as in derivation
of (3.39); one starts from (3.35), which for fCP leads to

dΓ(P0→ fCP)

dt
= N |g+(t)〈 fCP|P0〉+ q

p
g−(t)〈 fCP|P̄0〉|2

dΓ(P̄0→ fCP)

dt
= N |g+(t)〈 fCP|P̄0〉+ p

q
g−(t)〈 fCP|P0〉|2 . (3.42)

To reduce the amount of necessary writing it is custom to use a shorthand notation for the
instantaneous amplitudes 〈 fCP|P0〉 ≡ A f and 〈 fCP|P̄0〉 ≡ Ā f . In addition, once through the

24Actually, in the measurement time dependence of mixed and unmixed pairs is fitted; the function shown in
Fig. 3.28 (right) is not a fit but just the ratio of the two functions fitted to individual groups of decays.
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derivation, we would realize that parameters q, p, A f and Ā f enter in a single form, as

λ =
q
p

Ā f

A f
. (3.43)

Throughout the derivation we need to keep in mind that all the quantities entering λ are
complex. At the end of calculation - a good exercise in complex calculus - we arrive at

dΓ(P0→ fCP)

dt
=

1
2
|A f |2N e−Γt

[
(1+ |λ |2)cosh

(
∆Γt

2

)
+(1−|λ |2)cos(∆mt)+

+2Re(λ )sinh
(

∆Γt
2

)
−2Im(λ )sin∆(mt)

]
dΓ(P̄0→ fCP)

dt
=

1
2
|Ā f |2N e−Γt

[
(1+ |λ |−2)cosh

(
∆Γt

2

)
+(1−|λ |−2)cos(∆mt)+

+2Re(λ−1)sinh
(

∆Γt
2

)
−2Im(λ−1)sin∆(mt)

]
. (3.44)

Because of sinh(∆Γt/2) term (for ∆Γt� 1 this term is just ∆Γt), self-conjugated final states
fCP are more sensitive to ∆Γ than flavour specific, which include a cosh(∆Γt/2) ≈ 1−
(1/2)(∆Γt/2)2 term.

We started the section with a discussion about the entangled B meson pairs produced
in ϒ(4S) decays. We continued with the calculations of time dependent decay widths, for
neutral mesons that are not in any way constrained in undergoing the oscillations (i.e. not
entangled). It is time to ask the question in what way does the entanglement influence the so
far derived decay rates in Eq. (3.44). In description of an entangled B meson pair we should
consider decay times of both mesons, t1 and t2. Instead, one can describe the decay rate as a
function of t̄ ≡ t1+ t2 and ∆t ≡ t1− t2. Double differential rate (in t̄ and ∆t) can be integrated
over t̄ for a fixed value of ∆t. By that the decay rate as a function of the time difference
∆t between the two B meson decays is obtained. Without going through such a detailed
calculation we can reveal that the effect is exactly the same as by a simple replacement of t
by ∆t in Eq. (3.44). Also the reason may be understood: in discussion of entangled B meson
pairs we concluded that any oscillation of a single B meson in such a pair is accompanied
by a reverse oscillation of the second meson in the pair. In other words, a true unconstrained
oscillations of one of the mesons may only occur once the other meson has decayed. Decays
of such unconstrained mesons into a final state fCP are described by the time dependent
decay rate of (3.44). Clearly, t = 0 occurs at the very moment of the first meson decay, and
hence t is actually the above mentioned ∆t.

Beside t→ ∆t replacement25 there is also a simplification one can make in Eq. (3.44) to
describe the neutral B mesons. ∆Γ for B0

d mesons is significantly smaller than ∆m. Hence
we can take into account only the basic term in Taylor expansion, cosh(∆Γt/2) ≈ 1 and

25There’s an additional small but important difference when discussing the time evolution of an entangled
pair. Interval of ∆t spans from −∞ to ∞, as oposed to the interval of t ([0,∞]). The exponential factor becomes
e−Γ|∆t|, since decays with large ∆t, either positive or negative, are suppressed.
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sinh(∆Γt/2)≈ 0. By this we arrive at

dΓ(P0→ fCP)

d(∆t)
=

1
2
|A f |2N e−Γ|∆t|

[
(1+ |λ |2)+(1−|λ |2)cos(∆m∆t)−2Im(λ )sin(∆m∆t)

]
dΓ(P̄0→ fCP)

d(∆t)
=

1
2
|Ā f |2N e−Γ|∆t|

[
(1+ |λ |−2)+(1−|λ |−2)cos(∆m∆t)−

−2Im(λ−1)sin(∆m∆t)
]
. (3.45)

We can make the above two equations easier comparable by factorizing from the first a
factor of 1+ |λ |2 and from the second a factor of 1+ |λ |−2. Realizing |Ā f |2(1+ |λ |−2) =
|A f |2|p/q|2(1+ |λ |2) one gets

dΓ(P0→ fCP)

d(∆t)
=

1
2
|A f |2(1+ |λ |2)N e−Γ|∆t|

[
1+

1−|λ |2

1+ |λ |2
cos(∆m∆t)−2

Im(λ )

1+ |λ |2
sin(∆m∆t)

]
dΓ(P̄0→ fCP)

d(∆t)
=

1
2
|A f |2(1+ |λ |2)|

p
q
|2N e−Γ|∆t|

[
1− 1−|λ |2

1+ |λ |2
cos(∆m∆t)+

+2
Im(λ )

1+ |λ |2
sin(∆m∆t)

]
. (3.46)

At this point we should remind the reader to the discussion about the CP violation at
the end of Sect. 2.3.1. Any difference between dΓ(P0→ f )/dt and dΓ(P̄0→ f̄ )/dt signals
violation of CP symmetry. For the case f = f̄ = fCP, any difference between the time de-
pendent decay widths of Eq. (3.46) is related to CP violation. Depending on the source of a
difference one talks about various types of CP violation. The two expressions are equal only
if the following is true:

| p
q
|= 1 (3.47)

If |p/q| deviates from unity this is called CP violation in mixing.
The next necessary condition for dΓ(P0→ fCP)/dt = dΓ(P̄0→ fCP)/dt is |λ |= 1, which

taking into account (3.47) reduces to

|
Ā f

A f
|= 1 (3.48)

If this condition is not met we talk about the CP violation in decay.
The last condition is

Im(λ ) = 0 (3.49)

If λ does have an imaginary component we are dealing with CP violation in the interference
between decays without and decays with mixing.

Most of the things discussed in the book so far somehow culminate in the equations
(3.46):

• we live in the Universe where matter dominates over anti-matter;

• a necessary condition for the Universe to evolve into such a state is violation of CP
symmetry;
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• CP violation occurs in weak interaction processes, and is described by the CKM matrix
proposed by Kobayashi and Maskawa;

• it manifests (among else) through differences in decay time dependent rates of parti-
cles’ and anti-particles’ decays;

• among the contemporary colliders we have machines capable of production of an abun-
dant number of B mesons, heavy particles decaying through weak interaction pro-
cesses, and detectors with capability to determine their decay points with ∼ 100 µm
spatial precision;

• precise measurements of B meson decays and comparison with Eqs. (3.46) allow us to
determine parameters (|p/q|, λ ) describing CP violation.

To visualize any possible deviation between dΓ(P0→ fCP)/d(∆t) and dΓ(P̄0→ fCP)/d(∆t)
one can form an asymmetry

ACP(∆t)≡ dΓ(P̄0→ fCP)/d(∆t)−dΓ(P0→ fCP)/d(∆t)
dΓ(P̄0→ fCP)/d(∆t)+dΓ(P0→ fCP)/d(∆t)

(3.50)

Inserting expressions (3.46), and taking into account an experimental fact that to a good
approximation for the B0

d meson system |p/q|= 1, we get for the asymmetry

ACP(∆t) = S sin∆m∆t +Acos∆m∆t , (3.51)

where

S = 2
Im(λ )

1+ |λ |2

A =−1−|λ |2

1+ |λ |2
. (3.52)

If Im(λ )= 0 then S= 0, and hence S 6= 0 signals CP violation in the so called interference
between a decay without and a decay with mixing. Since sin(∆m∆t) is an odd function of
∆t, integration of the asymmetry over all ∆t causes this term to diminish. Hence in time-
integrated measurements, where one only measures a possible asymmetry in decay-time
integrated rates, this type of CP violation doesn’t appear. On the other hand, A 6= 0 appears
if |λ | 6= 1 and hence signals either CP violation in decay (|Ā f /A f | 6= 1) or CP violation in
mixing (|p/q| 6= 1). As cos(∆m∆t) is an even function of ∆t the term does not disappear
when integrating over ∆t and this type of CP violation may appear also in time integrated
measurements. Since CP violation in interference between decays with and without mixing
(Im(λ ) 6= 0) can be observed only in decay-time dependent rates, this type of CP violation
is sometimes referred to as the time-dependent CP violation.

It may be important to note that in order for CP violation to be observed in some process,
either through decay-time dependent or time integrated asymmetry measurements, at least
two amplitudes leading from a chosen initial to a single final state are required. This may
be understood due to the fact that CP symmetry breaking is due to the complex phase of
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coupling constants entering the amplitudes. If only a single amplitude contributes, probabil-
ities related to the process are proportional to the modulo of amplitude in which the phase is
lost. Hence CP violating effects are observable only in interference effects. Let us assume a
process |i〉 → | f 〉, where two amplitudes contribute to the transition from an initial state |i〉
to a final state | f 〉. Denoting the two amplitudes by M1 and M2, we can write

M1,2 = |M1,2|eiϕ1,2+iδ1,2 . (3.53)

We denoted the phase of CKM matrix elements entering the amplitudes by ϕ1,2. On the
other hand there may be another complex phase of each amplitude, δ1,2, not related to CKM
matrix. For charge-conjugated process, |ī〉 → | f̄ 〉, we have

M̄1,2 = |M̄1,2|e−iϕ1,2+iδ1,2 . (3.54)

The difference between the two types of phases now becomes evident: while the complex
phase of CKM matrix elements changes sign for charge-conjugated process, the sign of the
other phase, called a strong phase, is not altered. A probability for the process is

Pi→ f ∝ |M1 +M2|2 = |M1|2 + |M2|2 +2|M1| |M2| cos(δ1−δ2 +ϕ1−ϕ2) , (3.55)

and for the charge conjugated process

Pī→ f̄ ∝ |M̄1 +M̄2|2 = |M̄1|2 + |M̄2|2 +2|M̄1| |M̄2| cos(δ1−δ2−ϕ1 +ϕ2) . (3.56)

Assuming M1,2 = M̄1,2 any asymmetry of the form

A =
Pi→ f −Pī→ f̄

Pi→ f −Pī→ f̄
(3.57)

is

A =
cos(δ1−δ2 +ϕ1−ϕ2)− cos(δ1−δ2−ϕ1 +ϕ2)

cos(δ1−δ2 +ϕ1−ϕ2)+ cos(δ1−δ2−ϕ1 +ϕ2)
. (3.58)

Using trigonometric identities this can be written as

A = tan(δ1−δ2) tan(ϕ2−ϕ1) . (3.59)

What becomes evident is that not only two amplitudes are necessary for any CP violating
effect to become observable, the two amplitudes also need to have different weak phases
(i.e. phases arising from CKM matrix elements, ϕ1 6= ϕ2) as well as different strong phases
(δ1 6= δ2).

Note: Oscillations are observed for all neutral mesons systems which are not self-
conjugated, and have different quantitative properties for each of the meson species.
The familiar exponential decay law of short-lived particles is more complex in such a
case and involves an oscillating component. Differences in decay rates between B0 and
B̄0 are signals of various types of CP violation.



Chapter 4

Outcome

4.1 Method...

Colliders - B Factories - provide for an abundant source of entangled B meson pairs. There
are few experimental steps to be taken in order to measure the decay rate of B0(B̄0)→ fCP
as given by Eqs. (3.46). They are sketched in Fig. 4.1 and described in the following. In
the figure, the two B mesons produced in an ϒ(4S) decay are denoted as the signal B meson
(Bsig, i.e. the one decaying into fCP; the final state in the example is J/ψK0

S ) and the tagging
B meson (Btag, the one used to tag the flavour of Bsig).

Figure 4.1: Experimental steps in measuring decay-time dependent rates of B0 → fCP. 1:
Flavour tagging; 2: Signal B meson reconstruction; 3: determination of ∆t.

74
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4.1.1 ...¬,...

First, we need to know whether it was a B0 or B̄0 that decayed into a CP eigenstate1. This is
achieved by means of flavour tagging. The method exploits the hierarchy of CKM elements
magnitudes (see Sect. 1.2.3), making decays of B mesons leading to a specific final state
particles more probable than others. In the CKM matrix column related to b quark processes
(the third column in Eq. (1.13)) the element with the largest magnitude is Vtb, followed by
Vcb. Since a b quark cannot decay into a t quark, the most probable quark subprocess in
B̄ meson decays is b→ c. In the second row of CKM matrix, among the elements related
to c quark decays, the one with the largest magnitude is Vcs. The most probable - Cabibbo
allowed - decay chain in b quark processes is thus b→ c→ s. Roughly speaking it is around
one hundred times more probable than for example b→ u→ d process, and around twenty
times more probable than b→ c→ d. For a B meson composed of a b̄ quark, the most
probable subprocess is b̄→ c̄→ s̄. Strange quarks (anti-quarks) compose negative (positive)
kaons. Hence a B (B̄) decay with a large probability ends up in a final state with a K+ (K−).
This is illustrated in Fig. 4.2. If among a final state products of a B meson decay one finds

Figure 4.2: Most probable Cabibbo allowed decay chain of a B (top left) and B̄ (top right)
meson leading to a K+ or K− meson in the final state, respectively. Charged kaons can also
be produced in a different way, leading to an opposite charge than in the case of b̄→ c̄→ s̄
decay chain (bottom left). For a B meson flavour determination - flavour tagging - also charge
of a lepton from semileptonic decay can be used (bottom right).

a charged kaon, a probability for the B meson being a particle or an anti-particle can be
assigned based on the kaon’s charge. The procedure by which the assignment is made is
called flavour tagging (it tags the flavour - beauty - of a B meson). Other processes can be
used for flavour tagging, for example semileptonic B meson decays. In a b̄→ c̄ process a
positively charged lepton can be produced (Fig. 4.2 (bottom right)). Identification of such
a lepton is also an indication of a B meson decay (and an `− is an indication of a B̄ meson
decay).

1Note that such a final state is self conjugated, and as such - and as opposed to flavour specific final states -
does not allow to determine the flavour of the mother particle.
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Clearly, flavour tagging is based on probabilities and as such is not free of erroneous
tagging, called mistagging. For example, in the mentioned example of a semileptonic decay,
also a c̄ quark2 may produce a lepton, of an opposite charge than the one produced in a b̄
decay (Fig. 4.2 (bottom right)). If one mistakenly considers such a lepton as the one from
a B meson decay, the assignment of flavour would be wrong. Leptons from semileptonic
b and c quark decays can be distinguished by kinematical properties, typically the former
have larger momenta than the latter ones. Also charged kaons can be produced in different
ways than the one illustrated in Fig. 4.2 (top), e.g. in decay of a charmed meson in B0 →
D−(→ K−K+π−)π+ (Fig. 4.2 (bottom left)). The charge of the kaon in this case is opposite
than the charge of the kaon arising from the b̄→ c̄→ s̄ chain. Charged kaons produced
in various processes are again distinguished based on their kinematic properties. The full
flavour tagging method at B Factories relies on numerous information inputs, such as the
mentioned examples. To process this information and produce the final flavour tag for a B
meson the algorithms use artificial neural network or multidimensional tables. The quality of
tagging is quantified by the effective tagging efficiency Q = εtag(1−2w)2, where εrag is the
fraction of B mesons decays in which the flavour assignment is possible, and w is the fraction
of events in which the assigned flavour is wrong. Typical effective tagging efficiencies at B
Factories are around 30%.

We should relate the tagging of the flavour of a B meson to the ∆t dependent decay rates.
The first of the two equations (3.46) yields ∆t dependent decay rate for a meson that at ∆t = 0
is a B0. Hence the tagging B meson is Btag = B̄0. The second of equations (3.46) is for B̄0 at
∆t = 0, and thus Btag = B0. One can re-write the two equations using a tagging variable q:

q =

{
+1 Btag = B0

−1 Btag = B̄0 (4.1)

With this, Eqs. (3.46) can be written as a single equation,

dΓ(B→ fCP)

d(∆t)
∝ e−Γ|∆t|

[
1+q

(
−1−|λ |2

1+ |λ |2
cos(∆m∆t)+2

Im(λ )

1+ |λ |2
sin(∆m∆t)

)]
, (4.2)

or using (3.52) even shorter:

P(∆t, q; A, S) =
dΓ(B→ fCP)

d(∆t)
∝ e−Γ|∆t| [1+q(Acos(∆m∆t)+S sin(∆m∆t))] , (4.3)

Note: The first step required to measure the time dependent decay rate of entangled
pairs of B0 mesons is flavour tagging, determination of flavour of one of the B mesons
at the time of its decay. The tagging method exploits specific B meson final states to
determine a probability that the decaying meson was a B0 or a B̄0.

4.1.2 ...,...
Another step in the measurement is a reconstruction of the signal B meson. In Fig. 4.1 an
example of B0 → J/ψK0

S decay is shown, where the charmonium state J/ψ decays into a

2A c̄ quark composes a charm (D̄) anti- meson.



4.1. METHOD... 77

pair of muons. Reconstruction of any short-lived decaying particle typically means recon-
struction of its invariant mass from the measured decay products, as given in Eq. (3.8). For
charged particles their energy is determined as E =

√
m2 + |~p|2 using the mass of a particle

as assigned in the process of particle identification (see Sect. 3.2.2). Momenta of decay prod-
ucts are measured with a finite accuracy and hence the resulting invariant mass also suffers
from a finite resolution. At B Factories the resolution of B mass reconstruction is improved
by exploiting the fact that the energy of produced B mesons in the CMS is known to be
exactly the beam energy of colliding electrons and positrons, EB = Ebeam. The mass of a B
meson is hence

Mbc =
√

E2
beam−∑

i
|~p∗i |2 , (4.4)

where the sum runs over all decay products of a meson, and ∗ denotes momenta in the CMS.

Using Ebeam instead of ∑i

√
m2

i + |~pi|2 reduces the dependence of Mbc on ~pi and by this
improves the resolution. Mbc is called a beam-constrained mass to emphasize the usage of
beam energy in its determination3. Another specific property of beam constrained mass is its
independence (see Eq. (4.4)) of the masses assigned to the B meson decay products4.

Another quantity enabling identification of B meson decay products is an energy differ-
ence,

∆E = E∗B−Ebeam . (4.5)

Here, E∗B is the reconstructed B meson energy in CMS, E∗B = ∑i

√
m2

i + |~p∗i |2. Contrary to
Mbc, ∆E does strongly depend on masses of final state particles, and within the resolution
equals zero for correctly reconstructed B mesons.

Examples of reconstructed Mbc and ∆E are shown in Fig. 4.3, where several properties
of the two observables are evident. The example shown is for decays B+→ D̄0K+, where
D meson decays to K0

S π+π−[33]. When speaking about a specific decay mode from now on
we implicitly include a charge conjugated decay, unless explicitly stated otherwise. For the
example in question this means that the distributions are shown for the mentioned decay as
well as for the B−→ D0K−. In the distribution of Mbc one observes a prominent peak at the
nominal mass of B± mesons, 5.28 GeV, corresponding to correctly reconstructed decays. In
addition, there is also a small peak at the same mass (dark green) arising from B+→ D̄0π+

decays, where a pion was wrongly identified as a kaon (and hence assigned a kaon mass).
However, since Mbc is independent of final state particles masses, such decays contribute to
the signal peak. Furthermore there is a smooth contribution of various background processes,
mainly arising from e+e−→ cc̄ continuum process (black; see Sect. 3.1.2). In the process
of fragmentation D mesons are formed, which together with a random kaon from such an
event yield Mbc as shown in the plot. In the distribution of the energy difference, the peak
centred at ∆E = 0 corresponds to the correctly reconstructed signal decays. Another peak at
∆E ≈ 50 MeV (dark green) arises from B+→ D̄0π+ decays, which in this case are shifted

3At BaBar a similar quantity, called beam-energy substituted mass was used, MES =√
(E2

CMS/2+ ~p0 ∑i ~pi)2/E2
0 − (∑i ~pi)2, where (E0,~p0) is a four-momentum of the CMS in the labora-

tory frame.
4There is a small residual dependence because of the need to boost momenta of the B meson decay products

into the CMS. MES is free of this dependence as well.
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Figure 4.3: Mbc (left) and ∆E for B+→ D̄0(→ K0
S π+π−)K+ decays [33]. Data are repre-

sented as points with error bars, and fitted contributions of individual processes as coloured
histograms. Apart from correctly reconstructed decays peaking at Mbc ≈ 5.28 GeV and
∆E ≈ 0 several other features can be observed, as described in the text.

with respect to the true signal due to ∆E dependence on the mass of final state particles5.
Various other B meson decays (light green) with more final state particles populate negative
∆E region. In these decays one or more final state particles are not taken into account in ∆E
calculation, hence the calculated E∗B is lower than the actual one, and ∆E < 0.

By fitting the measured distributions one can obtain the amount of signal and background
decays in a given interval of Mbc and ∆E. Of course in order to fit the data a model describ-
ing the signal as well as various backgrounds must be assumed. Signals are usually well
described using one or more Gaussian functions, while for the backgrounds different empir-
ical functions (polynomial, exponential, etc.) are used6.

Note: To study B decays, mesons must be reconstructed from their decay products.
For this purpose at B Factories beam-constrained mass and energy difference are used,
variables enabling isolation of correctly reconstructed mesons from backgrounds.

4.1.3 and ®

The last stone in the mosaic of time-dependent decay rate measurements is the determination
of ∆t, the time difference between decays of the two B mesons. In description of the proce-
dure it is important first to remember that a B meson produced in an ϒ(4S) decay is almost at

5It should be noted that the Mbc distribution in the figure is shown only for decays for which |∆E|< 30 MeV,
and ∆E distribution is shown for Mbc > 5.272 GeV. This is the reason for different amount of B+ → D̄0π+

decays in the two distributions.
6For the case of Mbc a somewhat special function is used to describe the backgrounds, mainly due to the

end point arising from the fact Mbc ≤ Ebeam (see Eq. (4.4). Function is called the Argus function [34], because
it was first used by the Argus experiment at Desy.



4.1. METHOD... 79

rest in the CMS. More precisely, each of the B mesons carries a momentum p∗B ≈ 300 MeV.
Due to asymmetric beam energies (see Sect. 3.1.2) each of the B mesons is boosted in the di-
rection of the electron beam. Comparison illustrating B meson’s momentum in the CMS and
the laboratory frame is shown in Fig. 4.4. In general momentum of a B meson in the CMS

Figure 4.4: Illustration of B meson’s momentum in the CMS (left) and laboratory frame
(right), for three extreme cases of meson’s polar angle in the CMS (θ ∗ = 90◦ (top), θ ∗ = 0◦

(middle) and θ ∗ = 180◦ (bottom)). Black arrows denote momenta of colliding electrons and
positrons, and green arrows momentum of one of the produced B mesons.

is ~p∗B = p∗B(cosθ ∗,sinθ ∗), if θ ∗ denotes the polar angle of the meson in this frame. The first
component is the one along the beam direction (z) and the second the transverse one. Using a
Lorentz transformation from the CMS to laboratory frame (with Lorentz factors γβ = 0.425
as discussed in Sect. 3.2.1) one finds

~pB = (γβ

√
m2

B + p∗2B + γ p∗B cosθ
∗, p∗B sinθ

∗) . (4.6)

The largest transverse momentum of a B meson in the laboratory frame is thus pBt ≈ 300 MeV,
compared to the smallest z component of pBz ≈ 1.9 GeV. In other words, B mesons in the
laboratory frame fly predominantly along the z axis, i.e. in the direction of the electron beam.

Displacement between the decay and the production point of a particle with a proper
decay time t is

~rdec−~rprod =~vt =
~p
m

t , (4.7)

where in the last step we wrote dimensionless velocity ~β = ~p/m and comply with the previ-
ous understanding on the usage of natural units (c = 1). Displacement along the z-axis for a
B meson is thus

zdec− zprod =
~pBz

mB
t =
[
γβ

√
1+

p∗2B

m2
B
+ γ

p∗B
mB

cosθ
∗]t . (4.8)
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Figure 4.5: Schematics of reconstruction
of a B meson pair decays.

Factor p∗B/mB ≈ 0.06; neglecting small terms we
obtain a simplified expression

zdec− zprod = γβ t . (4.9)

A distance between the two decay vertices of a
pair of B mesons is thus

∆z = ztag
dec− zsig

dec = γβ∆t . (4.10)

It should be noted that Eqs. (3.46) are valid for
any sign of ∆t, i.e. for ∆t > 0 and ∆t < 0. The
order of Btag and Bsig decays doesn’t play a role7.

Decay vertices of Bsig and Btag are deter-
mined by finding a most probable common ori-
gin point of tracks assigned to arise from either
of the mesons. Depending on the specific final
state also some neutral particles (e.g. K0

S ), recon-
structed from their decay products, can be used
in the vertex determination. Typical dimensions
related to ∆z are denoted in Fig. 4.5. Individual
steps in decay vertex reconstruction are illustrated
in the figure. Through detected spatial points
in the detector (top) individual tracks are fitted
(middle top; see Sects. 3.2.1 and 3.2.3). Invari-
ant masses of subsets of reconstructed particles
may reveal some intermediate short lived states,
either charged of neutral (middle bottom; exam-
ples shown are K0

S → π+π− and J/ψ → µ+µ−).
By fitting the tracks and reconstructed neutral par-
ticles arising from an individual B meson to a
common point one finds its decay vertex (bottom).
Fitting tracks from distinct vertices into a single
point results in a degraded resolution (example of
Btag vertex).

Accuracy by which ∆z is determined depends
on the accuracy of ztag

dec and zsig
dec reconstruction.

Accuracy of individual decay vertex reconstruc-
tion is proportional to the precision of spatial
points of individual tracks. The more precise the
detector is, the more accurate is ∆z reconstruction.
Resolution is also improved with an increased
number of reconstructed hits per track, and is bet-
ter if more tracks are arising from and are fitted

7Because once the flavour and decay time of one of the B mesons is determined, the known time dependence
of meson oscillations extrapolates back or forth in time to yield a probability that the other B was either a meson
or an anti-meson at a given t.
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to a common vertex. Last but not least, the resolution in ∆z determination is improved by
having some spatial points as close as possible to the decay vertices.

The signal B meson decay vertex is usually determined with a better accuracy, since all
final state particles must be reconstructed correctly (in order to give a correct Mbc). A typ-
ical resolution by which the z coordinate of the Bsig decay vertex is determined is 50 µm.
On the tagging side, the B meson most probably decays into a charm D meson with a finite
decay length (D mesons have, depending on the quark accompanying a c quark in the me-
son, decay lengths cτ from 120 µm to 310 µm). Since no attempt is made to reconstruct
decay of a Btag, tracks are fitted into a common vertex. In addition, there is a non-negligible
probability for some final state particles of Btag to escape undetected and hence fewer tracks
may be used to reconstruct the decay vertex. A typical resolution on ztag

dec is 150 µm. Accu-
racy of ∆z and by that ∆t determination depends on a specific kinematic properties of final
state particles and varies from process to process. The uncertainty of ∆t is estimated for
each Bsig decay from known uncertainties on 3-momenta of tracks used in the vertex fit. A
distribution of these accuracies in B0→ J/ψK0

S and some related decay modes is shown in
Fig. 4.6 (top left). The most probable σ∆t is around 0.5 ps. This finite accuracy in ∆t de-

Figure 4.6: Top left: Distribution of uncertainties on ∆t, estimated for each B0 → J/ψK0
S

decay and some similar less probable decay modes [35]. Bottom left: Asymmetry (3.51) for
S = 0.7 and A = 0 (solid line) and effect of mistagging (dashed line; w = 0.2) [5]. Top right:
∆t dependent decay rate (Eqs. (3.46)) for S = 0.7 and A = 0 [5]. Solid line represents the
distribution for Btag = B̄0 and dashed line for Btag = B0. Bottom right: Same as top right,
including effects of finite resolution in determination of ∆t and mistagging [5].

termination must be taken into account when interpreting the measured distributions. Since



82 CHAPTER 4. OUTCOME

σ∆t is clearly non-negligible compared to the B meson lifetime (∼ 1.5 ps) or even the os-
cillation period (2π/∆m∼ 12 ps) one expects the effect of finite resolution to be important.

Figure 4.7: Effect of widening
zdec distribution due to a finite
detector resolution. Plot at the
top represents a decay with ide-
ally reconstructed tracks and re-
sulting vertex. Finite resolution
in track reconstruction, as illus-
trated in plots below, reflects in
scattered reconstructed zdec.

It is illustrated in Fig. 4.6 (top right, bottom right).
The theoretically expected curves from Eqs. (3.46) are
widened due to a finite resolution on ∆t. This widening is
easy to understand; visualize, for example, each of decays
occurring at given ∆t0 being randomly shifted around this
value (effect of finite precision measurement; Fig. 4.7).
The result is a widened distribution of measured ∆t’s.

The effect of mistagging is most obviously ob-
servable in the asymmetry (3.50). Decays with
mistagged B0 (B̄0) meson contribute to the asym-
metry in a dual way: they lower the number of
P0 → fCP (P̄0 → fCP) decays at a given ∆t, and
increase the number of P̄0 → fCP (P0 → fCP) de-
cays at the same ∆t. Taking into account the func-
tional shape of A (∆t) (3.51) it is easy to under-
stand that any non-zero value of mistag probability
w causes a reduction of the amplitude of the asym-
metry. This is illustrated in Fig. 4.6 (bottom left).
Experimental effects need to be taken into account
when interpreting measurement results. Here, ”in-
terpretation of results” refers mainly to fits of mea-
sured data distributions with the aim of determina-
tion of some underlying parameters. For exam-
ple, from measured ∆t distributions one can deter-
mine parameters A and S (or |λ | and Im(λ )), by
fitting the expected distributions to data. How-
ever, such a fit is only possible by properly tak-
ing into account experimental effects which sig-
nificantly change the expected theoretical distribu-
tions. This is achieved by means of a reso-
lution function with which the expected theoreti-
cal distributions are convolved. In its simplest
form a resolution function may be a single Gaus-
sian, G(x′|x,σ) = (1/

√
2πσ)e−(x

′−x)2/2σ2
. It repre-

sents a probability density function for a measure-
ment to yield a value of x′ when determining a quan-
tity x, and σ is the measurement resolution. If
the (theoretically) expected distribution of x is p(x),
the measured distribution is a convolution q(x′) =∫

∞

−∞
p(x)G(x′|x,σ)dx.

In ∆t = (ztag
dec− zsig

dec)/γβ measurements at B Factories
resolution functions are more complex. They take into account resolutions in determination
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of ztag
dec and zsig

dec as a consequence of finite tracking precision, a resolution on ztag
dec due to a

finite D meson flight distance, the approximation of ∆z done in Eq. (4.9)8, as well as the
uncertainty on the γβ factor determined from the measured energies of electron and positron
beams. Resolution functions depend on a specific decay mode under study (mainly on the
number of tracks used for the Bsig vertex reconstruction), and their width (σ ) is calculated
from the uncertainties on momenta of final state particles for each individual decay.

By performing the described steps in the measurement of ∆t dependent decay rate and
taking into account experimental effects, one hence expects measured distributions of op-
positely tagged B0 decays to a charge conjugated final state fCP of the form shown in
Fig. 4.6 (bottom right). If S 6= 0 and A = 0, that is, i.e. if CP symmetry violation occurs
in the interference between a decay without and a decay with mixing, and CP violation in
decays and in mixing is negligible (see Eqs. (3.47)-(3.49)). Examples of other scenarios
would reflect in distributions shown in Fig. 4.8. Note a difference in heights and area of
expected distributions in cases where A 6= 0. As explained at the end of Sect. 3.3.2, a con-
sequence of A 6= 0 is a different total (time integrated) number of decays of B0 and B̄0 decays.

Figure 4.8: Approximate expected ∆t dependent B meson decay rates into fCP, for (S,A) =
(0.7,0.2) (left) and (0,0.2) (right). Solid line represents the distribution, including resolution
effects, for Btag = B̄0 and dashed line for Btag = B0.

Note: In order to measure decay-time dependent decay rates of B0 mesons decaying
to a self-conjugated state fCP, also decay distance between the decay vertices of two
neutral B mesons must be measured. Finite resolution affects the distributions and
must be properly taken into account.

8At BaBar for many measurements a more involved expression for ∆t was used, ∆t = (∆z −
γατB cosθ)/(γβ ± γα cosθ), with α = p∗B/mB. This results in an improved resolution by around 5 % [5].
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4.2 Result

4.2.1 First numbers

Violation of CP symmetry was experimentally discovered in 1964 (see Sect. 2.2) in the sys-
tem of neutral kaons. Since then CP violation was a subject of theoretical description (most
notably by Kobayashi and Maskawa, see Sect. 2.3.2); there was no experimental evidence,
however, that it is related to weak interaction and not just a (strange, indeed) property of
kaons. After establishing the Kobayashi-Maskawa mechanism, B Factories were envisioned
to test the hypothesis of CP symmetry breaking by weak interaction. A most important test,
one should say, considering the already known potential relation between the phenomena
and baryon asymmetry of the Universe (Sakharov conditions, see Sect. 2.3.1).

In 2000, at an international conference on high energy physics in Osaka, Belle and BaBar
collaborations presented first results of their measurements, which started a year before that.
The most eagerly awaited results were those on time dependence of neutral B meson de-
cays to J/ψK0

S . They are presented in Fig. 4.9. BaBar presented their result in a form
of distributions (3.46), which taking into account experimental effects were expected to
look like in Fig. 4.6 (or 4.8, for example). Belle presented the results in a form of a sum
P(∆t, q = +1)+P(−∆t, q = −1) (see Eq. (4.3)). Both experiments fitted expected dis-
tributions, depending on S and neglecting A, to their data. With the data sample available at
that time no significant difference between decays with Btag = B0 and Btag = B̄0 has been
observed, and S was consistent with zero within the measurement uncertainty.

To put it in a nut shell, by 2000 still no experimental evidence of CP violation was ob-
tained, apart from the 1964 result. The situation changed in 2001. At two large international
conferences of that year both, Belle and BaBar presented convincing experimental evidence
for the phenomena believed to have an important role in the Universe evolution. Results of
B0→ J/ψK0

S measurements using a larger sample of recorded data revealed an asymmetry
between B0 and B̄0 tagged decays. Results are presented in Fig. 4.10.

Even by eye one can spot an asymmetry between the two classes of decays. Numerically,
results arising from fitting the expected distributions to data, again with an assumption A= 0,
were S = 0.59±0.14±0.05 (BaBar, [38]) and S = 0.99±0.14±0.06 (Belle, [39]). In re-
sults, the first quoted uncertainty is statistical (σstat.) and the second systematic (σsyst.). Total

uncertainties, calculated as σ =
√

σ2
stat.+σ2

syst., are around 0.159. Significances of results,
calculated in a simplified way as κ = S/σ , are around 4 and 6.5, respectively. Probability
that a repeated measurement, with the same accuracy as the performed one, would yield a
value of S with a significance κ , assuming that the true value of S is null, can be obtained by
integrating a Gaussian function: ε = [1/(

√
2πσ)]

∫
∞

S e−x2/(2σ2)dx = (1/2)[1−Erf(κ/
√

2)].
Erf(x) is the error function; inserting the values of significances we arrive at probabilities of
around 3 ·10−5 and below 10−10. These probabilities are low enough to justify the statements
of collaboration representatives in the proceedings of 2001 conferences: ”It is now clear that
CP violation occurs in the B-meson system as well as in the K-meson system.” [39], and
”37 years after the discovery of CP violation in the Kaon system, BaBar has established CP

9The reason for adding two uncertainties in quadrature is a convolution of two Gaussian functions, with

widths σ1 and σ2, which is also a Gaussian function with the width σ =
√

σ2
1 +σ2

2 .
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Figure 4.9: Left: measurement of ∆t dependent B decay rate to self-conjugated final state
J/ψK0

S by BaBar experiment, at the Osaka conference in 2000 [36]. The upper plot is for
Btag = B̄0 and the lower for Btag = B0. Right: measurement by Belle [37] at the same
conference. Results are presented in a slightly different form, as the sum of P(∆t, q =
+1)+P(−∆t, q =−1) (see Eq. (4.3)).

violation in the B system...” [38].

Note: In 2001 Belle and BaBar experiments presented evidence for CP violation in
the system of B mesons, thus experimentally proving that the phenomena is more gen-
eral and not limited to a system of neutral kaons, where it has been discovered 37 years
before that.

4.2.2 The Meaning

Described results were actually only among the first in a row of findings arising from the two
experiments in the following decade. A careful reader may have noticed no mentioning of
Kobayashi-Maskawa mechanism and weak interaction in the above quotes. Measurements
have proven that S 6= 0 and hence (see Eq. (3.49)) that CP violation occurs in the B meson
system. To prove correct the description through the CKM matrix required further measure-
ments.

First, we need to look for a relation between the measured parameter S and the ele-
ments of the CKM matrix. The observable S is related to λ through (3.52). λ , in turn, is
(q/p)(ĀJ/ψK0

S
/AJ/ψK0

S
), see (3.43). By inspection of diagrams in Fig. 3.29 one can convince

herself that the amplitudes differ only in the elements of CKM matrix, ĀJ/ψK0
S
/AJ/ψK0

S
=

VcbV ∗cs/V ∗cbVcs.
Equation (3.21) suggest that M12 and Γ12 can be calculated from the amplitude of a

P̄0→ P0 transition. In principle this is true. Such an amplitude, however, does not include
only processes depicted in the so called box diagram of Fig. 1.11. A transition can occur
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Figure 4.10: Results of ∆t distribution measurements for B→ fCP decays in 2001. Left:
Results from BaBar [38], the upper panel showing decays with Btag = B0 and middel panel
decays with Btag = B̄0. The bottom panel represents the asymmetry −AC P , as defined in
(3.51). Right: analogous result by Belle [39]. Blue points are for Btag = B̄0 and red points
for Btag = B0.

also through all final states |n〉 accessible to both, P0 and P̄0, by ∑n〈P0|Ĥ|n〉〈n|Ĥ|P̄0〉. An
example is schematically shown in Fig. 4.11. While the amplitude of a former process can be
calculated rather precisely, the amplitudes for a transition through all common final states are
difficult to determine because of non-perturbativness of quantum chromodynamics10. These

Figure 4.11: An example of a common final state for B0 and B̄0, leading to oscillations.

contributions are important in calculating M12 and Γ12 in the systems of neutral kaons and D
mesons. They are, however, small compared to contributions of box diagrams for B0

d and B0
s

mesons. It turns out that for B mesons Γ12 is strongly suppressed (|Γ12|/|M12| � 1) and M12
can be well predicted within the Standard Model.

10Quantum chromodynamics, theory of strong interaction, is limited in methods because the strong interac-
tion coupling constant increases at lower energies. A consequence is a bad or even non-existent convergence of
perturbative series in the coupling constant, a usual method of calculations related to weak and electromagnetic
interactions. Solutions include calculations in the framework of various models or quantum chromodynamics
on the lattice.
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In the system of B0
d mesons ∆Γ� ∆m (see Sect. 3.3.2). Hence (∆m)2− (1/4)(∆Γ)2 ≈

(∆m)2. If one can moreover neglect Γ12 several expressions simplify; the first equation of
(3.34) becomes

∆m = 2|M12| , (4.11)

and relations (3.21) and (3.28) depend solely on M12:

〈P0|Ĥ|P̄0〉 ≈M12(
q
p

)2

≈
M∗12
M12

= e−2iφM . (4.12)

Phase of M12 is thus the phase of B̄0 → B0 transition. The reverse transition is shown
in Fig. 1.11. Any up-like quark can be exchanged in the loop. However, a more involved
calculation shows that the amplitude is proportional to the mass of the exchanged quark.
Since mt is much larger than mass of any other quark, the t quark contribution is by far
dominant in B0 mixing. Then the elements of CKM appearing in the amplitude can be read
off the diagram as (VtdV ∗tb)

2. For an opposite process, B̄0→ B0, one has (V ∗tdVtb)
2. From this

we conclude that the factor q/p entering λ is

q
p
=

VtdV ∗tb
V ∗tdVtb

. (4.13)

Another factor enters λ for B0 → J/ψK0
S . K0 produced in a decay undergoes a time

evolution (as K0
S ) including a possibility of mixing. Hence a factor analogous to q/p for B0

oscillations must be included also for K0 oscillations. To do so, it may be helpful to graph-
ically present the decay and factors entering the amplitude. This is shown in Fig. 4.12. A

Figure 4.12: Graphical presentation of B decay to J/ψK0
S . The process may proceed without

mixing of B0 (upper part) or through mixing into B̄0 (lower part). Produced K0 or K̄0 should
decay as a K0

S . Individual factors entering the amplitude for the process are marked in the
scheme and explained in the text.

produced B0 meson evolves in time, the amplitude to find it after some time t in a state B0

(B̄0) is p (−q), as apparent from Eq. (3.35). The decay to J/ψK0 (J/ψK̄0) adds a factor
AJ/ψK0

S
(ĀJ/ψK0

S
). In the neutral kaon system we neglect CP violation, since it is small com-

pared to CP violating effects in the B meson system, as we will see. Hence |K0
S 〉= |K0

1 〉 (see
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(2.9)). For K0 (K̄0) to decay as a K0
S a factor 1/p (−1/q) for the kaon system must be added

to the amplitude, see (3.32). The full expression is thus

λ =

(
q
p

)
B

ĀJ/ψK0
S

AJ/ψK0
S

(
p
q

)
K

, (4.14)

where we used indices B, K to indicate to which system q/p refers to.
To determine (p/q)K , we note that B0 is composed of b̄d and K0 from s̄d; hence one

has to make a replacement b → s. Conclusion that the additional factor is V ∗tdVts/VtdV ∗ts
(by comparison to (4.13)) is premature. For B0 oscillations we argued that the top quark
contribution is dominant since mt�mq for any other quark. This of course holds also for K0

oscillations, however there a c quark exchange in the loop is actually much more important.
This is due to |VtdVts| � |VcdVcs|11. The factor (p/q)K is thus V ∗cdVcs/VcdV ∗cs.

Putting it all together, we arrive at the expression for λ in B0→ J/ψK0
S decays:

λ =
VcbV ∗cs
V ∗cbVcs︸ ︷︷ ︸

ĀJ/ψK0
S
/AJ/ψK0

S

VtdV ∗tb
V ∗tdVtb︸ ︷︷ ︸
(q/p)B

V ∗cdVcs

VcdV ∗cs︸ ︷︷ ︸
(p/q)K

=
VtdV ∗tb
V ∗tdVtb

VcbV ∗cd
V ∗cbVcd

(4.15)

We realize that |λ | = 1, and hence S = Im(λ ). Also, since |λ | = 1 the imaginary part is
just Im(λ ) = sin(Arg [λ ])12. In order to determine Arg [λ ] we need to identify the phase of
(4.15).

By inspection of the unitarity triangle in Fig. 2.8 (left) one realizes that the complex
number (VtdV ∗tb)/(V

∗
cbVcd) has an argument π−ϕ1:

π−ϕ1 = Arg
[

VtdV ∗tb
V ∗cbVcd

]
. (4.16)

Noting that Arg [1/x] =−Arg [x] and Arg [x1x2] = Arg [x1]+Arg [x2] we can write

ϕ1 = π−Arg
[

VtdV ∗tb
V ∗cbVcd

]
= Arg

[
−

V ∗cbVcd

VtdV ∗tb

]
= Arg

[
VtdV ∗tb
V ∗cbVcd

]
, (4.17)

in accordance with Eq. (2.25). Phase of λ can be identified as

Arg [λ ] = 2Arg
[

VtdV ∗tb
V ∗cbVcd

]
= 2ϕ1 , (4.18)

and hence
S = sin(2ϕ1) . (4.19)

Measurement of S in B0→ J/ψK0
S decays represents determination of one of the angles of

the unitarity triangle.
If the final state is changed from J/ψK0

S to J/ψK0
L , and again neglecting CP violation in

the neutral kaon system (|K0
L〉 = |K0

2 〉), only a small but important change in the expression

11Using values from (1.13) one gets |VtdVts|/|VcdVcs|= 0.0017.
12Argument of a complex number, written in a form |z|eiφ , is φ .
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for λ appears: 1/qK appears with a reversed sign due to 〈K0
2 |K̄0〉 ∝−1/q (3.32), and hence

λJ/ψK0
L
=−λJ/ψK0

S
. In general it holds that λ depends also on the CP eigenvalue of the final

state fCP. This is usually incorporated into the expression for S:

S =−η f sin(2ϕ1) , (4.20)

where η f denotes the CP value of the final state. According to discussion in Sect. 2.1,
J/ψ composed of a c and c̄ quarks has P = −1 and C = −1, and hence CP = +1. K0

S
also has CP = +1 as argued in Sect. 2.2. J/ψK0

S , appearing in the decay of a B0, have
an angular momentum of L = 1 (since spin of J/ψ is S = 1), and the value of η f is hence
CPJ/ψCPK0

S
(−1)L =−1. Because of opposite CP values of K0

S and K0
L , J/ψK0

L final state has
η f =+1.

A final note is in order: a careful reader may want to relate the above explanations with
the argument given at the end of Sect. 3.3.2, about CP violating observables being a con-
sequence of at least two non-vanishing phase differences, a weak and a strong one (see
Eq. (3.59)). In discussion above we clarified the contribution of weak phase, i.e. the one
arising from the elements of CKM matrix. How about the strong phase? This is taken
care of by oscillations, specifically by the phase ∆m∆t. This does not change under charge-
conjugation and hence plays a role of a strong phase difference.

Note: A measurement of time-dependent decay rate of neutral B meson decays to
self-conjugated states fCP enables determination of one of the angles of the unitarity
triangle.

4.2.3 Recent Numbers
The most recent measurements of sin(2ϕ1) are shown in Fig. 4.13 [40, 41]. In the mea-
surements both, CP-even and CP-odd final states were used. The former are represented
by J/ψK0

L , and the latter by J/ψK0
S , ψ(2S)K0

S and χc1K0
S

13. For all these decay modes the
underlying quark process (c.f. Fig. 3.29) is the same, b→ cc̄s. Results show a clear reversal
of the CP asymmetry sign for the two types of final states, as discussed around Eq. (4.20).
Numerically, results for sin(2ϕ1) are 0.667±0.023±0.012 and 0.687±0.028±0.012. We
quote the results in order to be compared to the results of measurements back in 2001. The
statistical uncertainties have been reduced by a factor of

√
20 to

√
30, because of the cor-

responding increase of the detected sample of B meson decays (see Eq. (3.3)). Also the
systematic part of the uncertainties is significantly reduced, pointing to a much improved un-
derstanding of detectors and measurement methods. The most significant contribution to sys-
tematic uncertainties arises from a limited knowledge of resolution functions (see Sect. 4.1.3)
describing the measured ∆t distribution. Compared to the first measurements scientists have
specifically gained in understanding which decay vertices (i.e. in which decay modes of
Btag) are reconstructed more and which less precisely, and adjusted the resolution function
depending on this.

Last but not least, the more recent measurements of B0→ fCP decay-time distributions
allow also for a possibility of A 6= 0 in (3.51). The measured ∆t distributions are thus fitted

13ψ(2S) and χc1 are two additional charmonium states, similar to J/ψ .
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using a complete expression (4.3), convolved with a resolution function. The results quoted
for A are 0.006± 0.016± 0.012 [40] and 0.024± 0.020± 0.016 [41]. Within the measure-
ment uncertainty parameter A is consistent with a null value, confirming to a good accuracy
|λ |= 1.

In derivation of λ we neglected CP violation in the neutral kaon system by assuming
|K0

S 〉 ≈ |K0
1 〉, i.e. neglecting an addition of |K0

2 〉 in |K0
S 〉 of the order of |ε| ∼ 2 · 10−3 (2.9).

The resulting CP asymmetry in the neutral B meson system is found to be of the order of
one, Im(λ ) = sin(2ϕ1)≈ 0.7. The approximation is hence justified.

Within the framework of Kobayashi-Maskawa mechanism experimental confirmation of
sin(2ϕ1) 6= 0 proves that the unitarity triangle in Fig. 2.8 has a finite area, and that the com-
plex phase of CKM matrix is non-vanishing (Sect. 2.3.2). Results prove that the CP asym-
metries in the processes involving b quarks (B mesons) are much larger than those involving
s quarks (K mesons). They show that |λ | ≈ 1 in B0 → J/ψK0

S decays. All these exper-
imental results make a strong statement about the correctness of the Kobayashi-Maskawa
picture, but are still just determinations of some apriori unknown parameters of the theory.
A basic prediction arising from CKM matrix is the existence of the unitarity triangle (non-
degenerate one, i.e. of non-vanishing area). Measurements of B0→ J/ψK0

S decays provide
for only one of the angles in this triangle. To further prove the theory some over-constrained
measurements, as explained in the following, are needed.

In the complex plane of Wolfenstein parameters, defined in Eq. (2.22), a measurement
of S represents an area between lines of constant ϕ1 denoted in Fig. 4.14 (top). Because
sin(α) = sin(π−α) and sin(α) = sin(α +2π), determination of sin(2ϕ1) in terms of ϕ1
specifies four possible values, beside ϕ1 also π/2−ϕ1, ϕ1 +π and 3π/2−ϕ1.

In discussion of decays to flavour specific states around Eq. (3.41) we already mentioned
some measurements, also related to parameters ρ and η . Such a measurement is the deter-
mination of B0 oscillation frequency, ∆m. According to (4.11) ∆m is proportional to |M12|.
The latter is the amplitude for a B̄0→ B0 transition, and hence M12 ∝ (VtdV ∗tb)

2. Using the
Wolfenstein parametrization

∆m ∝ |VtdV ∗tb|2 = |Aλ
3(1−ρ− iη)|2 ∝ (1−ρ)2 +η

2 . (4.21)

In the (ρ,η) plane the measured value of ∆m (with some finite accuracy) represents an area
between circles centred at ρ = 1, as sketched in Fig. 4.14 (top).

Measurements of S in B0→ J/ψK0
S decays and of ∆m represent over-constrained mea-

surements. They can both be interpreted in terms of values of ρ and η . And, if the underlying
theoretical interpretation is correct, they have to yield the same values of unknown parame-
ters. In graphical terms, the areas representing one and the other measurement must overlap.

A reader may argue that it is easy to assure an overlapping region of a circle, centred
at (1,0) and a line starting at the exact same point. Which is of course quite true. The
mentioned two variables merely provide for possible values of ρ and η . A serious test arises
when one adds another measurement related to the two parameters.

Returning to Fig. 1.10 we remember that rates of B meson decays with a b→ u quark sub-
process depend on the magnitude of Vub element of CKM matrix. For example, measured
probability of B+→ π+π0 decays is proportional to |Vub|2. Without going into any details of
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|Vub| determination from the measured charmless decays14 of B mesons, we note that (2.22)

|Vub|2 = A2
λ

6(ρ2 +η
2) . (4.22)

Determination of |Vub| represents another circle in the (ρ,η) plane, this one centred at (0,0).
Addition of this measurement in over-constraining possible parameters values makes the test
non-trivial. As sketched in Fig. 4.14, regions of the three so far mentioned measurements
may not (middle) or may (bottom) overlap.

The above examples round up our presentation of over-constraining the unitarity triangle
parameters with the aim of testing the Kobayashi-Maskawa theoretical explanation of CP vi-
olation15. It is time to turn to the real measurements. The current knowledge on the unitarity
triangle is presented in the colourful Fig. 4.15 [42]. Every individual coloured region repre-
sents an average of measurements of a single observable related to CKM matrix elements.
They represent a 95% confidence region of an individual variable16. The averages are in-
put to a minimization procedure in which a likelihood function depending on the measured
variables (~o) and their theoretical interpretation (~f (~p)), L (~o− ~f (~p)) is minimized in order
to obtain the most probable values of underlying parameters (ρ and η in our case). There
are 24 observables used in the fit (not all shown in Fig. 4.15). Actually, most of the input
variables are averages of number of individual measurements. For example, ∆m value used
as an example above, enters the fit as an average of 32 individual measurements, performed
by experiments at the LEP collider17, at the Tevatron collider18, at KEKB and PEP-II, as
well as at the LHC.

All of the measurements intersect at a single point (a tiny region, actually) in the (ρ,η)
plane: ρ̄ = 0.1577+0.0096

−0.0074 , η̄ = 0.3493+0.0095
−0.0071 (for clarification regarding the difference be-

tween (ρ,η) and (ρ̄, η̄) see the footnote at page 35; the quoted uncertainties include exper-
imental statistical and systematic uncertainties, as well as uncertainties of theoretical pre-
dictions). Now, this is an overconstrained measurement of the CKM matrix parameters!
Numerous processes studied at a number of experiments is experimentally verified to be in
agreement with expectations using CKM matrix.

It was the tests described above that persuaded the physics community in the correctness
of the CP violation description in the world of elementary particles as proposed by Makoto
Kobayashi and Toshihide Maskawa (Fig. 4.16). Their contribution has been recognized by
the The Royal Swedish Academy of Sciences. They shared the Nobel Prize in Physics for
200819 ”for the discovery of the origin of the broken symmetry which predicts the existence
of at least three families of quarks in nature” [43].

14Charmless denote decays without a c quark in the final state. If one neglects a possibility of higher order
processes, the only process leading to a charmless final state for a decaying b quark inside a B mesons is a
b→ u process.

15For explanations on how other unitarity triangle observables - sides and angles - are measured, the reader
shold consult some advanced books and papers, e.g. [5, 46].

16A confidence region is determined for each measured variable. Assuming the measurement has a proba-
bility distribution function w(oi;~p) (typically a Gaussian function, oi is the observable under question, and ~p a
vector of parameters on which the observable depends upon, e.g. ρ and η), the confidence region S is defined
as
∫
S w(oi;~p)d~p = ε , where ε is the confidence level of the region - 95% in this case.

17Predecessor of the current LHC.
18A proton antiproton collider operating at Fermi National Accelerator Laboratory near Chicago until 2011.

Top quarks were experimentally observed there for the first time.
19With Yoichiro Nambu.
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The essence of experimental efforts is best described by the words of the two Nobel lau-
reates in the foreword to [5]:
”[The book describes] a decade long effort of physicists in the quest for the precise deter-
mination of asymmetry - broken symmetry - between particles and anti-particles. We now
recognize that the matter we see around us is the residue - one part in a billion - of the matter
and antimatter that existed in the early universe, most of which annihilated into the cosmic
background radiation that bathes us.”
”The B Factories have contributed a great deal to our understanding of particle physics, as
documented in this book. [...] Obviously we owe our Nobel Prize to this result.”
Certainly the words that make any member of the experiments at B Factories proud.

Note: Overconstrained measurements of processes related to CKM matrix prove with
an excellent accuracy the correctness of Kobayashi-Maskawa description of CP viola-
tion in the world of subatomic particles.
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Figure 4.13: Top pannel: Mesurement of sin(2ϕ1) by Belle [40]. Top plots show ∆t distri-
bution for Btag = B̄0 (blue points) and Btag = B0 (red points). Left and right plots are for
CP = −1 final states (J/ψK0

S , ψ(2S)K0
S and χc1K0

S ) and CP = +1 final states (J/ψK0
L), re-

spectively. The asymmetry ACP is shown in the bottom plots. Bottom pannel: Analogous
measurement by BaBar [41]. Top two plots are ∆t distribution and −ACP (with color legend
opposite to the one in Belle plots) for CP = −1 final states and bottom two the same for
CP =+1 final state.
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Figure 4.14: Top: Measurement of sin(2ϕ1) schematically represented in the (ρ,η) plane
(green area). Superimposed is a sketch of ∆m measurement (between brown lines) and the
overlap area of the two measurements (yellow). Middle: An addition of a third measurement,
|Vub|2, may result in a non-overlapping region of three measurements (red). Bottom: If the
description with CKM matrix is correct, all over-constrained measurements should overlap
to yield the true values of (ρ,η) (yellow). Note that in middle and bottom plot only one
solution for ϕ1 is shown for simplicity.
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Figure 4.15: Current experimental situation regarding the unitarity triangle[42]. Measure-
ment averages of various CKM matrix related variables are shown as coloured bands with
95 % confidence level intervals. All measurements have a common overlap region (red).

Figure 4.16: Makoto Kobayashi (left) and Toshihide Maskawa (right) [43].



Chapter 5

Into the New Era

5.1 The Heritage
It would be erroneous to think the measurement of CP violation was the most reboant result
of the previous generation B Factories. It was indeed their main motivation, it is fair to
say it was probably the most important one from the particle physics evolution perspective,
and in a way a fill rouge throughout the operations. It is one of the most cited results;
results by both experiments presented at the 2001 conferences were cited in various scientific
publications slightly less than 1000 times each. Through the years, however, an emphasize
shifted more and more to searches for processes beyond the Standard Model, as explained in
Sect. 1.3. Ironically, to some extent, the very precise determinations of parameters describing
CP violation within the SM raise a question of New Physics by themselves.

In Sect. 2.3.2 the constant J was introduced, arguing that J 6= 0 is the sign of CP violation,
and that the value of J is one hand a measure of symmetry breaking and on the other that it
can be related to the baryon asymmetry of the Universe. To do so, and without going into any
detail we can constitute that the expression for J involves dimension of energy to the power
of 12. It is to be compared to the appropriate power of the temperature (energy) at which the
baryon violating processes in the course of Universe evolution appeared, TBV ∼O(100 GeV )
[44]. One finds

J
T 12

BV
∼ 10−20 . (5.1)

The current excess of baryons over anti-baryons in the Universe, repeated from Sect. 2.3.1,
is

nbar−nantibar

nγ

∣∣∣∣
now

=
nbar−nantibar

nbar +nantibar

∣∣∣∣
early
≈ 10−10 . (5.2)

The value of J/T 12
BV falls 10 orders of magnitude below the observed baryon asymmetry

of 10−10! The CP violation as described within the SM and as measured with the contem-
porary experiments is many orders of magnitude too small to explain the nowadays state
of Universe. One may say we were rather vague in estimating (5.1), however, a factor of
10,000,000,000 is hard to miss...

Despite an enormous success in description of CP violation as observed at the level of
elementary particles, the complex phase of CKM matrix as the only source of CP violation

96
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fails to explain the mystery of the asymmetric Universe. Hence results of B Factories tell us
that there must exist further, so far unobserved sources of CP violation, New Physics.

Unknown sources of CP violation have been searched for by Belle and BaBar, especially
in some extremely rare B meson decays. The reason for searching for deviations between the
SM predictions and experimental results in extremely rare processes is trivial: if a process
has a very low probability within the SM, then at least potentially a relative contribution
of unknown processes, New Physics, may be relatively large with respect to the SM con-
tribution. Hence, deviations from the SM may be easier to identify. If the process can be
measured accurately enough, of course.

Especially interesting for NP searches are higher order processes; they are typically very
rare and proceed through loop diagrams in which heavy unknown virtual particles may con-
tribute. An example is shown in Fig. 5.1. In the figure a B meson decay is shown with a

Figure 5.1: Left: Diagram of B0→ η ′K0
S decay, an example of b→ sqq̄ quark subprocess,

with CKM factors entering the amplitude. Right: Beyond the SM unknown particles may be
exchanged in the loop and contribute to CP violation.

quark process b̄→ s̄qq̄ (in the specific case q = s). While within the SM such a process is
possible through a loop diagram shown in Fig. 5.1 (left), there may exist unknown particles
that can be exchanged as virtual ones in the loop (Fig. 5.1 (right)). If these particles have CP
violating couplings (XCPV , like W± bosons have in a form of CKM matrix elements) this
may lead to CP violation different than the one expected from the SM calculations.

Several measurements of CP violation in b→ sqq̄ process exist. The method of measure-
ment is analogous to the one described in the previous chapter for B0 → J/ψK0

S , with the
underlying b→ cc̄s quarks process; the parameter S measured in these rare decay modes is
usually written as

Sb→sqq̄ =−η f sinϕ1 +∆S . (5.3)

∆S parametrizes possible deviations from S as measured in b→ cc̄s process, arising from
NP contribution. Due to corrections arising from strong interaction among quarks in specific
hadrons, ∆S has a mild dependence on the specific hadron decay mode, but is in general
within SM expected to be zero. The most accurate theoretical prediction as well as the
current experimental knowledge exist for B0 → η ′K0 decays. ∆S in this decay mode is
measured to be consistent with 0 within an accuracy of ±0.06 [45]. On the other hand, the
theory (SM) predicts ∆S to be null within ±0.01 [46]. Hence the experimental accuracy
must be improved, in order to seek for any deviations from the SM it should reach the level
of around ±0.01 or better. This is not possible using Belle and BaBar data (note that the
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branching fraction of this specific decay is only around 7 ·10−5). It is only one of examples
where the next generation B Factory, SuperKEKB and Belle II (see Sect. 3.1.2) is needed.

With largely increased luminosity and significantly improved detector and measurement
methods both, statistical and systematic uncertainties will be reduced at Belle II. For any
decay-time dependent measurements, accuracy of decay vertex determination is crucial. At
Belle II, semiconductor detectors (Fig. 3.24 (left)) are expected to provide a significantly bet-
ter precision than available in the previous generation B Factories. This precision influences
also the accuracy of ∆S measurement in B0→ η ′K0

S ; the latter is shown as a function of inte-
grated luminosity in Fig. 5.2 (left; adopted from [46]). The statistical part of the uncertainty

Figure 5.2: Left: Expected accuracy on ∆S in B0 → η ′K0
S measurement with Belle II as

a function of integrated luminosity (adopted from [46]). Dashed line marks the expected
amount of irreducible systematic uncertainty. Right: close up of Belle II semiconductor
vertex detector, consisting of two inner layers of pixel detectors, and four layers of double-
sided silicon strip detectors. Schematically some tracks with illustrated hits in the four outer
layers of silicon strip detectors are also plotted. The outermost layer has a radius of 140 mm
[27].

decreases inversely proportional to integrated luminosity (see (3.3)). The systematic part
may or may not decrease with luminosity. For example, if a part of systematic uncertainty
arises from a finite knowledge of a given parameter which can be determined using some
data, that part of systematic uncertainty will decrease with integrated luminosity. On the
other hand there are sources of systematic uncertainty that do not decrease with an increased
data sample size, and are hence called irreducible1. By performing studies of simulated data
one can estimate the expected accuracy of a given measurement with a specific detector.
With the final dataset of Belle II (50 ab−1) one expects a measurement of S in B0→ η ′K0

S
with an accuracy of around 0.02.

Note: B Factories of previous generation provided for accurate measurements of CP
violation in elementary particle processes, unveiling the fact that the level of observed
symmetry breaking is many orders of magnitude too low to explain the observed matter

1Irreducible in this context should not be taken too literally. It usually happens that bright new ideas for
measurement methods can additionally reduce the systematic uncertainty.
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anti-matter asymmetry of the Universe. The present B Factory will search for possible
new sources of CP violation and by that for evidences of New Physics in extremely rare
processes, which were beyond the reach of experiments so far.

5.2 Strong and Weak

As a guideline in importance of individual results one can consider the number of cita-
tions of a given scientific paper2. Interestingly enough, despite the general aim of search-
ing for NP in high energy physics experiments, some of most cited Belle and BaBar re-
sults are actually the ones dealing with some unknown properties and their consequences
of known interaction, the strong one. By far the most cited article by Belle collabora-
tion, and perhaps also the most unexpected finding is the one from 2003. In studies of
decays of B mesons, B+ → K+J/ψπ+π−, an unknown type of hadron has been discov-
ered, shown in Fig. 5.3 [47]. The X(3872) state decays into J/ψπ+π− and consequently
appeared as a narrow peak in the invariant mass distribution of these final state particles
(note that J/ψ decays into an `+`− pair, ` = e or µ; in the figure a difference of invariant
masses, ∆M =M(π+π−`+`−)−M(`+`−), for which the resolution is better than directly for
M(π+π−`+`−), is shown). While produced in a similar manner as some other charmonium
states in decays of a B mesons (Fig. 5.3 (bottom), compare to Fig. 3.29), the state X(3872)
has some peculiar properties (mass, decay width, decay modes) preventing to systematize
it into the spectrum of known charmonium states3. Numerous further studies showed that
X(3872) - the name of which reflects its unknown nature, and approximate mass, expressed
in MeV - is a state composed of four quarks4. As such it represents a so far unknown form
of hadrons (only conventional mesons and baryons were experimentally known until then).

Beside X(3872) several other hadrons experimentally observed for the first time at B Fac-
tories, either conventional or exotic 5, enabled further studies of strong interaction. Needles
to say, Belle II will enable further precise studies of these states, with one to two orders of
magnitude larger samples of their decays. The sample size will increase because of the larger
expected integrated luminosity, as well as due to the improved reconstruction efficiency. In
reconstruction of various hadronic states, particle identification is of utmost importance. Be-
side the detector module briefly described in Sect. 3.2.2, at Belle II also Cherenkov radiation
in aerogel radiator is used for this purpose. Fig. 5.4 shows a view of an array of semiconduc-
tor sensors at Belle II, capable of single photon detection.

Among the processes mediated by weak interaction, another result cited widely in the
follow-up studies by various groups is the discovery of D0 oscillations. As presented graph-
ically in Fig. 3.27 and numerically in Tab. 3.2, values of mixing parameters in the system
of neutral D mesons result in a tiny probability for a D0 meson to mix into its anti-particle
before it decays. A direct search for oscillations in a manner similar to that for B0

s mesons,
for example, did not produce a positive result. A different method was devised.

2The author does not promote usage of the mentioned indicator in general to evaluate importance of specific
results and/or the quality of a research.

3Bound states of cc̄ are well known both theoretically and experimentally.
4Either in a form of a di-meson molecule, or perhaps as four independent quarks - a tetraquark.
5Exotic means not a conventional meson or a baryon.
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Figure 5.3: Top: Difference of invariant masses ∆M =M(π+π−`+`−)−M(`+`−) in selected
B+ → K+J/ψπ+π− decays (J/ψ decays to a pair of light leptons, `+`−). Adopted from
[47]. Red arrow marks a peak in the invariant mass distribution corresponding to X(3872)
(left), not present in the simulation (right). Bottom: A diagram of X(3872) production in B
decays.

In the absence of CP violation (q = p = 1) states |P1,2〉 defined in (3.22) are eigenstates
of ĈP operator. If CP asymmetry would be conserved - or if its violation is small enough
to be neglected - |P1〉 decays into CP-even and |P2〉 into CP-odd final states. As it turns
out CP violation in processes with charm quarks is indeed tiny. The reason is that CKM
matrix elements related to the first two generations of quarks are almost real. Consider, as
an example, D0 → π+π− decay. Comparing this decay and its charge-conjugated version,
D̄0→ π−π+, it is easy to see that the phase of CKM elements entering the ratio of amplitudes
is

Arg
[
〈π−π+|D̄0〉
〈π+π−|D0 〉

]
= 2Arg [VcdV ∗ud] . (5.4)

Wolfenstein parametrization as given in (2.22) is not sufficient to estimate the above expres-
sion. One needs further terms in Taylor expansion, to find Arg

[
VcdV ∗ud

]
∼ A2λ 4η ∼ 10−3.

CP asymmetries in charm processes are of the order of 10−3, and can be neglected in the
following.

A produced D0 or D̄0 is a linear superposition of CP eigenstates D1 and D2, which are
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Figure 5.4: Array of Hybride Avalanche Photo Diodes (HAPD), placed in one of the endcaps
of Belle II and designed to detect photons from Cherenkov light being emitted by charged
particles in an aerogel. Photo: R. Pestotnik.

the states with a well defined mass and decay width. If a D0 or its anti-particle decays into
a final state fCP, an eigenstate of CP as well, then only a D1 or D2 component contributes
to such a decay. Consequently, decay-time dependence of neutral D meson into a CP-even
(CP-odd) final state exhibits a simple exponential form with a decay time of D1 (D2). On
the other hand, decays into non-CP eigenstate (i.e. a final state which is a mixture of two CP
components) follow a decay-time distribution with a lifetime which is an average of D1 and
D2 lifetimes. A difference of lifetimes in specific types of final states is an evidence of D1,2
components and by that evidence of oscillations.

Belle [48] measured decay-time distribution of neutral D mesons in decays to K+K−

and π+π− (both CP even final states) and compared those to the distribution of decays into
K−π+ (a mixture of CP eigenstates). Result is presented in Fig. 5.5 (left). In the figure a
deficit of decays to K+K−,π+π− compared to decays to K−π+ is clearly evident at high
decay-times. Hence the lifetime in former decays is shorter than the lifetime in the latter
decays. With some algebra of decay rates the measured lifetimes in both groups of decays
can be translated into a mixing parameter ∆Γ/2Γ = (1.11±0.22±0.11)%.

BaBar [49] used a different method, exploiting decays to so called wrong-sign decays,
D0→ K+π− and D̄0→ K−π+. Such a final state is accessible to D0 through two ways: ei-
ther a direct decay (with amplitude proportional to VcdV ∗us, Cabibbo suppressed; see Fig. 5.6)
or through mixing, D0→ D̄0, followed by a D̄0 decay (with amplitude proportional to VcsV ∗ud ,
Cabibbo allowed). Interference of the two amplitudes, neglecting CP violating effects, leads
to an exponential decay-time dependent rate, modulated by additional decay-time t depen-
dent terms. Coefficients in front of the latter terms are proportional to mixing parameters.
Assuming the parameters to be small it suffices to take into account only the first two terms in
Taylor series expansion, proportional to t and t2. The decay-time distribution of wrong-sign
decays is compared to distribution of right-sign decays, D0→ K−π+ and D̄0→ K+π−, to
which mainly a single amplitude for direct decay (proportional to VcsV ∗ud , Cabibbo allowed)
contributes. Their distribution is a simple exponential. The ratio of wrong- and right-sign
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Figure 5.5: Left: Ratio of decay-time distributions for D0 → K+K− or D0 → π+π− and
D0 → K−π+ decays [48]. Right: Ratio of decay-time distributions for D0 → K+π− and
D0→ K−π+ decays [49].

decay-time distributions is hence approximately parabolic, as seen in Fig. 5.5 (right). Co-
efficients of the parabola depend on the D0 mixing parameters; however another apriori
unknown strong phase enters the expressions6. Hence a direct determination of the mixing
parameters using only this measurement is not possible. Nevertheless a non-zero mixing
parameters and hence a presence of oscillations can be unambiguously proved.

The two collaborations presented their results, measurement of the oscillations in the last
neutral meson system, where the phenomena was not yet observed, at one of the conferences
in the winter of 2007. Scientific papers on the subject were published back-to-back in an
international scientific journal the same year.

An important piece of information is - despite large efforts - still missing among the re-
sults of B Factories related to charm quark physics. As explained above, CP violation in
processes with hadrons composed of c quarks is small. Both collaborations performed var-
ious measurements of CP violation in charm sector. Time integrated asymmetries, [Γ(D→
f )−Γ(D̄→ f̄ ]/[Γ(D→ f )+Γ(D̄→ f̄ ], have been measured for more than 10 different final
states f . Performing a measurement of CP violation in D0 decays requires the initial meson
flavour tagging. In most cases this is achieved by using mesons produced in a decay of an
excited D meson, D∗+→D0π+. Charge of the pion accompanying the neutral D meson tags
its flavour.

Considering the expected amount of symmetry breaking the accuracy of measurements
must be at the per-mill (i.e. 10−3) level. This requires an excellent control of experimental
method in order to keep the systematic uncertainty at low enough level. There are many
effects which may cause asymmetries between original and charge conjugated decays at this

6It is a phase between the amplitude of Cabibbo allowed and Cabibbo suppressed decay, not arising from
the CKM matrix elements. This phase does not change sign in conjugated decays.
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Figure 5.6: Two possible amplitudes leading to wrong-sign D0 decays: through a Cabibbo
suppressed decay of a D0 (left), or through a mixing, followed by a Cabibbo allowed D̄0

decay (right).

level. For example, reconstruction efficiencies of positively and negatively charged particles
tracks in detector may differ by this amount. Such effects must be taken into account in order
to be subtracted from the observed asymmetries. Simulated data, typically used to determine
efficiencies, are not precise enough to determine such small details. One must rely on real
data - control data - selected specifically for that purpose. In order to determine detector
induced asymmetries, control data sample must be free of CP violation. In D meson decays,
usually such samples include Cabibbo allowed decays, like the example in Fig. 5.6 (right).
For such decays only a single amplitude is dominant and hence no significant CP violation is
expected. On the other hand Cabbibo suppressed decays like the example in Fig. 5.7 receive
contribution from more underlying processes and in principle may exhibit CP violation.
An alternative in determination of detector induced asymmetries is a measurement of CP

Figure 5.7: Cabibbo suppressed decay D0 → π+π−. It proceeds through a lowest order
process (left) or higher order process (right).

asymmetry difference between two final states. In the difference unwanted contributions
cancel, if the two final states are suitably chosen. A non-vanishing difference of asymmetries
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would be a sign of CP violation (at least in one of decay modes the asymmetry must be
different than 0), however the interpretation of results in terms of CP violating parameters is
in this case more complicated, of course.

Further examination and possible discovery of CP violation in charm sector remains a
task for the current generation B Factory, Belle II.

Among more than 500 journal papers published by each, Belle and BaBar collaboration
(and still publishing since analyses of data are still in progress), several hints of discrepancies
between the Standard Model predictions and measurement results appeared. We say hints,
as opposed to observations. The reader is by now for sure familiar with a statistical nature
of measurements in high energy physics. A measurement of a given significance can only
be interpreted probabilistically, i.e. quoting a probability that the true value of an observable
lies in an interval around the measured value7. If the measurement accuracy is such that the
deviation from the SM prediction is not so highly probable to dismiss any practical doubt of
discrepancy, one can not talk about observation8.

Perhaps the most intriguing among hints of discrepancies arises from tests of lepton
flavour universality. Before shortly discussing those we need to take a look at an important
experimental method, possible at B Factories. In an electron positron collision a pair of B
mesons is produced through an ϒ(4S). Since no other particles can be produced, conservation
of energy and momentum requires

pee = psig + ptag , (5.5)

where p denotes a four-momentum, and indices stand for the electron-positron system, the
signal and the tagging B meson, respectively. Energy and momentum of the initial electron-
positron system is known, but momenta of the produced mesons are not. If one, however,
is able to reconstruct momentum of the tagging B meson, the momentum of the signal B
meson can be obtained from the above equation, even if the decay products of Bsig are not
reconstructed. This is of extreme importance in decays where all or some of the signal B
meson decay products are not detected in the detector. This is the case with neutrinos in
the final state. Neutrinos capable of only weak interaction have a low probability of an
interaction with material of the detector, and hence a low (negligible, actually) probability
of leaving any signal in it9. If Bsig undergoes a semileptonic decay, Bsig→ `ν`X , neutrino is
not detected and hence it is impossible to reconstruct the decaying B meson from its decay
products. If the tagging B meson is reconstructed, momentum of neutrino can nevertheless
be recovered, assuming the charged lepton ` and the produced hadronic system in the final
state, X , are detected:

pν = pee− ptag− p`− pX . (5.6)

An example of the method at work is shown in Fig. 5.8. In the figure a computer reconstruc-
tion of a B meson pair decay, as detected by the Belle detector, is shown. In the example

7Intentionally we do not dwell into more precise statistical interpretations, as it would lead to discussions
regarding Bayesian and/or Frequentists approach to statistical issues, and these are far beyond the scope of the
book.

8A commonly accepted definition by several scientific journals is that a significance of 3 σ (in units of
measurement uncertainty σ ) is considered as an evidence and 5 σ as an observation.

9A 1 MeV neutrino has roughly a probability of 10−11 to undergo an interaction when passing through the
Earth.
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Figure 5.8: Reconstruction of a B meson pair decay in Belle detector. Btag decays into a
charged kaon and four charged pions, all being reconstructed in the detector (blue). Bsig
decays into τ−(→ e−ν̄eντ)ν̄τ . Of Bsig decay products only the e− is detected (red). Using
energy and momentum conservation the missing momentum (yellow), taken by neutrinos,
can also be determined. Energy detected in the electromagnetic calorimeter (green) and not
associated to reconstructed charged particles EECL should be zero.

shown the tagging B meson (a charged B+ meson) decayed into a charged kaon and four
charged pions in the final state, the tracks of which are reconstructed in the detector. The sig-
nal B meson (B−) most probably decayed into a τ lepton and a corresponding neutrino. τ , in
turn, seemed to decay through τ−→ e−ν̄eντ . Of the decay products of Bsig only the electron
is reconstructed. Using Eq. (5.6) momentum, taken by neutrinos (missing momentum, ~pmiss)
can be reconstructed. Moreover, after accounting for the energy deposits in the electromag-
netic calorimeter (coloured in green in the figure) produced by the detected charged particles,
any possible extra energy (EECL) detected may be only due to the final state neutrinos. Since
they don’t interact in the material this extra energy is expected to be null. Decays like this
can thus be identified by the extra energy EECL ∼ 0.

The described method represents an extremely powerful method for measurement of
B meson decays in which (for detector) invisible particles are produced. These may be
arising from Standard Model processes (neutrinos) or could be some yet unknown potential
particles (e.g. candidates of dark matter particles, not interacting with the ordinary matter).
The method thus enables measurements of leptonic (e.g. B+→ τ+ντ ) and semileptonic (e.g.
B+→ D̄0τ+ντ ) decays of B mesons, as well as searches for New Physics particles potentially
produced in e+e− collisions. A drawback is the need for full reconstruction of a Btag from
its decay products. Since B mesons have a large number of possible decay modes, each
with a relatively low branching fraction, the efficiency of such full Btag reconstruction is low,
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typically around 0.5%.
An example of measurement using the method described is presented in Fig. 5.9. The

method is used to measure the branching fraction B+→ τ+νtau [50], where the signal decays
are identified as those with EECL ≈ 0. It is clear from the figure that the number of selected

Figure 5.9: Distribution of extra energy EECL for B meson decays selected as B+→ τ+ντ

candidates. Points with error bars represent the data, coloured histrograms are estimated
contributions of backgrounds. Signal decays contribute the excess of events at small values
of EECL [50].

B+ → τ+ντ candidates is low (actually in the measurement around 200 candidate events
from 770 · 106 BB̄ pairs were isolated). Accuracy of this decay branching fraction will be
significantly improved using the data collected by Belle II detector.

After briefly explaining the method of measurements of B decays with undetected parti-
cles in the final state, we can return to the question of lepton flavour universality. The term
describes the fact that the amplitude for the quark level process q→ q′`−ν̄` is the same, re-
gardless of the flavour of the charged lepton `, i.e. the same for ` = τ,µ,e. To be precise,
the coupling constant of weak interaction mediating the process is the same - Fermi coupling
constant GF - regardless of the lepton flavour. In expressing a probability of semileptonic
decays also masses of leptons - very different for various leptons - as well as some properties
of hadrons in which quarks are bound play a role. The differential semileptonic decay width
for a B meson decay into D∗ (process of Fig. 5.10) is written as [51]

dΓ(B→ D∗`ν`)
dq2 ∝ G2

F |Vcb|2
q2

m2
B

(
1−

m2
`

q2

)[
H2

L(q
2)

(
1+

m2
`

2q2

)
+

3
2

m2
`

q2 H2
T (q

2)

]
. (5.7)

The expression includes a variable q2 - square of the invariant mass of the `ν` pair (or,
alternatively, square of the momentum transferred by W+). It depends also on the lepton
mass m`. Our ignorance of quantum chromodynamics (binding quarks inside the hadrons,
schematically denoted by red gluon lines in the plot) is parametrized by phenomenological
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Figure 5.10: Diagram of B meson semileptonic decay, with marked some of the factors
entering the differential decay rate (see text for description).

functions HL,T (q2). They are calculated using models or lattice QCD10 and are subject to
theoretical uncertainty.

Taking into account different masses of leptons (in reality only mass of the τ lepton,
1.78 GeV, which is much larger than masses of muons and electrons, 0.106 GeV and 0.0005 GeV,
respectively, must be considered) ratios of decay rates can be calculated:

R(D(∗))≡ Γ(B→ D(∗)τντ)

Γ(B→ D(∗)`ν`)
. (5.8)

In the above equation ` denotes only an electron or a muon, while the τ lepton is excluded
from the notation. Uncertainties related to calculations of functions HL,T (q2) are signifi-
cantly reduced in the ratios R(D(∗)) (because they cancel in the ratio). Hence the ratios can
be predicted rather precisely in the framework of SM:

R(D)SM = 0.300±0.008 [52]
R(D∗)SM = 0.252±0.003 [53] . (5.9)

Measurement of the ratios represent a test of universality between τ leptons on one hand,
and light leptons - e and µ - on the other. And the reconstruction of tagging B mesons,
described above, enables such measurements. Both B Factories performed measurement
with D and D∗ mesons in the final state. The average11 of measurements, presented in
Fig. 5.11 (left) [45], is somewhat surprising. The current average of measurements is around
four standard deviations away from the SM prediction. This suggest that τ leptons couple to
weak interaction slightly differently than electrons and muons.

In exploiting the above mentioned measurement method at Belle II, improvements to
the electromagnetic calorimeter will be important. The Belle II electromagnetic calorimeter
is a detector module composed of CsI(Tl) crystals (Cesium Iodide dopped with Thallium,
crystals similar to the one shown in Fig. 5.11 (right)). This material is a scintillator, part

10Lattice quantum chromodynamics is a method of calculation of strong interaction processes on a discrete
lattice of space-time points.

11Also LHCb experiment at LHC contributed with their measurements.
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Figure 5.11: Left: Average of R(D) and R(D∗) measurements, in comparison to the SM
prediction (adopted from [45]). The central value of measurements is around four standard
deviations away from the prediction. Right: A CsI crystall (adopted from [54]), similar as
those building up Belle II electromagnetic calorimeter.

of the energy deposited in it by charged and neutral particles is emitted in a form of light
that is detected by an array of light sensors. By that the energy of the traversing particles
can be determined (hence the term calorimeter). At Belle II new electronics will be used
for reading out the signals, resulting in a better separation among energy deposits of various
particles and noise.

The precision of the measurements presented in Fig. 5.11 (left) is currently not sufficient
to judge on a possible shortcomings of Standard Model. In case the discrepancy proves to
be genuine it would be a smoking gun of New Physics. To achieve a more precise results on
R(D) and R(D∗), and to reach conclusions regarding the universality of leptons in Nature,
one will have to rely on the data recorded by Belle II, as well as expected updated measure-
ments from LHCb experiment at LHC.

Note: Previous generation B Factories initiated several experimental methods and re-
veal few hints of discrepancies between measurement results and predictions of the
Standard Model. Present B Factory, Belle II, will be able to upgrade the measurement
accuracy and search deeper into particle world for signs of New Physics.
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