2.7 Electromagnetic interaction of Dirac particles
2.7.1 e ;r — ey scattering

Knowing that the Dirac equation describes relativistic particles with spin % let us calculate the
cross section for the electromagnetic interaction between two such particles, an electron and a
muon. The Feynman diagram of such a process is
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and the matrix element is Tﬁ =—lj]ve —— ];d4x

where ]Ve and ]; denote the electromagentic current of the electron and muon, respectively:

ji =ik, u(k)e
ju=—eu(p)y u(p)e'’ "



Inserting the currents into the matrix element expression we obtain
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where in the last line we used the definition of a 4-dimensional delta function (the latter is just a
consequence of energy and momentum conservation in the process). It is again custom to
separate the delta function out of the matrix element by defining the amplitude for the process
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Before proceeding with the calculation we need to determine what kind of the cross section we
wold like to determine. The involved particles carry spin. Quite often the spin orientation (which
in principle can be measured, i.e. one can distinguish between positive and negative helicity
states) of particles is not measured. In this case one talks about the unpolarized cross section. It is
defined as
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Factors (2s+1) represent possible spin states of the incoming particles (a and b). In the
unpolarized cross section one averages over those possible spin orientations. For a particle of
spin % this factor equals 2 (two possible spin orientations). The sum in the expression runs over
all possible spin orientations of the spinors involved in the amplitude 9IC. 1t should be noted that
the sum runs over amplitudes squared whch is a consequence of the fact that in principle the
spin orientations can be measured. The sum involves currents, for example the electron current
L_l(k')]/Ku(k) which in the amplitude squared enters twice:
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Note that the indices of the gamma matrices are different; the first gamma four-vector is
multiplied by the corresponding four-vector in the muon current and analogously the second
one. Writing out the current product above
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The sum over spin orientations implies
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where in the last line we explicitly wrote out the components of the spinors and ga(g}ma ma”grices
to be multiplied (sum over the repeated indicies is implied). Each of the factors U; and 7/1']' is
now a simple scalar and their products are commutative. Hence we can move the last factor
ug(s') (k') to the beginning of the product thus obtaining
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The notation below the line denotes what we obtain by applying the completness relation, with
m, denoting the mass of electron. The sum is thus
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Examining the matrix indices we realize that the above product is just the trace of the expression,
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The same can of course be obtained for the other (muon) current in the spin averaged amplitude.
The latter reads
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It may be of some comfort to know that once we are aware of this result it is not necessary to
repeat the derivation each time when calculating amplitudes for various processes. Already from
the form of the amplitude 9)|{ on p. ??? we can directly guess the expression for the spin
averaged amplitude above.

In proceeding with the calculation of ‘@K we use some known identities in calculation of
traces without the need for explicit matrix multiplication. This identities are called the trace
theorems.

Specifically for the above example the following trace theorem can be used:
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Upon using the same theorem for the traces of the muon current we obtain
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The most difficult part of the cross section calculation is by this accomplished. We obtained the
spin averaged amplitude expressed in terms of four-momenta products (it should be noted that
the products of four-vectors are Lorentz invariant).

To obtain the cross section from the spin averaged amplitude we need to add a few further
factors. We defined the differential cross section (p. ???) as

do _dW,1dQ W, 2z, pdp,
iQ  pv. T dQ ' 4O
Density of final states p; was obtained from
d3N . dsp . 1 d3p where we used p = 1/V to denote the

(272.;-2)3 B D (272.;-2)3 probability density in Schrédinger equation.



The density of final states for relativistic particles must be written using
3
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psis proportional to d3p/E. A differential Lorentz transformation (in x direction) is
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and the Lorent transformed d?p/E factor is
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where we used E= \/(Px2+py2+p22+m2) and hence dE/d°p, = p,/E. The density of final states
proportional to d3p/E is Lorentz invariant.



The last factor needed for the cross section is the density of incoming particles, pv.. If the initial
particle a is moving and particle b is resting (in a target) then
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If both initial state particles are moving, then
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Taking into account — = IB = m = m ;= P the velocity difference can be written as
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The latter expression can be written in explicitly Lorentz invariant form as shown.



The differential cross section can thus be written as a product of Lorentz invariant factors,
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F , with individual factors for the process a b — ¢ d written as
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The above ingredients of the differential cross section take specifically compact form if written in
the center-of-mass frame (CMS) of the initial and final state particles:
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_ If we are interested in the angular

distribution of final state particles we can write
(note that p; and p,are not 4-vectors but the magnitudes of the corresponding 3-momenta):
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and integrate over dp:
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Denoting the CMS collission energy by E (=E +E,) we have
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Upon integration over the energy E we get
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Substitution of p, and p, expressed in terms of p; into the expression for F yields

F=4pFE
The differential cross section in CMS is
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and the trivial integration over E (because of the delta function) yields

do |9 p,
dQ  64rn’pE’
In the ultrarelativistic limit m, << p, and P=Ps,
2
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Returning to our example of the e xr — e i scattering, we can now write the differential cross
sectiomn in the CMS in the ultrarelativistic limit :

k=(E/2,p), k'=(E/2,p,;), p=(E/2,-p,), p'=(E/2,-p,)
k'p=(E*/4)+p,p,=(E*/4)(1+cosH)
kp=(E*/4)+p,p,=E/2

q* =(k'-k)* =(0,p, —p,)* =—(E* /2)(1-cosb)

do e'  4+(1+cosb)’

dQ  327%E?  (1-cos6)?

In rewriting the expression to obtain the units m? as expected for the cross section one should
take into account a = e?/4 7 to obtain

do _a’(hc)” 4+(1+cosh)’
dQ  2E* (1-cosé)’




