

PET and SPECT: Physical Principles and Basic Strategies of Radiotracer Development for Pre-Clinical and Clinical Use

Roger Schibli

Center for Radiopharmaceutical Sciences ETH-PSI-USZ

From wikipedia

Resolution and Sensitivity

Imaging Method	Spatial resolution	Sensitivity		
 Ultrasound	50 µm	10 ⁻³ Mol	78 87	Morp
СТ	50 µm	10 ⁻³ Mol		oholog
MRI	100 µm	10 ⁻⁵ Mol		YY
Bioluminescent	1-3 mm (depth!)	10 ⁻⁸ Mol		Func
Nuclear*	> 2 <i>mm</i>	10 ⁻⁹ -10 ⁻¹² Mol		tion

* **Positron Emission Tomography** - **PET**

Single Photon Emission Computed Tomography - SPECT

Morphology

The Tracer Principle

George de Hevesy (1885-1966); Nobel Prize for Chemistry in 1943

A radioactive tracer is a chemical compound in which one or more atoms have been replaced by a radioisotope. It is applied in minimal amounts, therefore, it has no pharmacologic effect in vivo. It can also be used to explore the mechanism of bio-/chemical reactions by tracing the path that the radioisotope follows from reactant to product

E.g. 370 MBq of ¹¹C-tracer necessary for a brain scan with ¹¹C-Raclopride (D2-receptor ligand) corresponds to 100 picogram total mass injected.

Principles in Nuclear Medicine

Gamma-Radiation of Scintigraphy and SPECT

^{99m}Tc
$$\rightarrow$$
 ⁹⁹Tc + γ

Nucleus in an exited state decays to ground state

¹¹¹In \longrightarrow ¹¹¹Cd + γ

Electron capture: Nucleus possesses too many protons but is unable to emit a positron and instead captures an electron \rightarrow exited state

 $^{67}Cu \longrightarrow ^{67}Zn + e^{-} + \gamma$

 γ -emission after beta-decay

Anger Camera

Hal Oscar Anger (1920-2005)

Anger camera (Nal-scintillator and photo multipliers) scintillator

PMT

Signal detection

Scintillation Material

Scintillator	or Density [g/cm ³] Peak emission [nm]		Decay time [ns]	relative yield*	
Nal(TI)	3.67	415	230	100	
Csl	4.51	315	16	4-6	
CsF	4.64	390	3-5	5-7	
CaF ₂ (Eu)	3.18	435	940	50	
BaF_2	4.88	310	630	16	
BGO	7.13	480	300	15-20	
$CdWO_4$	7.90	350	28	130	
LaCl ₃ (Ce)	3.79	350	28	130	
LaBr ₃ (Ce)	5.29	380	16	160	
YAP	5.37	347	28	40	

*relativ to Nal(TI)

Principle of Parallel Hole Collimator

Principle of Parallel Hole Collimator

Lead collimator

Principle of a Pinhole Collimator

- Magnification of the projected object
- "Camera Obscura"

Resolution of a Pinhole Collimator

$$R = \sqrt{(d_{\rm e}(1 + 1/M))^2 + (R_{\rm i}/M)^2}$$

R = resolution

 $d_{\rm e}$ = hole diameter

 $R_{\rm i}$ = intrinsic resolution of the detector

M = magnification factor given by L/H (L the focal length of the pinhole; H the

pinhole to the source distance)

Effect of Pinhole Size and Object Distance on Resolution and Sensitivity

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Results of Type of Collimators on Resolution

Pinhole:

Parallel hole:

¹⁷⁷LuCl₃ bone scan in a normal mouse

Multi Pinhole SPECT Technology

Higher sensitivity and better resolution

Single pinhole

Multi pinhole

http://www.bioscan.com/

Performance of Multi Pinhole SPECT Technology

Choroid Plexus (folate receptor positive organ)

^{99m}Tc-Folate (tumor and kidney FR-positiv) female nude mice with (human KB-cell

tumors, 24 h p.i.

Roger Schibli

Principle of SPECT

- Flat panel *head* used for detection
- Acquisition time depending on:
 - detector, collimator
 - size of the imaging region
 - amount of activity available.

Multiple angle detection

Dual Isotope Imaging with SPECT

- Bone scan with ^{99m}Tc-MDP (red-blue) and Thyroid imaging with ¹²³I (green-yellow)
- ^{99m}Tc (140.5 keV)
- ¹²³I (159.0 keV)

Principle of PET

Time-of-Flight PET (ToF-PET)

Philips TruFlight: The solution to better PET imaging

In conventional PET imaging, it's possible only to know that a coincident event has taken place on the line of response, but not the actual location of the event.

http://www.healthcare.philips.com

TruFlight technology uses the actual time difference between the detection of coincident events to more accurately identify the origin of the annihilation. Better identification leads to a quantifiable improvement in image quality.

PET Detectors

- Scintillation detectors:
 - conversion of radiation to visible light, detected by PMT, SiPMT or APD-, PIN-Diodes

- Semiconductor detectors (CdTe or ZnCdTe)
- Multi-wire gas counters
- No collimators necessary!

Possible Coincidence in PET

- True coincidences, where the line drawn between the two hit detector elements for that event passes through the point of origin
- Scatter coincidences, where one or both 511-keV photons undergo Compton scatter (unwanted)
- Random coincidences occur when two distinct radionuclei contribute one detected photon (unwanted)
- γ-coincidences occur when a 511 keV photon and a γ-photon are detected (unwanted)
- True coincidence
- Scatter coincidence
- Random coincidence
- γ -coincidence

THE REAL

Scatter Effects

Imaging of a 3-Rod Phantom Filled with ¹⁸F, ¹²⁴I, or ⁸⁶Y : 3D-Mode

teflon

Decay Properties of Selected Positron Emitters

	T _{1/2} (min)	max. Positronen- energy (MeV)	mean distance in water (mm)
¹¹ C	20.4	0.96	0.3
¹³ N	9.9	1.19	0.4
¹⁵ O	2.9	1.72	1.5
¹⁸ F	110	0.64	0.2
86Y	870	3.14	3.2
124	5900	2.13	2.3

Influence of Positron Energy on Resolution

Hybrid Imaging: PET/CT, SPECT/CT, PET/MR

Combine functional imaging with morphologic imaging

David W et al.. Seminars in Nuclear Medicine, Volume 33, Issue 3 2003 193.

CT PET PET/CT (¹⁸F-FDG); source USZ

Integrated PET/MR vs. PET/CT

Boss et al. J Nucl Med, 2010, 51;1198.

Important Radionuclides for SPECT

Radionuclide	adionuclide Main Emission Energy	
⁶⁷ Ga	93, 185 keV	3.3 days
^{99m} Tc	140 keV	6.02 h
123	159 keV	13.3 h
¹¹¹ In	171, 245 keV	2.8 days
²⁰¹ TI	135, 167 keV	3.0 days
131	364 keV	8.2 days

Important Radionuclides for PET

Radionuclide	T _{1/2}	Mean β⁺ energy (keV)	Resolution (mm)
¹¹ C	20 min	386	1.1
¹⁵ O	2 min	735	1.5
¹⁸ F	110 min	250	0.7
⁶⁴ Cu	12.7 h	278	0.7
⁶⁸ Ga	1.1 h	830	2.4
⁷⁶ Br	16.3 h	1180	3.2
124	4.17 d	820	2.3
⁸⁹ Zr	3.27 d	396	1.1

Radionuclide Production

Cyclotron

C-11 N-13 F-18 Cu-64/67

E.g.:

In-111 I-123

Reactor: Neutron bombardment

On-site generators E.g.: Ga-68 Tc-

99m

Re-188

Radionuclide Production

nuclear reaction

¹¹ C:	¹⁴ N(p,α) ¹¹ C
¹³ N:	¹³ C(p,n) ¹³ N ; ¹² C(d,n) ¹³ N
¹⁵ O:	¹⁴ N(d,n) ¹⁵ O ; ¹⁵ N(p,n) ¹⁵ O
¹⁸ F:	¹⁸ O(p,n) ¹⁸ F
¹¹¹ ln:	¹¹¹ Cd(p,n) ¹¹¹ In
¹³¹]:	130 Te(n, γ) 131 Te \rightarrow 131 I

Do We Need So Many Different Radionuclides?

intact A	Ab	F(al) ₂	F(ab)	Small
(150kDa)		(100)	(Da)) (50kDa)		molecules
В	iological	T _{1/2}				
days		hours	mi	nutes		
P	hysical T	1/2				
⁸⁹ 7r	3 2 d	99r	ⁿ Tc	6 h	¹¹ C	20 min
1111p	2.2 U	64	Cu 1	2.7 h	¹⁸ F	1.9 h
	2.8 U	76	Rr 1	63h	⁶⁸ Ga	1.1 h
6'Ga	3.2 d	4.7				
124	4.2 d	12	¹³] 1	3.3 h		

Suitable Radionuclides for Diagnosis

Critical Issues for Functionalization and Radiolabeling of Molecules

- Labeling yields
- Synthetic steps
- Avoid cross reactivity with other functional groups
- Avoid mixtures of products and formation of isomers
- Optimal pharmacokinetic
- Retention of biological activity and integrity

Potential Drawbacks of Iodine Radioisotopes

- Expensive isotopes with suboptimal decay and imaging characteristics
 - half-live too long for imaging (¹²⁴I)
 - decay energy too low for imaging (¹²⁵I)
 - high dose burden (¹²⁴I/ ¹³¹I)
- In vivo de-iodination via hepatic deiodases (Tyr only)

Biodistribution of ⁶⁷Cu-labeled vs ¹²⁵Ilabeled antineuroblastoma mAb chCE7 in tumor-bearing nude mice: higher tumor uptake of radiocopper labeled antibody

Novak-Hofer et al Cancer Res. 1995

PET Tracer Production

Interesting References

- Cherry, Sorrenson, Phelps, Physics in Nuclear Med.
- Kupinski, Barrett, Small-Animal SPECT Imaging
- Webb, Introduction to Biomedical Imaging
- Beekman et al. Eur. J. Nuc. Med. (2007) 34: 151.
- Stickel et al. Phys. Med. Biol. (2005) 50: 179.
- Acton et al. *Eur J Nucl Med* (2002) 29:691.
- Beekman et al. *Eur J Nucl Med* (2002) 29:933.
- Meikle et al. *Drug Discovery Today* (2006) 3:187.
- Meikle et al. *Phys. Med. Biol.* (2005) 50: R45.
- Craig S. Levin *Eur J Nucl Med* (2005) 32:S325.