8. Luminescence Mechanisms

Content

- 8.1 Luminescence Definition, Materials and Processes
- 8.2 Absorption
- **8.3 Excitation Mechanisms**
- 8.4 Energy Transfer
- 8.5 Cross-Relaxation
- **8.6 Loss Processes**
- 8.7 Configuration Coordinate Diagram
- 8.8 Thermal Quenching
- 8.9 Lifetime of the Excited State
- 8.10 Luminescence of Transition Metal Ions
- 8.11 Luminescence of Ions with s²-Configuration
- 8.12 Luminescence of Rare Earth Ions
- 8.13 Down-Conversion
- 8.14 Up-Conversion
- 8.15 Afterglow

8.1 Luminescence - Definition

Luminescence is a process that corresponds to emission of electromagnetic radiation beyond thermal equilibrium.

Inorganic materials: Radiative recombination involving impurity levels:

(a) Conduction-band-acceptor-state transition

- (b) Donor-state-valence-band transition
- (c) Donor-acceptor recombination
- (d) Bound-exciton recombination

8.1 Luminescence - Definition

Thermal and non-thermal radiators

Thermal radiators emit a radiation spectrum that equals black body radiation at a corresponding temperature

 \rightarrow Planck radiation

Examples: Cosmic background radiation, cosmic objects, halogen- and incandescent lamps

Non-thermal radiators emit a radiation spectrum originating from electronic transitions between discrete electronic energy levels

→ Luminescence

Examples: Luminescent materials, LEDs, Lasers

Chapter Luminescence Mechanisms Slide 3

Inorganic luminescent materials = Host lattice + defects + dopants

Host lattice

 Y_2O_3 , $Y_3Al_5O_{12}$, ZnS, CaAlSiN₃, $Sr_2Si_5N_8$, ...

• Selection in accordance to requirements defined by the application area: Excitation energy, absorption strength, chemical environment, temperature

Dopants

Cr³⁺, Mn⁴⁺, Sb³⁺, Pb²⁺, Eu^{2+/3+}, Ce³⁺, ...

• Selection and concentration depend on host lattice and application area: Solubility, mobility, oxidation state stability, CT state location

Defects

V_K, V_A, F, interstitials, ...

cause:

- Afterglow and charge storage
- Concentration and thermal quenching
- Reduction of stability and colour point shift

Inorganic luminescent materials - Morphology

- Nanoscale particles
- μ-sized particles
- Large single crystals
- Ceramics
- Glasses

Molecular imaging, precursors Lamps, LEDs, CRTs, PDPs, EL Displays, x-ray converter films Scintillators, Lasers LEDs, scintillators, LEDs Detectors, Lasers

Inorganic luminescent materials – Requirements for high efficiency

- Strong absorption
- Highly crystalline particles, low defect density
- High purity (99,99% or higher)
- Homogeneous distribution of activator and sensitizer ions
- Low phonon frequencies

Inorganic luminescent materials – The role of the host lattice

Reflection spectrum of YBO₃

Emission spectrum of YBO₃ upon 160 nm excitation

S0, S1, S2, T1, A0, A1 = Energy levels of the activators and sensitizers ISC = Intersystem Crossing "spin-forbidden singulett-triplett transition" ET = Energy transfer

Incoherent Light Sources Prof. Dr. T. Jüstel, FH Münster Chapter Luminescence Mechanisms Slide 10

Electronic Ground States of Atoms and Ions (Dopants)

The electronic energy levels are defined by the spin and orbital momentum of the electrons and by the coupling of these to the total spin and total (orbital) momentum

Atom/Ion	Electron configuration	Spectr	oscopic term ^{2S+1} L _J
Li ⁰	$1s^2 2s^1$	² S _{1/2}	
Li ⁺	1s ²	¹ S ₀	
Na ⁰	[Ne]3s ¹	${}^{2}S_{1/2}$	
Ti ³⁺	[Ar]3d ¹	${}^{2}\mathrm{D}_{3/2}$	
Cr ³⁺ /Mn ⁴⁺	[Ar]3d ³	${}^{4}\mathrm{F}_{3/2}$	
Mn ²⁺ /Fe ³⁺	[Ar]3d ⁵	⁶ S _{5/2}	
Zn ²⁺ /Cu ⁺	[Ar]3d ¹⁰	¹ S ₀	
Ce ³⁺	[Xe]4f ¹	${}^{2}\mathrm{F}_{5/2}$	
Eu ³⁺	[Xe]4f ⁶	$^{7}\mathbf{F_{0}}$	
Eu ²⁺ /Gd ³⁺ /Tb ⁴⁺	[Xe]4f ⁷	⁸ S _{7/2}	
Tb ³⁺	[Xe]4f ⁸	$^{7}\mathbf{F_{6}}$	
Lu ³⁺	[Xe]4f ¹⁴	¹ S ₀	
Incoherent Light Sour Prof. Dr. T. Jüstel, FH	rces Münster		Chapter Luminescence Mechanisms Slide 11

Selection rules for electric dipole radiation (transitions)

Overall requirement: Conservation of momentum of the system "atom/ion + photon"

- 1. Spin selection rule $\Delta S = 0$
- 2. Angular momentum (single electron) Δ

3. Angular momentum (multi electron)

 $\Delta l = \pm 1$

- $\Delta J = 0, \pm 1 \text{ (but not } J = 0 \rightarrow J = 0)$ $\Delta L = 0, \pm 1 \text{ (but not } L = 0 \rightarrow L = 0)$
- 4. Laporte selection rule $g \rightarrow u \text{ or } u \rightarrow g$

not $g \rightarrow g$ or $u \rightarrow u$

Examples:	Ce ³⁺	$[Xe]4f^{1}({}^{2}F_{5/2}) \rightarrow [Xe]5d^{1}({}^{2}D_{3/2})$	\Rightarrow allowed	~ ns
	Eu ³⁺	$[Xe]4f^{\bullet}(F_{0}) \rightarrow [Xe]4f^{\bullet}(D_{0})$	\Rightarrow forbidden	~ ms
Incoherent Light Sources Prof. Dr. T. Jüstel, FH Münster			Chapter Luminescence Me Slide 12	echanisms

Type

Excitation by

Example

Scintillation

X-ray luminescence Cathode luminescence

Photo luminescence Electro luminescence

Chemo luminescence Bio luminescence Thermo luminescence Sono luminescence Mechano luminescence **High energy particles** γ-rays **X-rays Electrons** (high voltage) **UV/Vis photons Electrical field** (low voltage) **Chemical reaction Biochemical reaction** Heat Ultra sound **Mechanical energy**

high-energy physics PET detectors X-ray amplifier, CT CRTs, oscilloscopes

Fluorescent lamps LEDs, EL displays

Emergency signals Jelly fish, glow worms Afterglow phosphors

Peeling scotch tape

-

Nature 455 (2008) 1089, *blue* + UV + x-ray!

Chapter Luminescence Mechanisms Slide 13

8.2 Absorption

Penetration depth of photons and electrons

Photons (Lambert-Beer law)

Penetration depth

				_ 0
Electrons	(Feldman	equation:	R in	[A])

$$R = 250 \frac{A}{\rho Z^{n/2}} U^{n} \text{ with } n = \frac{1,2}{1 - 0,29 \log_{10} Z}$$

For 5.7 keV	Density	R	R
electrons	[g/cm ³]	[Å]	[nm]
SiO ₂	2.20	6171	617.8
Al_2O_3	3.97	3476	347.6
$Mg_3(PO_4)_2$	2.56	5345	534.4
ZnS	4.04	4248	424.8
MgO	3.59	3799	379.8
MgF ₂	3.15	4464	446.4
MgS	2.68	5603	560.4

Simplified R ~ $0.046*U^{5/3}/\rho$ [µm]

	For a material with $r = 5.0 \text{ g/cm}^3 (Y_2O_3)$	
	10 kV electrons R ~ 400 nm	
	2 kV electrons R ~ 30 nm	
Incoherent Light Sources	Chapter Luminescence Mechanisms	
Prof. Dr. T. Jüstel, FH Münster	Slide 14	

High energy particles, γ- ray, x-ray and high voltage electron excitation

- 1. Excitation of highly energetic core states
- 2. Thermalization of electron-hole pairs with band gap energy
- 3. Energy transfer to activator ions or centers
- 4. (Center) Luminescence

Efficiency surprisingly well understood, but with two different models:

- 1. Robbins
- 2. Bartram-Lempicki

Slide 15

Photons with an energy < band gap of the host lattice: Fluorescent lamps and LEDs Activator excitation Sensitizer excitation CB CB **S1** A2 **A1 A1** 1 $\eta_{transfer}$ η_{act} η_{esc} η_{act} η_{esc} 1 1 1 ¦k_r| k_{nr} **A0 A0 S0** VB VB $IQE = \eta_{act} = k_r / (k_r + k_{nr}) = \tau / \tau_0$ $EQE = \eta_{act} * \eta_{transfer} * \eta_{esc}$ with $k_r + k_{nr} = 1/\tau$ and $k_r = 1/\tau_0$ **Incoherent Light Sources Chapter Luminescence Mechanisms** Prof. Dr. T. Jüstel, FH Münster Slide 17

Allowed transition \Rightarrow Intense absorption bands and fast decay (~1 µs) •

 Eu^{2+}

•

Incoherent Light Sources	Chapter Luminescence Mechanisms
Prof. Dr. T. Jüstel, FH Münster	Slide 18

250 nm (5.0 eV) and 310 nm (4.0 eV)

800

Example: Y₂O₃ doped by 5% Eu³⁺

- Low-lying energy levels of the [Xe]4fⁿ⁻¹5d¹ configuration \rightarrow Tb³⁺, Eu²⁺, Ce³⁺, Pr³⁺
- Sensitisation (via energy transfer) ۲
 - $Ce^{3+} \rightarrow Tb^{3+}$

 - Sb³⁺ \rightarrow Mn²⁺

CT level Relaxation ⁵D₀ $^{7}F_{J}$ Simplified energy level scheme of Eu³⁺ **Chapter Luminescence Mechanisms** Slide 22

Requirements for ET ($S^* + A \rightarrow S + A^*$)

- Sensitizer S and activator A interact with each other by
 - Coulomb interaction (multipolare interaction)Dipole-Dipole: $P_{SA} = (1/\tau_S)(r_0/r_{SA})^6$ $Ce^{3+} Eu^{2+}$ Dipole-Quadrupole: $P_{SA} = (1/\tau_S)(r_0/r_{SA})^8$ $Ce^{3+} Tb^{3+}$ Quadrupole-Quadrupole: $P_{SA} = (1/\tau_S)(r_0/r_{SA})^{10}$ unknown
 - Exchange interaction

 $P_{SA} \sim J \exp(-2 r_{SA})$ for $r_{SA} < 5$ Å with J = coupling constant

 $Mn^{2+} - Mn^{2+}$

• Spectral overlap (→ Energy conservation law!)

Consequences for luminescence processes

ET causes

- Energy migration
- Concentration quenching
- Thermal quenching
- Cross-relaxation
- Possibility of sensitization

Some rules

- ET from a broad band emitter to a line emitter only possible for nearest neighbors in the host lattice (Ce³⁺ Tb³⁺)
- ET from a line emitter to a band absorber proceeds over long distances (Gd³⁺ Ce³⁺)
- ET strongly depends on average distance and thus concentration of luminescent centers

Example: ET in LaPO₄:Ce,Tb

 $\frac{\text{LaPO}_{4}:\text{Ce}}{\text{Ce}^{3+} \rightarrow (\text{Ce}^{3+})^{*}}$ $(\text{Ce}^{3+})^{*} \rightarrow \text{Ce}^{3+}$

Excitation 4f - 5d Emission 5d - 4f

 $\frac{\text{LaPO}_{4}:\text{Tb}}{\text{Tb}^{3+} \rightarrow (\text{Tb}^{3+})**}$ $(\text{Tb}^{3+})^{**} \rightarrow (\text{Tb}^{3+})*$ $(\text{Tb}^{3+})^{*} \rightarrow \text{Tb}^{3+}$

Excitation 4f - 5d Relaxation Emission 4f - 4f

 $\frac{\text{LaPO}_{4}:\text{Ce,Tb}}{\text{Ce}^{3+} \rightarrow (\text{Ce}^{3+})^{*}}$ $(\text{Ce}^{3+)*} + \text{Tb}^{3+} \rightarrow \text{Ce}^{3+} + (\text{Tb}^{3+})^{*}$ $(\text{Tb}^{3+)*} \rightarrow \text{Tb}^{3+}$

Excitation 4f - 5d ET from Ce³⁺ to Tb³⁺ Emission 4f - 4f

1.0

Fluorescent lamps \Rightarrow Excitation at 254 nm

Energy pathways in BaMgAl₁₀O₁₇:Eu,Mn

Tb³⁺

Incoherent Light Sources

Prof. Dr. T. Jüstel, FH Münster

- **Cross-relaxation** processes are responsible for the quenching of luminescence of higher 4f levels of Tb³⁺ at a high Tb³⁺ concentration
- Cross-relaxation also occurs in Eu³⁺, Sm³⁺, Pr³⁺, and Dy³⁺ doped materials
- Concentration quenching for Sm³⁺ or Dy³⁺ activated materials by crossrelaxation and not by energy migration
- Relaxation to the first excited state can also be triggered by high-energy photons

Chapter Luminescence Mechanisms Slide 30

8.6 Loss Processes

Overview of the most relevant processes leading to luminescence quenching The absorbed energy does not reach the activator ion 1. $(\eta_{transfer})$ a) Competitive absorption b) ET to defects or non-luminescent impurity ions c) Excited state absorption (ESA) d) Auger processes 2. The absorbed energy reaches the activator ion, but non-radiative (η_{act}) channels dominate the radiative return to the ground state a) Crossing of excited and ground state parabola b) Multi-phonon relaxation c) Cross-relaxation d) Photoionization e) Energy transfer to quenching sites = f(T)3. Emitted radiation is re-absorbed by the luminescent material (η_{esc}) a) Self-absorption due to spectral overlap between excitation and emission band b) Additional absorption bands due to degradation of the material, e.g. by colour centre formation

Incoherent Light Sources Prof. Dr. T. Jüstel, FH Münster Chapter Luminescence Mechanisms Slide 31

8.6 Loss Processes

8.6 Loss Processes

Excited Aⁿ⁺ ion gets ionised

- Released electron is re-trapped, e.g. by anion vacancies
- **Causes afterglow in**
 - persistent phosphors

Chapter	Luminescence	Mechanisms
Slide 33		

8.7 Configuration Coordinate Diagram

•

Stokes shift Energy gap between absorption and emission band

$$\mathbf{S} = \mathbf{S}_{\mathbf{e}} \mathbf{h} \boldsymbol{\omega}_{\mathbf{e}} + \mathbf{S}_{\mathbf{g}} \mathbf{h} \boldsymbol{\omega}_{\mathbf{g}}$$

- Full width at half maximum of the emission band FWHM $\sim \sqrt{S}$
- Thermal quenching decreases with increasing $\Delta R = r_e r_g$

8.7 Configuration Coordinate Diagram

- 1. Weak to no electron-phonon-coupling
- High IQE, EQE determined by ET processes
- Thermal quenching mainly due to photoionization
- $4f \rightarrow 4f$ transitions (shielded 4f-shell: small crystal field splitting [CFS]) Eu³⁺, Tb³⁺,
 - Lines
- 2. Moderate electron-phonon-coupling
- High to moderate IQE
- Thermal quenching due to tunnelling or photoioniz.
 - $4f \rightarrow 5d$ transitions (large CFS)
- **Narrow bands** Eu²⁺, Ce³⁺,
- 3. Strong electron-phonon-coupling
- High to low IQE at RT, strong thermal quenching
- Thermal quenching mainly due to tunnelling
- $ns^2 \rightarrow ns^1 np^1$ or CT transitions

Broad bands

Pb²⁺, Bi³⁺,

Incoherent Light Sources Prof. Dr. T. Jüstel, FH Münster **Chapter Luminescence Mechanisms** Slide 35

8.7 Configuration Coordinate Diagram

Width of the transitions can be explained by the model "harmonic oscillator"

 $F = -k^{*}(r - r_{0}) \qquad : Integration$ $\Rightarrow E = -1/2^{*}k^{*}(r - r_{0})^{2}$

Quantum mechanics provides: $E_v = (v + 1/2)*hv$

Franck-Condon principle:

Electrons motion is much faster than nuclear motion \rightarrow "vertical transitions"

Transitions: $E_g(v_g = 0) \rightarrow E_e(v_e = x)$ for $v_e = 0$ "zero-phonon line"

 $r_{0g} = r_{0e} \Rightarrow$ narrow bands or lines (4f \rightarrow 4f absorption lines) $r_{0g} < r_{0e} \Rightarrow$ broad bands (4fⁿ \rightarrow 4fⁿ⁺¹L⁻¹, 4fⁿ \rightarrow 4fⁿ⁻¹5d, 6s² \rightarrow 6s6p)

Incoherent Light Sources Prof. Dr. T. Jüstel, FH Münster Chapter Luminescence Mechanisms Slide 36
8.8 Thermal Quenching

Example: SrGa₂S₄:Eu²⁺

- $T_{1/2}$ = Temperature at which the phosphor loses 50% of its initial emission intensity (here ~ 170 °C)
- $T_{1/2}$ depends on the extent of the activator-host lattice interaction
- In many industrially important phosphors the quantum yield starts increasing distinctly between 100 150 °C

8.8 Thermal Quenching

Example: Other Eu²⁺ activated phosphors

8.8 Thermal Quenching

Some Rules

- Increases with increasing energy separation of the ground and excited state
- Increases with increasing phonon frequencies (thus most organic compounds exhibit luminescence only at low temperatures)
- Increases with $\Delta r = r_e r_g$
- Thermal quenching due to photoionization concerns luminescent materials, where the excited state is located close to the conduction band

8.9 Lifetime of the Excited State

Description equal to 1st order kinetics (no energy transfer!)

$$dN_e/dt = -N_e^*P_{eg}$$

 \Rightarrow dN_e/N_e = -P_{eg}*dt : Integration

$$\Rightarrow \ln(dN_e(t)/N_e(0)) = -P_{eg}^*t$$

$$\Rightarrow$$
 N_e(t) = N_e(0)*exp(-P_{eg}/ τ) with τ = 1/P_{eg}

Transition		Time scale	Oscillator str	ength Activators
"allowed"		$\sim 10^{-9}$ s	f~0.1	Eu ²⁺ , Ce ³⁺
"weak"		$\sim 10^{-6}$ s	f~0.001	Pr ³⁺ , Nd ³⁺
"forbidden"		$\sim 10^{-3}$ s	$f \sim 10^{-5}$	Eu ³⁺ , Mn ²⁺
	Incoherent Light Sources Prof. Dr. T. Jüstel, FH Münster			Chapter Luminescence Mechanisms Slide 40

8.9 Lifetime of the Excited State

Typical decay curves

BaMgAl₁₀**O**₁₇:**E** u^{2+} ($\tau = 1 \mu s$)

 $(Y,Gd)BO_3:Eu^{3+} (\tau = 3.5 ms)$

Mono-exponential decay \Rightarrow No energy transfer e.g. to impurities such as Fe³⁺ or Cr³⁺ Deviation from mono-exponential decay \Rightarrow quenching, energy transfer, afterglow,

Incoherent Light Sources Prof. Dr. T. Jüstel, FH Münster

8.10 Luminescence of Transition Metal Ions

Absorption processes of d^n -ions \rightarrow Tanabe-Sugano diagram

Energy level diagram of a d¹-ion (Ti³⁺, V⁴⁺, Cr⁵⁺, Mn⁶⁺): CFS \Rightarrow ²D_{3/2} \rightarrow ²T₂ + ²E

8.10 Luminescence of Transition Metal Ions

Absorption in glasses, laser crystals and phosphors

Ion	Configuration	Colour	Pigme	ent	Structure type
Ti ³⁺	d ¹	violet, brown			
▼73⊥	12				
V ³⁺		green			
$ V^{4+} $	d ¹	green, blue	(Zr , V)	SiO ₄	Zircon
Cr ³⁺	d ³	green, yellow	Cr_2O_3	3	Corundum
Mn ²⁺	d ⁵	light pink	MnO		NaCl
Mn ³⁺	d ⁴	violet	Mn ₂ O		Corundum
Mn ⁴⁺	d ³	red brown	MnO	3	Rutile
	u	rea, brown	1110_2		Rume
Fe ³⁺	d ⁵	yellow, brown	Fe ₂ O ₃		Corundum
Fe ²⁺	d ⁶	blue, green	Fe(C ₂	O ₄)·2H ₂ O	
Co^{2+}	d ⁷	blue violet	CoAL	0	Sninel
N:2+	48	graan	NiO	$\mathbf{\nabla}_4$	NaCl
1 11 C2+	49				NaCI
	Q ²	blue, green	CuO		
Incohere Prof. Dr	ent Light Sources . T. Jüstel, FH Münster			Chapter Lumin Slide 43	nescence Mechanisms

8.10 Luminescence of Transition Metal Ions

Absorption processes of transition metal ions with d⁰-configuration

Examples: VO₄³⁻, NbO₄³⁻, TaO₄³⁻, CrO₄²⁻, MoO₄²⁻, WO₄²⁻, MnO₄⁻

Absorption due to ligand to metal charge-transfer (LMCT)

 $O^{2-} \rightarrow Me^{n+}$ or p(non-bonding) $\rightarrow d(e_g: anti-bonding)$ Bond is weakened $\Rightarrow \Delta R >> 0 \Rightarrow$ broad absorption band

Phosphor	Absorption [cm ⁻¹]	CN	Polyhedron
CaWO ₄	40000	4	Tetrahedron
Ca ₃ WO ₆	35000	6	Octahedron

⇒ Position of the CT state decreases with increasing CN and effective charge of the metal center

Incoherent Light Sources Prof. Dr. T. Jüstel, FH Münster

8.11 Luminescence of Ions with s²-Configuration

Examples: Ga⁺, In⁺, Tl⁺, Ge²⁺, Sn²⁺, Pb²⁺, As³⁺, Sb³⁺, Bi³⁺

Electron configuration of s²-ions

 ${}^{1}P_{1}$

 $^{3}P_{2}$

 $^{3}P_{1}$

³P₀

¹S₀

• • •

Incoherent Light Sources

Prof. Dr. T. Jüstel, FH Münster

Properties of electronic orbitals

Electron configuration of rare earth metals and ions

<u>Metals</u> [Xe] 6s 5d 4f	La 2 1 0	Ce 2 0 2	Pr 2 0 3	Nd 2 0 4	Pm 2 0 5	Sm 2 0 6	Eu 2 0 7	Gd 2 1 7	Tb 2 0 9	Dy 2 0 10	Ho 2 0 11	Er 2 0 12	Tm 2 0 13	Yb 2 0 14	Lu 2 1 14
<u>Ions</u> [Xe] 4f	La ³⁻ Ce ⁴⁻ 0	+ Ce ³⁻ + Pr ⁴⁻ 1	+ Pr ³⁺ + Nd ⁴ 2	- Nd ³⁻ + 3	+ Pm ³ 4	+ Sm ³ 5	+ Eu ³⁻ Sm ² 6	+ Gd ³⁻ + Eu ² 7	+ Tb ³ + 8	+ Dy ^{3.} 9	+ Ho ^{3.} 10	+ Er ³ 11	+ Tm ²	³⁺ Yb ³ Tm 13	³⁺ Lu ³⁺ ²⁺ Yb ²⁺ 14
Example Gd ³⁺ /Eu ²	m ₁ +	-3 ↑	-2 -1 ↑ ↑	0 1 ↑ ↑ 4f	2 3 ↑ ↑]	-2 -1	0 1 	2	0 6s	-1 0				<u>Spectroscopic</u> <u>Terms</u>
$S = \Sigma S = T$ $L = \Sigma I =$ Incohere Prof. Dr.	7/2 0 nt Ligh T. Jüst	nt Sourc	→ (→ , ces Münste	2S+1 = ,S"	= 8		\rightarrow st \rightarrow L	rongl S-Ter	y par m syı	amag nbol ⁸	netic i ³ S	ONS Cha Slide	pter Lui e 49	minesce	2S+1LJ nce Mechanisms

History of distangling the energy level structure

1908 Becquerel Sharp lines in optical spectra of lanthanide ions

1937 Van Vleck The Puzzle of Rare-Earth Spectra in Solids

1960s Judd, Wybourne, Dieke, Carnall Theory for energy level structure and transition probabilities of 4f-4f transitions

Energy level structure of [Xe]4fⁿ ions

Partly filled 4f-shell results in multiple electron configurations Example: Tb^{3+} [Xe]4f⁸ \rightarrow 8 electrons in 7 f-orbitals: 3003 different arrangements!

Free ion energy levels due to:

- 1. Electrostatic interactions (comparable to 3dⁿ ions)
- 2. Spin-orbit coupling (larger than for 3dⁿ ions)
- 3. Crystal field splitting (smaller than for 3dⁿ ions)

	Ground state	$m_1 = -$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	⁷ F ₆	
]	l st excited state	m ₁ = -	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	⁵ D ₄	
	Incoherent Light Sour Prof. Dr. T. Jüstel, FH	ces Münster			Chapter Luminescence Mechanisms Slide 51

1. Electrostatic interactions

Shielding due to inner electrons described by the so-called Slater parameters (comparable to Racah parameters)

$$F^{(k)} = \frac{e^2}{4\pi\varepsilon_0} \int_0^\infty \int_0^\infty \frac{r_{<}^k}{r_{>}^{k+1}} \left[R'_{4f}(r_i) R'_{4f}(r_j) \right]^2 r_i^2 r_j^2 \, dr_i \, dr_j$$

Electrostatic interaction increases with effective charge on

the activator ion (ion charge density)

Therefore splitting between different terms depends on

- Oxidation state
- Nucleus charge
- Charge flow back from ligands (polarizibility of surrounding anions)

2. Spin-orbit coupling

Spin-orbit coupling constant ζ increases throughout the lanthanide series, i.e. from $\zeta(Ce) = 650 \text{ cm}^{-1}$ to $\zeta(Yb) = 2930 \text{ cm}^{-1}$

3. Crystal field splitting

$$\mathscr{H}_{c}^{O_{h}} = B_{0}^{4} \left[C_{0}^{(4)} + \sqrt{\frac{5}{14}} (C_{-4}^{(4)} + C_{4}^{(4)}) \right] + B_{0}^{6} \left[C_{0}^{(6)} - \sqrt{\frac{7}{2}} (C_{-4}^{(6)} + C_{4}^{(6)}) \right]$$

Incoherent Light Sources Prof. Dr. T. Jüstel, FH Münster Chapter Luminescence Mechanisms Slide 56

In summary: RE ions exhibit a great number of energy levels ^{2S+1}L_J

	Ce (Yb)	Pr (Tm)	Nd (Er)	Pm (Ho)	Sm (Dy)	Eu (Tb)	Gd
n	1	2	3	4	5	6	7
SL	1	7	17	47	73	119	119
SLJ	2	13	41	107	198	295	327
SLJM	4	91	364	1001	2002	3003	3432

Early experimental and theoretical work on LaCl₃:Ln³⁺ and LaF₃:Ln³⁺ by Dieke and Carnall (experiment) and Judd, Crosswhite and Wybourne (theory): <u>"Dieke diagram" and the "Blue book"</u>

Incoherent Light Sources Prof. Dr. T. Jüstel, FH Münster

Dieke diagram (1968): Energy levels of trivalent RE ions

Incoherent Light Sources Prof. Dr. T. Jüstel, FH Münster

Slide 58

Extended Dieke diagram (2005): Energy levels of trivalent RE ions up to the VUV

Characteristic optical properties

- 1) Sharp lines (atomic like), Stokes shift ~ 0 cm⁻¹
- 2) Little influence of environment on energy level scheme
- 3) Parity forbidden transitions (~ms life time, f~10⁻⁵)

Origin: Shielding of 4fⁿ electrons by outer filled 5s and 5p shells → no shift of excited state parabola and strong zero-phonon lines (ZPL)

Incoherent Light Sources Prof. Dr. T. Jüstel, FH Münster Chapter Luminescence Mechanisms Slide 61

Example: Eu³⁺ - Typical excitation and emission spectra (Y₂SiO₅:Eu)

Emission spectra and colour points of Eu³⁺ activated phosphors

Emission spectra and colour points of Eu³⁺ activated phosphors

Observed emission spectrum due to ${}^{5}D_{0} \rightarrow {}^{7}F_{J}$ transitions (lines)

a) Inversion symmetry (S_6, D_{3d}) Magnetic dipole transitions, e.g. ${}^5D_0 - {}^7F_1$ $\Delta J = 0, \pm 1 \ (J = 0 \rightarrow J = 0 \ forbidden)$ MeBO₃:Eu (Calcite, Vaterite) $\tau \sim 8 - 16 \ ms$

b) No inversion symmetry Electric dipole transitions ${}^{5}D_{0} - {}^{7}F_{2,4}$ $\Delta J \le 6 (J_{i} = 0 \rightarrow J_{f} = 2, 4, 6)$ $Y_{2}O_{3}$:Eu (Bixbyite), Y(V,P)O_{4}:Eu (Xenotime) $\tau \sim 2 - 5$ ms

> Chapter Luminescence Mechanisms Slide 65

Energy gap between the [Xe]4fⁿ and [Xe]4fⁿ⁻¹5d¹ states

Centroid shift ~ electron density between activator and ligands

Polarizability of the anions

• selenides > sulfides > nitrides > oxides > fluorides

Charge density of the surrounding anions

• Type of network former:

	oxides	aluminates	silicates	borates	phosphates	sulfates
	O ²⁻	AlO ₄ ⁵⁻	SiO ₄ ⁴⁻	BO ₃ ³⁻	PO ₄ ³⁻	SO ₄ ²⁻
•	Degree of net	tworking				
	neso-silicate	soro-silicate	cyclo-si	licate	phyllo-silicate	
	[SiO ₄] ⁴⁻	[Si ₂ O ₇] ⁶⁻	[Si ₃ O ₉] ⁶	-	[Si ₄ O ₁₀] ⁴⁻	
	garnet					
	zircon					
	olivine					
	Incoherent Light Sourc Prof. Dr. T. Jüstel, FH M	es Münster			Chapter Lumine Slide 69	escence Mechanisms

Crystal field splitting

Crystal field theory \Rightarrow ionic interaction between metal center and point charges

Energy splitting of the d-orbitals depends on:

- Anionic charge / anionic radius (spectrochemical series) I⁻ < Br⁻ < Cl⁻ < S²⁻ < F⁻ < O²⁻ < N³⁻ < C⁴⁻
- Symmetry (coordination number and symmetry) octahedral > cubic, dodecahedral, square-antiprismatic > tetrahedral
- Metal-ligand distance (strong distance dependence)
 - $D = 35Ze/4R^5$ R = Cation-anion distance Z = Valence of the anion e = Electron charge

Incoherent Light Sources Prof. Dr. T. Jüstel, FH Münster

Covalent character of ionic bonds

Electron density on the anions

Low charge density on oxygen

Incoherent Light Sources Prof. Dr. T. Jüstel, FH Münster Chapter Luminescence Mechanisms Slide 72

CFS + centroid shift reduces energy of lowest crystal field component of the [Xe]4f¹5d¹ configuration by ~ 10000 cm⁻¹

 $\Rightarrow E(4f^{1}5d^{1}) > E(^{1}S_{0})$

 \Rightarrow ¹S₀ – ^{2S+1}L_J line emission

Chapter Luminescence Mechanisms Slide 79

8.13 Down-Conversion

First examples (1974) Sommerdijk et al., J. Lumin. 8 (1974) 288 (Philips) Sommerdijk et al., J. Lumin. 8 (1974) 341 (Philips) Piper et al., J. Lumin. 8 (1974) 344 (GE) YF₃:Pr(0.1%) and NaYF₄:Pr(0.1%) ${}^{1}S_{0} - {}^{3}P_{1}$, ${}^{1}I_{6}$ transition @ 407 nm ${}^{3}P_{0} - {}^{3}H_{J}$, ${}^{3}F_{2}$ transitions in the red Internal QY = 166% (total) @ 214 nm exc. Derived from line ratio UV to blue to green/red

Oxidic luminescent materials showing PCE A.M. Srivastava, D.A. Doughty, W.W. Beers (GE) Pr³⁺ on host lattice sites with high CN (> 8) SrAl₁₂O₁₉:Pr,Mg LaMgB₅O₁₀:Pr LaB₃O₆:Pr

↑5d-<u>states</u> 60 50 ${}^{1}\mathbf{S}_{0}$ Energy $[10^3 \text{ cm}^{-1}]$ 40 ${}^{3}P_{1} {}^{1}I_{4}$ 20 $^{1}D_{2}$ $^{1}\mathbf{G}$ 10 0

Chapter Luminescence Mechanisms Slide 82

Incoherent Light Sources Prof. Dr. T. Jüstel, FH Münster

8.13 Down-Conversion

8.13 Down-Conversion

Example: LiGdF₄:Er,Tb

8.14 Up-Conversion

Prof. Dr. T. Jüstel, FH Münster

8.15 Afterglow

Example: Cs₂NaYF₆:Ce and Cs₂NaYF₆:Pr (elpasolite)

Incoherent Light Sources Prof. Dr. T. Jüstel, FH Münster Chapter Luminescence Mechanisms Slide 87

8.15 Afterglow

8.15 Afterglow

Afterglow phosphors

omposition	colour	<u>λ_{max} [nm]</u>
CaAl ₂ O ₄ :Eu,Nd	blue	440 nm
Sr ₂ MgSi ₂ O ₇ :Eu,Dy	blue	469 nm
Sr ₄ Al ₁₄ O ₂₅ :Eu,Dy	cyan	490 nm
Mg ₂ SnO ₄ :Mn ²⁺	cyan	499 nm
SrAl ₂ O ₄ :Eu,Dy	green	520 nm
ZnS:Cu,Co	green	530 nm
Sr ₂ SiO ₄ :Eu,Dy	yellow	570 nm
Y ₂ O ₂ S:Eu,Ti,Mg	red	620 nm
CaZnGe ₂ O ₆ :Mn	red	648 nm
CaS:Eu,Tm	red	655 nm
MgSiO ₃ :Eu,Dy,Mn	red	660 nm
	pmposition $CaAl_2O_4:Eu,Nd$ $Sr_2MgSi_2O_7:Eu,Dy$ $Sr_4Al_14O_{25}:Eu,Dy$ $Mg_2SnO_4:Mn^{2+}$ $SrAl_2O_4:Eu,Dy$ $ZnS:Cu,Co$ $Sr_2SiO_4:Eu,Dy$ $Y_2O_2S:Eu,Ti,Mg$ $CaZnGe_2O_6:Mn$ $CaS:Eu,Tm$ $MgSiO_3:Eu,Dy,Mn$	pmpositioncolour $CaAl_2O_4:Eu,Nd$ blue $Sr_2MgSi_2O_7:Eu,Dy$ blue $Sr_4Al_{14}O_{25}:Eu,Dy$ cyan $Mg_2SnO_4:Mn^{2+}$ cyan $SrAl_2O_4:Eu,Dy$ green $ZnS:Cu,Co$ green $Sr_2SiO_4:Eu,Dy$ yellow $Y_2O_2S:Eu,Ti,Mg$ red $CaZnGe_2O_6:Mn$ red $MgSiO_3:Eu,Dy,Mn$ red

Chapter Luminescence Mechanisms Slide 89

Time [min]

Incoherent Light Sources Prof. Dr. T. Jüstel, FH Münster