High Intensity Frontier in Particle Physics (part 2/2)

Peter Križan
University of Ljubljana and J. Stefan Institute

Doctoral studies, Specialized Seminar on Experimental Physics
Peter Križan, Ljubljana

Contents of this course

-Lecture 1: Introduction, experimental methods, detectors, data analysis
-Lecture 2: Intensity frontier experiments

Contents

-Physics case for B factories / Super B factories
-Accellerator

- Detector

A little bit of history...

CP violation: difference in the properties of particles and their anti-particles - first observed in 1964 in the decays of neutral kaons.
M. Kobayashi and T. Maskawa (1973): CP violation in the Standard model - related to the weak interaction quark transition matrix

Their theory was formulated at a time when three quarks were known and they requested the existence of three more!

The last missing quark was found in 1994.
... and in 2001 two experiments - Belle and BaBar at two powerfull accelerators (B factories) - have further investigated CP violation and have indeed proven that it is tightly connected to the quark transition matrix

CKM - Cabibbo-Kobayashi-Maskawa (quark transition) matrix: almost real and diagonal, but not completely!

Amplitude for the $\mathrm{b} \rightarrow \mathrm{u}$ transition

CKM: unitary matrix

CKM matrix: determines charged weak interaction of quarks

Wolfenstein parametrisation: expand the CKM matrix in the parameter $\lambda\left(=\sin \theta_{\mathrm{c}}=0.22\right)$
A, ρ and η : all of order one
determines probability of $b \rightarrow u$ transitions

Unitarity condition:

$$
V_{u d} V_{u b}^{*}+V_{c d} V_{c b}^{*}+V_{t d} V_{t b}^{*}=0
$$

Goal: measure sides and angles in several different ways, check consistency

Asymmetric B factories

KM's bold idea verified by experiment

Relations between parameters as expected in the Standard model

Nobel prize 2008!

\rightarrow With essential experimental confirmations by BaBar and Belle! (explicitly noted in the Nobel Prize citation)

The KM scheme is now part of the Standard Model of Particle Physics

-However, the CP violation of the KM mechanism is too small to account for the asymmetry between matter and anti-matter in the Universe (falls short by 10 orders of magnitude !)
-SM does not contain the fourth fundamental interaction, gravitation

- Most of the Universe is made of stuff we do not understand...

dark energy dark matter

Are we done ? (Didn't the B factories accomplish their mission, recognized by the 2008 Nobel Prize in Physics ?)

; Matter - anti-matter asymmetry of the Universe: KM (Kobayashi-Maskawa)
 роскопиуеского разделепи вешоства к внтивешества; поэтому следует mechanism still short by 10 orders of magnitude !!!

Two frontiers

> Two complementary approaches to study shortcomings of the Standard Model and to search for the so far unobserved processes and particles (so called New Physics, NP). These are the energy frontier and the intensity frontier .

Energy frontier : direct search for production of unknown particles at the highest achievable energies.

Intensity frontier : search for rare processes, deviations between theory predictions and experiments with the ultimate precision.
\rightarrow for this kind of studies, one has to investigate a very large number of reactions events \rightarrow need accelerators with ultimate intensity (= luminosity)

Comparison of energy /intensity frontiers

To observe a large ship far away one can either use strong binoculars or observe carefully the direction and the speed of waves produced by the vessel.

Energy frontier (LHC)

An example: Hunting the charged Higgs in the decay $\mathrm{B}^{-} \rightarrow \tau^{-} \nu_{\tau}$

In addition to the Standard Model Higgs - as discovered at the LHC - in New Physics (e.g., in supersymmetric theories) there could also be a charged Higgs.

The rare decay $\mathrm{B}^{-} \rightarrow \tau^{-} v_{\tau}$ is in SM mediated by the W boson

In some supersymmetric extensions it can also proceed via a charged Higgs

The charged Higgs would influence the decay of a B meson to a tau lepton and its neutrino, and modify the probability for this decay.

Missing Energy Decays: $\mathrm{B}^{-} \rightarrow \tau^{-} \nu_{\tau}$

$$
\begin{aligned}
& B^{+} \rightarrow D^{0} \pi^{+} \\
&\left(\rightarrow K \pi^{-} \pi^{+} \pi^{-}\right) \\
& B^{-} \rightarrow \tau(\rightarrow e \nu \bar{\nu}) \nu
\end{aligned}
$$

By measuring the decay probability (branching fraction) and comparing it to the SM expectation:
\rightarrow Properties of the charged Higgs (e.g. its mass)

Full Reconstruction Method

- Fully reconstruct one of the B's to
- Tag B flavor/charge
- Determine B momentum
- Exclude decay products of one B from further analysis

\rightarrow Offline B meson beam!
Powerful tool for B decays with neutrinos

New Physics reach

energy frontier vs. intensity frontier

Super B Factory Motivation 2

- Lessons from history: the top quark

| Physics of top quark | |
| :--- | :--- | :--- |
| First estimate of mass: BB mixing | \rightarrow ARGUS |
| Direct production, Mass, width etc. | \rightarrow CDF/D0 |
| Off-diagonal couplings, phase | \rightarrow BaBar/Belle |

- Even before that: prediction of charm quark from the GIM mechanism, and its mass from K^{0} mixing

Physics at a Super B Factory

- There is a good chance to see new phenomena;
- CPV in B decays from the new physics (non KM).
- Lepton flavor violations in τ decays.
- They will help to diagnose (if found) or constrain (if not found) new physics models.
- $B \rightarrow \tau v, D \tau v$ can probe the charged Higgs in large tan β region.
- Physics motivation is independent of LHC.
- If LHC finds NP, precision flavour physics is compulsory.
- If LHC finds no NP, high statistics B/ decays would be a unique way to search for the $>\mathrm{TeV}$ scale physics (=TeV scale in case of MFV).

Physics reach with $50 \mathrm{ab}^{-1}$:

- Physics at Super B Factory (Belle II authors + guests) hep-ex arXiv:1002.5012

Components of an experimental apparatus ('spectrometer')

- Tracking and vertexing systems
- Particle identification devices
- Calorimeters (measurement of energy)

Spectrometer design: what do we want to measure? B factories: Time evolution in the B system

An arbitrary linear combination of the neutral B-meson flavor eigenstates

$$
a\left|B^{0}\right\rangle+b\left|\bar{B}^{0}\right\rangle
$$

with $\mathrm{a}=\mathrm{a}(\mathrm{t})$ and $\mathrm{b}=\mathrm{b}(\mathrm{t})$, is governed by a time-dependent Schroedinger equation

$$
i \frac{d}{d t}\binom{a}{b}=H\binom{a}{b}=\left(M-\frac{i}{2} \Gamma\right)\binom{a}{b}
$$

M and Γ are 2×2 Hermitian matrices. CPT invariance $\rightarrow \mathrm{H}_{11}=\mathrm{H}_{22}$

$$
M=\left(\begin{array}{cc}
M & M_{12} \\
M_{12}^{*} & M
\end{array}\right), \Gamma=\left(\begin{array}{cc}
\Gamma & \Gamma_{12} \\
\Gamma_{12}^{*} & \Gamma
\end{array}\right)
$$

diagonalize, solve \rightarrow

Time evolution of B's

Time evolution in the B^{0} in $\overline{B^{0}}$ basis:

$$
\begin{aligned}
& \left|B_{\text {phys }}^{0}(t)\right\rangle=g_{+}(t)\left|B^{0}\right\rangle+(q / p) g_{-}(t)\left|\bar{B}^{0}\right\rangle \\
& \left|\bar{B}_{\text {phys }}^{0}(t)\right\rangle=(p / q) g_{-}(t)\left|B^{0}\right\rangle+g_{+}(t)\left|\bar{B}^{0}\right\rangle
\end{aligned}
$$

with

$$
\begin{gathered}
g_{+}(t)=e^{-i M t} e^{-\Gamma t / 2} \cos (\Delta m t / 2) \\
g_{-}(t)=e^{-i M t} e^{-\Gamma t / 2} i \sin (\Delta m t / 2) \\
M=\left(M_{H}+M_{L}\right) / 2
\end{gathered}
$$

If B mesons were stable ($\Gamma=0$), the time evolution would look like:

$$
\begin{aligned}
& g_{+}(t)=e^{-i M t} \cos (\Delta m t / 2) \\
& g_{-}(t)=e^{-i M t} i \sin (\Delta m t / 2)
\end{aligned}
$$

\rightarrow Probability that a B turns into its anti-particle

$$
\left|\left\langle\bar{B}^{0} \mid B_{p h y s}^{0}(t)\right\rangle\right|^{2}=|q / p|^{2}\left|g_{-}(t)\right|^{2}=|q / p|^{2} \sin ^{2}(\Delta m t / 2)
$$

\rightarrow Probability that a B remains a B

$$
\left|\left\langle B^{0} \mid B_{\text {phys }}^{0}(t)\right\rangle\right|^{2}=\left|g_{+}(t)\right|^{2}=\cos ^{2}(\Delta m t / 2)
$$

\rightarrow Expressions familiar from quantum mechanics of a two level system, neutrino mixing etc

CP violation: decay rate difference

Decay rate asymmetry:

$$
a_{f_{C P}}=\frac{P\left(\bar{B}^{0} \rightarrow f_{C P}, t\right)-P\left(B^{0} \rightarrow f_{C P}, t\right)}{P\left(\bar{B}^{0} \rightarrow f_{C P}, t\right)+P\left(B^{0} \rightarrow f_{C P}, t\right)}
$$

Decay rate: $\left.\quad P\left(B^{0} \rightarrow f_{C P}, t\right) \propto\left|\left\langle f_{C P}\right| H\right| B_{\text {phys }}^{0}(t)\right\rangle\left.\right|^{2}$

Decay amplitudes vs time:

$$
\begin{aligned}
& \left\langle f_{C P}\right| H\left|B_{p h y s}^{0}(t)\right\rangle=g_{+}(t)\left\langle f_{C P}\right| H\left|B^{0}\right\rangle+(q / p) g_{-}(t)\left\langle f_{C P}\right| H\left|\bar{B}^{0}\right\rangle \\
& =g_{+}(t) A_{f_{C P}}+(q / p) g_{-}(t) \bar{A}_{f_{c P}} \\
& \left\langle f_{C P}\right| H\left|\bar{B}_{p h y s}^{0}(t)\right\rangle=(p / q) g_{-}(t)\left\langle f_{C P}\right| H\left|B^{0}\right\rangle+g_{+}(t)\left\langle f_{C P}\right| H\left|\bar{B}^{0}\right\rangle \\
& =(p / q) g_{-}(t) A_{f_{c P}}+g_{+}(t) \bar{A}_{f_{C P}}
\end{aligned}
$$

$$
\begin{aligned}
& a_{f_{C P}=} \frac{P\left(\bar{B}^{0} \rightarrow f_{C P}, t\right)-P\left(B^{0} \rightarrow f_{C P}, t\right)}{P\left(\bar{B}^{0} \rightarrow f_{C P}, t\right)+P\left(B^{0} \rightarrow f_{C P}, t\right)}=\begin{array}{l}
\text { CP violation: asymmetry } \\
\text { in time evolution of } \mathrm{B} \\
\text { and anti-B }
\end{array} \\
& =\frac{\left|(p / q) g_{-}(t) A_{f_{C P}}+g_{+}(t) \bar{A}_{f_{C P}}\right|^{2}-\left|g_{+}(t) A_{f_{C P}}+(q / p) g_{-}(t) \bar{A}_{f_{C P}}\right|^{2}}{\left|(p / q) g_{-}(t) A_{f_{C P}}+g_{+}(t) \bar{A}_{f_{C P}}\right|^{2}+\left|g_{+}(t) A_{f_{C P}}+(q / p) g_{-}(t) \bar{A}_{f_{C P}}\right|^{2}}= \\
& =\frac{\left(1-\left|\lambda_{f_{C P}}\right|^{2}\right) \cos (\Delta m t)-2 \operatorname{Im}\left(\lambda_{f_{C P}}\right) \sin (\Delta m t)}{1+\left|\lambda_{f_{C P}}\right|^{2}} \quad \lambda_{f_{C P}}=\frac{q}{p} \frac{\bar{A}_{f_{C P}}}{A_{f_{C P}}} \\
& =C \cos (\Delta m t)+S \sin (\Delta m t) \\
& \quad \operatorname{If~}|\lambda|=1 \rightarrow \quad a_{f_{C P}}=-\operatorname{Im}(\lambda) \sin (\Delta m t)
\end{aligned}
$$

Detailed derivation \rightarrow backup slides

CP violation: related to the angles of the unitarity triangle

$$
a_{f c P}=-\operatorname{Im}(\lambda) \sin (\Delta m t)
$$

$$
\operatorname{Im}(\lambda)=\sin 2 \phi_{1} \text { in } B \rightarrow J / \psi K_{S} \text { decays! }
$$

Unitarity condition:

$$
V_{u d} V_{u b}^{*}+V_{c d} V_{c b}^{*}+V_{t d} V_{t b}^{*}=0
$$

Typical measurement

Experimental considerations

What kind of vertex resolution do we need to measure the asymmetry?

$$
\begin{aligned}
& P\left(B^{0}\left(\bar{B}^{0}\right) \rightarrow f_{C P}, t\right)=e^{-\Gamma t}\left(1 \pm \sin \left(2 \phi_{1}\right) \sin (\Delta m t)\right) \\
& \text { We are measuring this parameter }
\end{aligned}
$$

$\mathrm{T}=$ time difference of the two decays

Want to distinguish the decay rate of B (dotted) from the decay rate of anti-B (full).
-> the two curves should not be smeared too much

Integrals are equal, time information mandatory!

Experimental considerations

B decay rate vs t for different vertex resolutions in units of typical B flight length $\sigma(z) / \beta \gamma \tau C$

$\sigma(z) / \beta \gamma \tau C=1$

$\sigma(z) / \beta \gamma \tau C=2$

Measured distribution: convolution of $\mathrm{P}(\mathrm{t})$ and the resolution function (e.g., a Gaussian with $\sigma=\sigma(z) / \beta \gamma \tau c$)

Experimental considerations

Error on $\sin 2 \phi_{1}=\sin 2 \beta$ as a function of the vertex resolution in units of typical B flight length $\sigma(\mathrm{z}) / \beta \gamma \tau \mathrm{C}$

For 1 event

for 1000 events

Peter Križan, Ljubljana

Experimental considerations

Choice of boost $\beta \gamma$:
Vertex resolution vs. path length
Typical B flight length: $z_{B}=\beta \gamma \tau C$

Typical two-body topology: decay products at 90° in cms; at
$\theta=\operatorname{atan}(1 / \beta \gamma)$ in the lab
Assume: vertex resolution determined by multiple scattering in the first detector layer and beam pipe wall at r_{0}

$$
\begin{aligned}
& \sigma_{\theta}=15 \mathrm{MeV} / \mathrm{p} \operatorname{sqrt}\left(\mathrm{~d} / \sin \theta X_{0}\right) \\
& \sigma(\mathrm{z})=\sigma_{\theta}(\mathrm{dz} / \mathrm{d} \theta)=r_{0} \sigma_{\theta} / \sin ^{2} \theta \\
& \square \sigma(\mathrm{z}) \alpha r_{0} / \sin ^{5 / 2} \theta
\end{aligned}
$$

Experimental considerations

Choice of boost $\beta \gamma$:

Maximize the ratio between the average flight path $\beta \gamma \tau \mathrm{c}$ and the vertex resolution $\sigma(z)$
$\sigma(z) \alpha r_{0} / \sin ^{5 / 2} \theta$ with
$\theta=\operatorname{atan}(1 / \beta \gamma)$
$\beta \gamma \tau c / \sigma(z) \alpha\left(1 / r_{0}\right) \beta \gamma \tau c \sin ^{5 / 2} \theta=$
$=\left(1 / r_{0}\right) \beta \gamma \tau c \sin ^{5 / 2}(\operatorname{atan}(1 / \beta \gamma))$

Boost around $\beta \gamma=0.8$ seems optimal
$\beta \gamma \tau c / \sigma(z)$

Peter Križan, Ljubljana

Experimental considerations

Detector form: symmetric for symmetric energy beams; extended in the boost direction for an asymmetric collider.
cms lab

Experimental considerations

Which boost...
Arguments for a smaller boost:

- Larger boost -> smaller acceptance
(particles escape in the boosted direction) $->$
- Larger boost -> it becomes hard to damp the betatron oscillations of the low energy beam: less synchrotron radiation at fixed ring radius (same as the high energy beam)

Figure 4. The acceptance of a detector covering $\left|\cos \theta_{l a b}\right|<0.95$ for five uncorrelated particles as a function of the energy of the more energetic beam in an asymmetric collider at the $\Upsilon(4 S)$.

Requirements: Geometric Acceptance

How to understand what happened in a collision?

Illustration on an example:

$\mathrm{B}^{0} \rightarrow \mathrm{~K}_{\mathrm{S}} \mathrm{J} / \psi$

$$
\mathrm{K}_{\mathrm{S}}^{0} \rightarrow \pi^{-} \pi^{+}
$$

$$
\mathrm{J} / \psi \rightarrow \mu^{-} \mu^{+}
$$

Belle II Detector

Belle II Detector (in comparison with Belle)

SVD: 4 DSSD lyrs $\rightarrow 2$ DEPFET lyrs + 4 DSSD lyrs
CDC: small cell, long lever arm
ACC + TOF \rightarrow TOP + A-RICH
ECL: waveform sampling (+pure Csl for endcaps)
KLM: RPC \rightarrow Scintillator +MPPC (endcaps, barrel inner 2 lyrs)

Tracking and vertex systems in Belle II

Vertexing

Peter Križan, Ljubljana

6. ATOMIC AND NUCLEAR PROPERTIES OF MATERIALS

Table 6.1 Abridged from pdg.lbl.gov/AtomicNuclearProperties by D. E. Groom (2007). See web pages for more detail about entries in this table including chemical formulae, and for several hundred other entries. Quantities in parentheses are for NTP ($20^{\circ} \mathrm{C}$ and 1 atm), and square brackets indicate quantities evaluated at STP. Boiling points are at 1 atm . Refractive indices n are evaluated at the sodium D line blend $(589.2 \mathrm{~nm})$; values $\gg 1$ in brackets are for $(n-1) \times 10^{6}$ (gases).

Material	Z	A	$\langle Z / A\rangle$	Nucl.coll. length λ_{T} $\left\{\mathrm{g} \mathrm{cm}^{-2}\right\}$	Nucl.inter. length λ_{I} $\left\{\mathrm{g} \mathrm{cm}^{-2}\right\}$	$\begin{gathered} \text { Rad.len. } \\ X_{0} \\ \left\{\mathrm{~g} \mathrm{~cm}^{-2}\right\} \end{gathered}$	$\begin{gathered} d E /\left.d x\right\|_{\text {min }} \\ \{\mathrm{MeV} \\ \left.\mathrm{g}^{-1} \mathrm{~cm}^{2}\right\} \end{gathered}$	Density $\left\{\mathrm{g} \mathrm{cm}^{-3}\right\}$ ($\left\{\mathrm{g} \ell^{-1}\right\}$)	Melting point (K)	Boiling point (K)	$\begin{aligned} & \text { Refract. } \\ & \text { index } \\ & (@ \mathrm{Na} \mathrm{D}) \end{aligned}$
H_{2}	1	1.00794(7)	0.99212	42.8	52.0	63.04	(4.103)	0.071(0.084)	13.81	20.28	1.11[132.]
D_{2}	1	2.01410177803(8)	0.49650	51.3	71.8	125.97	(2.053) 0	0.169(0.168)	18.7	23.65	1.11[138.]
He	2	4.002602(2)	0.49967	51.8	71.0	94.32	(1.937) 0	0.125(0.166)		4.220	1.02[35.0]
Li	3	6.941(2)	0.43221	52.2	71.3	82.78	1.639	0.534	453.6	1615.	
Be	4	$9.012182(3)$	0.44384	55.3	77.8	65.19	1.595	1.848	1560.	2744.	
C diamond	6	12.0107(8)	0.49955	59.2	85.8	42.70	1.725	3.520			2.42
C graphite	6	12.0107(8)	0.49955	59.2	85.8	42.70	1.742	2.210			
N_{2}	7	14.0067(2)	0.49976	61.1	89.7	37.99	(1.825)	0.807(1.165)	63.15	77.29	1.20[298.]
O_{2}	8	15.9994(3)	0.50002	61.3	90.2	34.24	(1.801)	1.141(1.332)	54.36	90.20	1.22[271.]
F_{2}	9	18.9984032(5)	0.47372	65.0	97.4	32.93	(1.676)	1.507(1.580)	53.53	85.03	[195.]
Ne	10	20.1797(6)	0.49555	65.7	99.0	28.93	(1.724) 1	$1.204(0.839)$	24.56	27.07	1.09[67.1]
Al	13	26.9815386(8)	0.48181	69.7	107.2	24.01	1.615	2.699	933.5	2792.	
Si	14	28.0855(3)	0.49848	70.2	108.4	21.82	1.664	2.329	1687.	3538.	3.95
Cl_{2}	17	35.453(2)	0.47951	73.8	115.7	19.28	(1.630)	1.574(2.980)	171.6	239.1	[773.]
Ar	18	39.948(1)	0.45059	75.7	119.7	19.55	(1.519)	1.396(1.662)	83.81	87.26	1.23[281.]
Ti	22	47.867(1)	0.45961	78.8	126.2	16.16	1.477	4.540	1941.	3560.	
Fe	26	55.845 (2)	0.46557	81.7	132.1	13.84	1.451	7.874	1811.	3134.	
Cu	29	63.546(3)	0.45636	84.2	137.3	12.86	1.403	8.960	1358.	2835.	
Ge	32	72.64(1)	0.44053	86.9	143.0	12.25	1.370	5.323	1211.	3106.	
Sn	50	118.710(7)	0.42119	98.2	166.7	8.82	1.263	7.310	505.1	2875.	
Xe	54	131.293(6)	0.41129	100.8	172.1	8.48	(1.255) 2	2.953(5.483)	161.4	165.1	1.39[701.]
W	74	183.84(1)	0.40252	110.4	191.9	6.76	1.145	19.300	3695.	5828.	
Pt	78	195.084(9)	0.39983	112.2	195.7	6.54	1.128	21.450	2042.	4098.	
Au	79	196.966569(4)	0.40108	112.5	196.3	6.46	1.134	19.320	1337.	3129.	
Pb	82	207.2(1)	0.39575	114.1	199.6	6.37	1.122	11.350	600.6	2022.	
U	92	[238.02891(3)]	0.38651	118.6	209.0	6.00	1.081	18.950	1408.	4404.	
Air (dry, 1 atm)			0.49919	61.3	90.1	36.62	(1.815)	(1.205)		78.80	
Shielding concrete			0.50274	65.1	97.5	26.57	1.711	2.300			
Borosilicate glass (Pyrex)			0.49707	64.6	96.5	28.17	1.696	2.230			

W $74 \quad 183.84(1)$	U.40252	110.4	191.9	6.76	1.145	19.300	3695.		
$\mathrm{Pt} \quad 78 \quad 195.084(9)$	0.39983	112.2	195.7	6.54	1.128	21.450	2042.	4098.	
$\mathrm{Au} \quad 79 \quad 196.966569(4)$	0.40108	112.5	196.3	6.46	1.134	19.320	1337.	3129.	
Pb 207.2(1)	0.39575	114.1	199.6	6.37	1.122	11.350	600.6	2022.	
U ($92 \quad$ [238.02891(3)]	0.38651	118.6	209.0	6.00	1.081	18.950	1408.	4404.	
Air (dry, 1 atm)	0.49919	61.3	90.1	36.62	(1.815)	(1.205)		78.80	
Shielding concrete	0.50274	65.1	97.5	26.57	1.711	2.300			
Borosilicate glass (Pyrex)	0.49707	64.6	96.5	28.17	1.696	2.230			
Lead glass	0.42101	95.9	158.0	7.87	1.255	6.220			
Standard rock	0.50000	66.8	101.3	26.54	1.688	2.650			
Methane (CH_{4})	0.62334	54.0	73.8	46.47	(2.417)	(0.667)	90.68	111.7	[444.]
Ethane $\left(\mathrm{C}_{2} \mathrm{H}_{6}\right)$	0.59861	55.0	75.9	45.66	(2.304)	(1.263)	90.36	184.5	
Propane $\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)$	0.58962	55.3	76.7	45.37	(2.262)	$0.493(1.868)$	85.52	231.0	
Butane ($\mathrm{C}_{4} \mathrm{H}_{10}$)	0.59497	55.5	77.1	45.23	(2.278)	(2.489)	134.9	272.6	
Octane ($\mathrm{C}_{8} \mathrm{H}_{18}$)	0.57778	55.8	77.8	45.00	2.123	0.703	214.4	398.8	
Paraffin $\left(\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{\mathrm{n} \approx 23} \mathrm{CH}_{3}\right)$	0.57275	56.0	78.3	44.85	2.088	0.930			
Nylon (type 6, 6/6)	0.54790	57.5	81.6	41.92	1.973	1.18			
Polycarbonate (Lexan)	0.52697	58.3	83.6	41.50	1.886	1.20			
Polyethylene ($\left[\mathrm{CH}_{2} \mathrm{CH}_{2}\right]_{\mathrm{n}}$)	0.57034	56.1	78.5	44.77	2.079	0.89			
Polyethylene terephthalate (Mylar)	0.52037	58.9	84.9	39.95	1.848	1.40			
Polyimide film (Kapton)	0.51264	59.2	85.5	40.58	1.820	1.42			
Polymethylmethacrylate (acrylic)	0.53937	58.1	82.8	40.55	1.929	1.19			1.49
Polypropylene	0.55998	56.1	78.5	44.77	2.041	0.90			
Polystyrene ($\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHCH}_{2}\right]_{\mathrm{n}}$)	0.53768	57.5	81.7	43.79	1.936	1.06			1.59
Polytetrafluoroethylene (Teflon)	0.47992	63.5	94.4	34.84	1.671	2.20			
Polyvinyltoluene	0.54141	57.3	81.3	43.90	1.956	1.03			1.58
Aluminum oxide (sapphire)	0.49038	65.5	98.4	27.94	1.647	3.970	2327.	3273.	1.77
Barium flouride (BaF_{2})	0.42207	90.8	149.0	9.91	1.303	4.893	1641.	2533.	1.47
Bismuth germanate (BGO)	0.42065	96.2	159.1	7.97	1.251	7.130	1317.		2.15
Carbon dioxide gas (CO_{2})	0.49989	60.7	88.9	36.20	1.819	(1.842)			[449.]
Solid carbon dioxide (dry ice)	0.49989	60.7	88.9	36.20	1.787	1.563	Sublin	at 194.	
Cesium iodide (CsI)	0.41569	100.6	171.5	8.39	1.243	4.510	894.2	1553.	1.79
Lithium fluoride (LiF)	0.46262	61.0	88.7	39.26	1.614	2.635	1121.	1946.	1.39
Lithium hydride (LiH)	0.50321	50.8	68.1	79.62	1.897	0.820	965.		
Lead tungstate (PbWO_{4})	0.41315	100.6	168.3	7.39	1.229	8.300	1403.		2.20
Silicon dioxide (SiO_{2}, fused quartz)	0.49930	65.2	97.8	27.05	1.699	2.200	1986.	3223.	1.46
Sodium chloride (NaCl)	0.55509	71.2	110.1	21.91	1.847	2.170	1075.	1738.	1.54
Sodium iodide (NaI)	0.42697	93.1	154.6	9.49	1.305	3.667	933.2	1577.	1.77
Water ($\mathrm{H}_{2} \mathrm{O}$)	0.55509	58.5	83.3	36.08	1.992	$1.000(0.756)$	273.1	373.1	1.33
Silica aerogel	0.50093	65.0	97.3	27.25	1.740	0.200	(0.03	, 0.97	

Belle II Detector - vertex region

Silicon vertex detector (SVD)

Two coordinates
measured at the same time;
strip pitch: $50 \mu \mathrm{~m}(75 \mu \mathrm{~m})$; resolution $15 \mu \mathrm{~m}(20 \mu \mathrm{~m})$.

Peter Križan, Ljubljana

Belle II Vertex detector SVD+PXD

- Sensors of the innermost layers: Normal double sided Si detector (DSSD) \rightarrow DEPFET Pixel sensors
- Configuration: 4 layers $\rightarrow 6$ layers (outer radius $=8 \mathrm{~cm} \rightarrow 14 \mathrm{~cm}$)
- More robust tracking
- Higher Ks vertex reconstruction efficiency
- Inner radius: $1.5 \mathrm{~cm} \rightarrow 1.3 \mathrm{~cm}$
- Better vertex resolution

Slant layer to keep the acceptance

Pixel vertex detector PXD principle: DEPFET

p-channel FET on a completely depleted bulk
Depleted p-channel FET
A deep n-implant creates a potential minimum for electrons under the gate ("internal gate")

Signal electrons accumulate in the internal gate and modulate the transistor current ($\mathrm{g}_{\mathrm{q}} \sim 400 \mathrm{pA} / \mathrm{e}^{-}$)

Accumulated charge can be removed by a clear contact ("reset")

Fully depleted:
\rightarrow large signal, fast signal collection
Low capacitance, internal amplification \rightarrow low noise

Transistor on only during readout: low power

Complete clear \longrightarrow no reset noise

Vertex Detector

DEPFET:
http://aldebaran.hll.mpg.de/twiki/bin/view/DEPFET/WebHome

DEPFET pixel sensor

DEpleted P-channel FET

DEPFET sensor: very good S/N

Expected performance $\sigma=a+\frac{b}{p \beta \sin ^{v} \theta}$

4 layers of silicons triop detectors $\rightarrow 2$ layers of pixel detectors +4 layers of silicons strip detectors: significant improvement in vertex resolution!

Larger detector volume \rightarrow significant improvement in K_{s} reconstruction efficiency

Main tracking device: small cell drift chamber
Missing

candidate

Search for unstable particles which decayed close to the production point

How do we reconstruct final states that decayed to two stable particles?

From the measured tracks calculate the invariant mass of the system ($\mathrm{i}=1,2$):

$$
M c^{2}=\sqrt{\left(\sum E_{i}\right)^{2}-\left(\sum \wp_{i}\right)^{2} c^{2}}
$$

The candidates for the $X \rightarrow 12$ decay show up as a peak in the distribution on (mostly combinatorial) background.

How do we know it was precisely this reaction?

$\mathrm{B}^{0} \rightarrow \mathrm{~K}_{\mathrm{S}} \mathrm{J} / \psi$

 the invariant mass:
$M^{2} C^{4}=\left(E_{1}+E_{2}\right)^{2-}\left(p_{1}+p_{2}\right)^{2}$
Mc^{2} must be for K_{S} close to 0.5 GeV,
for J/ ψ close to 3.1 GeV.

Rest in the histrogram: random

Invariant mass resolution - momentum resolution

The name of the game: have as little background under the peak as possible without loosing the events in the peak (=reduce background and have a narrow peak).

$$
M c^{2}=\sqrt{\left(\sum E_{i}\right)^{2}-\left(\sum \beta_{i}\right)^{2} c^{2}}
$$

To understand the impact of momentum resolution, simplify the expression for the case where final state particles have a small mass compared to their momenta.

$$
\begin{aligned}
& \text { Example } \mathrm{J} / \psi \rightarrow \mu^{-} \mu^{+} \\
& M^{2} c^{4}=\left(E_{1}+E_{2}\right)^{2}-\left(p_{1}+p_{2}\right)^{2} \rightarrow M^{2} c^{4}=2 p_{1} p_{2}\left(1-\cos \Theta_{12}\right)
\end{aligned}
$$

Resolution in invariant mass

$\mathrm{B}^{0} \rightarrow \mathrm{~K}_{\mathrm{S}}{ }^{\mathrm{J}} / \psi, \mathrm{K}_{\mathrm{S}} \rightarrow \pi^{-} \pi \mathrm{J} / \psi \rightarrow \mu^{-} \mu^{+}$
$M^{2} c^{4}=\left(E_{1}+E_{2}\right)^{2}-\left(p_{1}+p_{2}\right)^{2} c^{2} \rightarrow M^{2} c^{4}=2 p_{1} p_{2} c^{2}\left(1-\cos \Theta_{12}\right)$
The J/ ψ peak should be narrow to minimize the contribution of random coincidences ('combinatorial background')

The required resolution in Mc^{2} : about 10 MeV .
What is the corresponding momentum resolution?

For simplicity assume J / ψ is at rest \rightarrow

$$
\begin{aligned}
& \Theta_{12}=180^{0}, p_{1}=p_{2}=p=1.5 \mathrm{GeV} / \mathrm{c}, \mathrm{Mc}^{2}=2 \mathrm{pc} \\
& \rightarrow \sigma\left(\mathrm{Mc}^{2}\right)=2 \sigma(\mathrm{pc}) \text { at } \mathrm{p}=1.5 \mathrm{GeV} / \mathrm{c} \\
& \rightarrow \sigma(\mathrm{p}) / \mathrm{p}=10 \mathrm{MeV} / 2 / 1.5 \mathrm{GeV}=0.3 \%
\end{aligned}
$$

Requirements: momentum spectrum

Peter Križan, Ljubljana

From raw data to summary data momentum measurement

Example of momentum determination:

if s determined by 3 measurement points:

$$
\begin{aligned}
& s=x_{2}-\frac{x_{1}+x_{3}}{2} \\
& \frac{\sigma\left(p_{t}\right)}{p_{t}}=\frac{\sigma(s)}{s}=\frac{\sqrt{\frac{3}{2}} \sigma(x) 8 p_{t}}{B L^{2} q}
\end{aligned}
$$

for N measurement points:

$$
\frac{\sigma_{p_{T}}}{p_{T}}=\frac{\sigma_{x} p_{T}}{e B L^{2}} \sqrt{\frac{720}{N+4}}
$$

From raw data to summary data momentum measurement

Multiple scattering:

$$
\begin{aligned}
\Delta p_{2} & =2 p_{t} \sin \frac{\theta}{2} \approx p_{t} \theta \\
\frac{\sigma\left(p_{t}\right)}{p_{t}} & =\frac{\sigma\left(\Delta p_{2}\right)}{\Delta p_{2}} \\
\frac{\sigma\left(p_{t}\right)}{p_{t}} & \approx \frac{p_{t} \sin \theta_{\mathrm{RMS}}}{p_{t} \theta} \approx \frac{\theta_{\mathrm{RMS}}}{\theta} \\
\frac{\sigma\left(p_{t}\right)}{p_{t}} & \approx \frac{13.6 \mathrm{MeV}}{q B \sqrt{L X_{0}}}
\end{aligned}
$$

Momentum resolution

$\begin{aligned} & \text { Tracking system } \\ & \text { uncertainty }\end{aligned} \quad \frac{\sigma_{p_{T}}}{p_{T}}=\frac{\sigma_{x} p_{T}}{e B L^{2}} \sqrt{\frac{720}{N+4}} \quad$ eB $=0.3(\mathrm{~B} / \mathrm{T})(1 / \mathrm{m}) \mathrm{GeV} / \mathrm{c}$

$$
\frac{\sigma_{p_{T}}}{p_{T}}=p_{T} \frac{0.1 \times 10^{-3} \mathrm{~m}}{0.3(\mathrm{GeV} / \mathrm{m}) \times 1.5 \times 1 \mathrm{~m}^{2}} \sqrt{\frac{720}{54}}=\frac{p_{T} \times 0.0008}{\mathrm{GeV}}
$$

For $B=1.5 \mathrm{~T}, \mathrm{~L}=1 \mathrm{~m}, \sigma_{\mathrm{x}}=0.1 \mathrm{~mm}$
For $p_{T}=1 \mathrm{GeV}: \sigma_{p T} / p_{T}=0.08 \%$
For $p_{T}=2 \mathrm{GeV}: \sigma_{p T} / p_{T}=0.16 \%$

Uncertainty from multiple scattering

$$
\frac{\sigma_{p_{T}}}{p_{T}}=\frac{13.6 \mathrm{MeV}}{e B \sqrt{L X_{0}}}
$$

$$
\frac{\sigma_{p_{T}}}{p_{T}}=\frac{13.6 \mathrm{MeV}}{0.3(\mathrm{GeV} / \mathrm{m}) \times 1.5 \sqrt{1 \mathrm{~m} \times 100 \mathrm{~m}}}=0.003
$$

Tracking: Belle central drift chamber

- 50 layers of wires (8400 cells) in 1.5 Tesla magnetic field
-Helium:Ethane 50:50 gas, W anode wires, Al field wires, CF inner wall with cathodes, and preamp only on endplates
-Particle identification from ionization loss (5.6-7\% resolution)

Drift chamber with small cells

One big gas volume, small cells defined by the anode and field shaping (potential) wires

Belle II CDC

Wire Configuration

Present CDC	\uparrow
	兄
	$\stackrel{\sim}{\circ}$
	\downarrow

1200 mm
Upgrade CDC

Wire stringing in a clean room

- thousands of wires,
- 1 year of work...

Peter Križan, Ljubljana

Particle identification systems in Belle II

Identification of charged particles

Particles are identified by their mass or by the way they interact.

Determination of mass: from the relation between momentum and velocity, $\mathrm{p}=\gamma \mathrm{mv}$.
Momentum known (radius of curvature in magnetic field)
\rightarrow Measure velocity:
time of flight
ionisation losses dE/dx
Cherenkov angle
transition radiation
Mainly used for the identification of hadrons.

Identification through interaction: electrons and muons

Reminder: where do we need identification?

Requirements: Particle Identification

Tagging Kaons
Relatively soft,
ms dominated
for tracking

$\mathrm{B} \rightarrow \pi \pi$
Requires dedicated PID

$B \rightarrow$ DK
Requires dedicated PID

PID coverage of kaon/pion spectra

Peter Križan, Ljubljana

PID coverage of kaon/pion spectra

Peter Križan, Ljubljana

Identification with the $\mathrm{dE} / \mathrm{dx}$ measurement

$\mathrm{dE} / \mathrm{dx}$ is a function of velocity β
For particles with different mass the
 Bethe-Bloch curve gets displaced if plotted as a function of p

For good separation: resolution should be $\sim 5 \%$

Identification with $\mathrm{dE} / \mathrm{dx}$ measurement

Problem: long tails (Landau distribution, not Gaussian) of a single measurement (one drift chamber cell)

Measure in each of the 50 drift chamber layers - use truncated mean (discard 30\% largest values - from the tail).

Identification with $\mathrm{dE} / \mathrm{dx}$ measurement

Optimisation of the counter: length L, number of samples N, resolution (FWHM)
If the distribution of individual measurements were Gaussian, only the total detector length L would be relevant.

Tails: eliminate the largest 30\% values \rightarrow the optimum depends also on the number of samples.

At about 1m path length: optimal number of samples: 50

FWHM: full width at half maximum =
 2.35 sigma for a Gaussian distribution

Barrel PID: Time of Propagation Counter (TOP)

Hamamatsu HAPD + new ASIC

Peter Križan, Ljubljana

Cherenkov radiation

A charged track with velocity $\mathrm{v}=\beta \mathrm{c}$ exceeding the speed of light c / n in a medium with refractive index n emits polarized light at a characteristic (Cherenkov) angle,

$$
\cos \theta=c / n v=1 / \beta n
$$

Two cases:

$\rightarrow \beta<\beta_{\mathbf{t}}=1 / \mathrm{n}$: below threshold no Cherenkov light is emitted.
$\rightarrow \beta>\beta_{\mathrm{t}}$: the number of Cherenkov photons emitted over unit photon energy $E=h v$ in a radiator of length L :

$$
\frac{d N}{d E}=\frac{\alpha}{\eta C} L \sin ^{2} \theta=370(\mathrm{~cm})^{-1}(e V)^{-1} L \sin ^{2} \theta
$$

\rightarrow Few detected photons

Measuring the Cherenkov angle

Proximity focusing RICH RICH with a focusing mirror

Idea: transform the direction into a coordinate \rightarrow ring on the detection plane
\rightarrow Ring Imaging Cherenkov (RICH) counter

Measuring Cherenkov angle

Measuring Cherenkov angle

Efficiency and purity in particle identification

Efficiency and purity are tightly coupled!

Two examples:

any discriminating variable, e.g.

- Cherenkov angle

Measuring Cherenkov angle

Aerogel RICH (endcap PID): larger particle momenta

RICH with a novel "focusing" radiator a two layer radiator

Employ multiple layers with different refractive indices \rightarrow Cherenkov images from individual layers overlap on the photon detector.

Clear Cherenkov image observed

Cherenkov angle distribution

Radiator with multiple refractive indices

How to increase the number of photons without degrading the resolution?

Such a configuration is only possible with aerogel (a form of $\mathrm{Si}_{x} \mathrm{O}_{y}$) - material with a tunable refractive index between 1.01 and 1.13.

Focusing configuration - data

Increases the number of photons without degrading the resolution

4 cm aerogel single index

2+2cm aerogel

\rightarrow NIM A548 (2005) 383

theta cerenkov

Barrel PID: Time of Propagation Counter (TOP)

Hamamatsu HAPD + new ASIC

Peter Križan, Ljubljana

DIRC (@BaBar) - detector of internally reflected Cherenkov light

Support tube (AI)
Quartz Barbox

4×1.225 m Bars
glued end-to-end

Belle II Barrel PID: Time of propagation (TOP) counter

- Cherenkov ring imaging with precise time measurement.
- Device uses internal reflection of Cerenkov ring images from quartz like the BaBar DIRC.
- Reconstruct Cherenkov angle from two hit coordinates and the time of propagation of the photon
- Quartz radiator (2 cm)
- Photon detector (MCP-PMT)
- Excellent time resolution ~ 40 ps
- Single photon sensitivity in 1.5

TOP image

Pattern in the coordinate-time space ('ring') of a pion hitting a quartz bar with ~80 MAPMT channels

Time distribution of signals recorded by one of the PMT channels: different for π and K (\sim shifted in time)

Peter Križan, Ljubljana

Muon (and K_{L}) detector

Separate muons from hadrons (pions and kaons): exploit the fact that muons interact only e.m., while hadrons interact strongly \rightarrow need a few interaction lengths (about 10x radiation length in iron, 20x in CsI)

Detect K_{L} interaction (cluster): again need a few interaction lengths.
\rightarrow Put the detector outside the magnet coil, and integrate into the return yoke

Some numbers: 3.9 interaction lengths (iron)

Interaction length: iron $132 \mathrm{~g} / \mathrm{cm}^{2}$, CsI $167 \mathrm{~g} / \mathrm{cm}^{2}$
$(\mathrm{dE} / \mathrm{dx})_{\text {min }}$: iron $1.45 \mathrm{MeV} /\left(\mathrm{g} / \mathrm{cm}^{2}\right)$, CsI $1.24 \mathrm{MeV} /\left(\mathrm{g} / \mathrm{cm}^{2}\right) \rightarrow \Delta \mathrm{E}_{\text {min }}=$ $(0.36+0.11) \mathrm{GeV}=0.47 \mathrm{GeV} \rightarrow$ identification of muons above $\sim 600 \mathrm{MeV}$

Muon and K_{L} detector

Example:

event with
-two muons and a - K_{L}
and a pion that partly penetrated

Muon and K_{L} detector performance

Muon identification $>800 \mathrm{MeV} / \mathrm{c}$
efficiency

Fig. 109. Muon detection efficiency vs. momentum in KLM.
fake probability

Fig. 110. Fake rate vs. momentum in KLM.

Muon and K_{L} detector performance

K_{L} detection: resolution in direction \rightarrow
K_{L} detection: also with poss with electromagnetic calori (0.8 interactin lengths)

Fig. 107. Difference between the neutral cluster and the direction of missing momentum in KLM.

Belle II, detection of muons and $\mathrm{K}_{\mathrm{L}} \mathrm{s}$: Parts of the present RPC system have to be replaced to handle higher backgrounds (mainly from neutrons).

Muon detection system upgrade in the endcaps

Scintillator-based KLM (endcap and two layers in the barrel part)

- Two independent (x and y) layers in one superlayer made of orthogonal strips with WLS read out
- Photo-detector = avalanche photodiode in Geiger mode (SiPM)
- ~ 120 strips in one 90° sector (max L=280cm, w=25mm)
- ~30000 read out channels
- Geometrical acceptance > 99\%

Mirror 3M (above groove \& at fiber end)

Calorimetry in Belle II

Requirements: Photons

Belle II Detector (in comparison with Belle)

SVD: 4 DSSD lyrs $\rightarrow 2$ DEPFET lyrs + 4 DSSD lyrs
CDC: small cell, long lever arm
ACC + TOF \rightarrow TOP + A-RICH
ECL: waveform sampling (+pure Csl for endcaps)
KLM: RPC \rightarrow Scintillator +MPPC (endcaps, barrel inner 2 lyrs)

Scintillator material	Density $\left(\mathrm{g} / \mathrm{cm}^{3}\right)$	Radiation length	Refractive index	Wavelength at peak	Decay time	Light yield $(\mathrm{Y} / \mathrm{MeV})$
$\mathrm{NaI}(\mathrm{TI})$	3.67	2.59 cm	1.78	410 nm	230 ns	4.1×10^{4}
$\mathrm{CsI}(\mathrm{TI})$	4.51	1.86 cm	1.85	550 nm	$800-6000 \mathrm{~ns}$	6.6×10^{4}
$\mathrm{CsI}(\mathrm{Na})$	4.51	1.86 cm	1.80	420 nm	630 ns	4.0×10^{4}
$\mathrm{LaBr}_{3}(\mathrm{Ce})$	5.3	1.88 cm	1.9	358 nm	35 ns	6.1×10^{4}
$\mathrm{Bi}_{4} \mathrm{Si}_{3} \mathrm{O}_{12}$	BSO	6.8	1.15 cm	2.06	480 nm	100 ns
$\mathrm{Bi}_{4} \mathrm{Ge}_{3} \mathrm{O}_{12}$	BGO	7.1	1.12 cm	2.15	480 nm	300 ns
CdWO_{4}		7.9	1.1 cm	2.25	495 nm	5000 ns
$\mathrm{YAIO}_{3}(\mathrm{Ce})$	YAP	5.5	2.9 cm	1.94	350 nm	30 ns
$\mathrm{Lu}_{3} \mathrm{Al}_{5} \mathrm{O}_{7}(\mathrm{Ce})$	uAG 7.4	1.4 cm	1.84	420 nm	40 ns	2.1×10^{4}
$\mathrm{Gd}_{2} \mathrm{SiO}_{5}(\mathrm{Ce}) \mathrm{GSO}$	6.7	1.4 cm	1.87	440 nm	60 ns	0.8×10^{4}
PbWO_{4}	8.3	0.89 cm	1.82	425 nm	25 ns	0.05×10^{4}

EM calorimeter: upgrade needed because of higher rates (barrel: electronics, endcap: electronics and $\operatorname{CsI}(\mathrm{TI}) \rightarrow$ pure CsI), and radiation load (endcap: $\mathrm{CsI}(\mathrm{TI}) \rightarrow$ pure CsI)

EM calorimeter: upgrade needed because of -higher rates (barrel: electronics, endcap: electronics and $\mathrm{CsI}(\mathrm{TI}) \rightarrow$ pure CsI), and \bullet radiation load (endcap: CsI(TI) \rightarrow pure CsI)

Pure CsI is faster, but has a smaller light yield... \rightarrow replace photodiodes with a special kind of PMT (photopentode) that can be operated in magnetic field

B factories main result: CP violation in the B system

CP violation in B system: from the discovery (2001) to a precision measurement
$\sin 2 \phi_{1} / \sin 2 \beta$ from $b \rightarrow C C S$

EPS 2011

Constraints from measurements of angles and sides of the unitarity triangle \rightarrow Remarkable agreement

Unitarity triangle - 2011 vs 2001

CP violation in the B system: from the discovery (2001) to a precision measurement (2011).

Peter Križan, Ljubljana

B factories: a success story

- Measurements of CKM matrix elements and angles of the unitarity triangle
- Observation of direct CP violation in B decays
- Measurements of rare decay modes (e.g., $B \rightarrow \tau v, D \tau v)$
- $b \rightarrow s$ transitions: probe for new sources of CPV and constraints from the $b \rightarrow s \gamma$ branching fraction
- Forward-backward asymmetry $\left(\mathrm{A}_{\mathrm{FB}}\right)$ in $\mathrm{b} \rightarrow \mathrm{SI}|+|$ has become a powerfull tool to search for physics beyond SM.
- Observation of D mixing
- Searches for rare τ decays
- Observation of new hadrons

More slides...

Systematic studies of B mesons: at Y(4s)

Peter Križan, Ljubljana

Systematic studies of B mesons at $\mathrm{Y}(4 \mathrm{~s})$

$80 s-90 s$: two very successful experiments:
-ARGUS at DORIS (DESY)
-CLEO at CESR (Cornell)
Magnetic spectrometers at $\mathrm{e}^{+} \mathrm{e}^{-}$ colliders ($5.3 \mathrm{GeV}+5.3 \mathrm{GeV}$ beams)

Large solid angle, excellent tracking and good particle identification (TOF, dE/dx, EM calorimeter, muon chambers).

Mixing in the B^{0} system

1987: ARGUS discovers $B B$ mixing: B^{0} turns into anti- B^{0}

Reconstructed event

$$
\chi_{d}=0.17 \pm 0.05
$$

ARGUS, PL B 192, 245 (1987) cited >1000 times.

Time-integrated mixing rate: 25 like sign, 270 opposite sign dilepton events Integrated $\mathrm{Y}\left(4 \mathrm{~S}\right.$) luminosity 1983-87: $103 \mathrm{pb}^{-1} \sim 110,000 \mathrm{~B}$ pairs

Mixing in the B^{0} system

$$
\begin{aligned}
& \Delta m \propto \\
&\left|V_{t b}^{*} V_{t d}\right|^{2} m_{t}^{2} \propto \lambda^{6} m_{t}^{2} \\
&\left|V_{c b}^{*} V_{c d}\right|^{2} m_{c}^{2} \propto \lambda^{6} m_{c}^{2}
\end{aligned}
$$

Large mixing rate \rightarrow high top mass (in the Standard Model)

The top quark has only been discovered seven years later!

Time evolution in the B system

An arbitrary linear combination of the neutral B-meson flavor eigenstates

$$
a\left|B^{0}\right\rangle+b\left|\bar{B}^{0}\right\rangle
$$

is governed by a time-dependent Schroedinger equation

$$
i \frac{d}{d t}\binom{a}{b}=H\binom{a}{b}=\left(M-\frac{i}{2} \Gamma\right)\binom{a}{b}
$$

M and Γ are 2×2 Hermitian matrices. CPT invariance $\rightarrow \mathrm{H}_{11}=\mathrm{H}_{22}$

$$
M=\left(\begin{array}{cc}
M & M_{12} \\
M_{12}^{*} & M
\end{array}\right), \Gamma=\left(\begin{array}{cc}
\Gamma & \Gamma_{12} \\
\Gamma_{12}^{*} & \Gamma
\end{array}\right)
$$

diagonalize \rightarrow
Peter Križan, Ljubljana

Time evolution in the B system

The light B_{L} and heavy B_{H} mass eigenstates with eigenvalues $m_{H}, \Gamma_{H}, m_{L}, \Gamma_{L}$ are given by

$$
\begin{aligned}
& \left|B_{L}\right\rangle=p\left|B^{0}\right\rangle+q\left|\bar{B}^{0}\right\rangle \\
& \left|B_{H}\right\rangle=p\left|B^{0}\right\rangle-q\left|\bar{B}^{0}\right\rangle
\end{aligned}
$$

With the eigenvalue differences

$$
\Delta m_{B}=m_{H}-m_{L}, \Delta \Gamma_{B}=\Gamma_{H}-\Gamma_{L}
$$

They are determined from the M and Γ matrix elements

$$
\begin{aligned}
& \left(\Delta m_{B}\right)^{2}-\frac{1}{4}\left(\Delta \Gamma_{B}\right)^{2}=4\left(\left|M_{12}\right|^{2}-\frac{1}{4}\left|\Gamma_{12}\right|^{2}\right) \\
& \Delta m_{B} \Delta \Gamma_{B}=4 \operatorname{Re}\left(M_{12} \Gamma_{12}^{*}\right)
\end{aligned}
$$

The ratio p / q is

$$
\frac{q}{p}=-\frac{\Delta m_{B}-\frac{i}{2} \Delta \Gamma_{B}}{2\left(M_{12}-\frac{i}{2} \Gamma_{12}\right)}=-\frac{2\left(M_{12}^{*}-\frac{i}{2} \Gamma_{12}^{*}\right)}{\Delta m_{B}-\frac{i}{2} \Delta \Gamma_{B}}
$$

What do we know about $\Delta \mathrm{m}_{\mathrm{B}}$ and $\Delta \Gamma_{\mathrm{B}}$?
$\Delta \mathrm{m}_{\mathrm{B}}=(0.502+-0.007) \mathrm{ps}^{-1}$ well measured

$$
\rightarrow \Delta \mathrm{m}_{\mathrm{B}} / \Gamma_{\mathrm{B}}=\mathrm{x}_{\mathrm{d}}=0.771+-0.012
$$

$\Delta \Gamma_{\mathrm{B}} / \Gamma_{\mathrm{B}}$ not measured, expected $\mathrm{O}(0.01)$, due to decays common to B and anti- $-\mathrm{O}(0.001)$.
$\rightarrow \Delta \Gamma_{B} \ll \Delta m_{B}$

Since $\Delta \Gamma_{B} \ll \Delta m_{B}$

$$
\begin{aligned}
& \Delta m_{B}=2\left|M_{12}\right| \\
& \Delta \Gamma_{B}=2 \operatorname{Re}\left(M_{12} \Gamma_{12}^{*}\right) /\left|M_{12}\right|
\end{aligned}
$$

and

$$
\frac{q}{p}=-\frac{\left|M_{12}\right|}{M_{12}} \quad=\text { a phase factor }
$$

or to the next order

$$
\frac{q}{p}=-\frac{\left|M_{12}\right|}{M_{12}}\left[1-\frac{1}{2} \operatorname{Im}\left(\frac{\Gamma_{12}}{M_{12}}\right)\right]
$$

B^{0} and \bar{B}^{0} can be written as an admixture of the states B_{H} and B_{L}

$$
\begin{aligned}
& \left|B^{0}\right\rangle=\frac{1}{2 p}\left(\left|B_{L}\right\rangle+\left|B_{H}\right\rangle\right) \\
& \left|\bar{B}^{0}\right\rangle=\frac{1}{2 q}\left(\left|B_{L}\right\rangle-\left|B_{H}\right\rangle\right)
\end{aligned}
$$

Time evolution

Any B state can then be written as an admixture of the states B_{H} and $B_{L \prime}$ and the amplitudes of this admixture evolve in time

$$
\begin{aligned}
& a_{H}(t)=a_{H}(0) e^{-i M_{H} t} e^{-\Gamma_{H} t / 2} \\
& a_{L}(t)=a_{L}(0) e^{-i M_{L} t} e^{-\Gamma_{L} t / 2}
\end{aligned}
$$

A B^{0} state created at $t=0$ (denoted by B^{0} phys) has

$$
a_{H}(0)=a_{L}(0)=1 /(2 p) ;
$$

an anti-B at $t=0\left(\right.$ anti- $\left.^{0}{ }_{\text {phys }}\right)$ has

$$
a_{H}(0)=-a_{L}(0)=1 /(2 q)
$$

At a later time t, the two coefficients are not equal any more because of the difference in phase factors $\exp (-\mathrm{iMt})$
\rightarrow initial B^{0} becomes a linear combination of B and anti- B
\rightarrow mixing

Time evolution of B's

Time evolution can also be written in the B^{0} in $\overline{\mathrm{B}}^{0}$ basis:

$$
\begin{aligned}
& \left|B_{\text {phys }}^{0}(t)\right\rangle=g_{+}(t)\left|B^{0}\right\rangle+(q / p) g_{-}(t)\left|\bar{B}^{0}\right\rangle \\
& \left|\bar{B}_{\text {phys }}^{0}(t)\right\rangle=(p / q) g_{-}(t)\left|B^{0}\right\rangle+g_{+}(t)\left|\bar{B}^{0}\right\rangle
\end{aligned}
$$

with

$$
\begin{gathered}
g_{+}(t)=e^{-i M t} e^{-\Gamma t / 2} \cos (\Delta m t / 2) \\
g_{-}(t)=e^{-i M t} e^{-\Gamma t / 2} i \sin (\Delta m t / 2) \\
M=\left(M_{H}+M_{L}\right) / 2
\end{gathered}
$$

If B mesons were stable ($\Gamma=0$), the time evolution would look like:

$$
\begin{aligned}
& g_{+}(t)=e^{-i M t} \cos (\Delta m t / 2) \\
& g_{-}(t)=e^{-i M t} i \sin (\Delta m t / 2)
\end{aligned}
$$

\rightarrow Probability that a B turns into its anti-particle

$$
\left|\left\langle\bar{B}^{0} \mid B_{p h y s}^{0}(t)\right\rangle\right|^{2}=|q / p|^{2}\left|g_{-}(t)\right|^{2}=|q / p|^{2} \sin ^{2}(\Delta m t / 2)
$$

\rightarrow Probability that a B remains a B

$$
\left|\left\langle B^{0} \mid B_{\text {phys }}^{0}(t)\right\rangle\right|^{2}=\left|g_{+}(t)\right|^{2}=\cos ^{2}(\Delta m t / 2)
$$

\rightarrow Expressions familiar from quantum mechanics of a two level system

B mesons of course do decay \rightarrow

B^{0} at $t=0$

Evolution in time
-Full line: B0
-dotted: B^{0}

T: in units of $\tau=1 / \Gamma$

Decay probability

Decay probability

$$
\left.P\left(B^{0} \rightarrow f, t\right) \propto|\langle f| H| B_{p h y s}^{0}(t)\right\rangle\left.\right|^{2}
$$

Decay amplitudes of B and antiB to the same final state \boldsymbol{f}

$$
\begin{aligned}
& A_{f}=\langle f| H\left|B^{0}\right\rangle \\
& \bar{A}_{f}=\langle f| H\left|\bar{B}^{0}\right\rangle
\end{aligned}
$$

Decay amplitude as a function of time:

$$
\begin{aligned}
& \langle f| H\left|B_{\text {phys }}^{0}(t)\right\rangle=g_{+}(t)\langle f| H\left|B^{0}\right\rangle+(q / p) g_{-}(t)\langle f| H\left|\bar{B}^{0}\right\rangle \\
& =g_{+}(t) A_{f}+(q / p) g_{-}(t) \bar{A}_{f}
\end{aligned}
$$

... and similarly for the anti-B

CP violation: three types

Decay amplitudes of B and anti- B to the same final state \boldsymbol{f}

$$
\begin{aligned}
& A_{f}=\langle f| H\left|B^{0}\right\rangle \\
& \bar{A}_{f}=\langle f| H\left|\bar{B}^{0}\right\rangle
\end{aligned}
$$

Define a parameter $\lambda \quad \lambda=\frac{q}{p} \frac{\bar{A}_{f}}{A_{f}}$
Three types of CP violation (CPV):

$$
\left.\begin{array}{c}
\text { ep in decay: }|\bar{A} / A| \neq 1 \\
\text { sp in mixing: }|q / p| \neq 1
\end{array}\right\}|\lambda| \neq 1
$$

eß in interference between mixing and decay: even if $|\lambda|=1$ if only $\operatorname{Im}(\lambda) \neq 0$

CP violation in the interference between decays with and without mixing

CP violation in the interference between mixing and decay to a state accessible in both B^{0} and anti- B^{0} decays

For example: a CP eigenstate f_{CP} like $\pi^{+} \pi^{-}$

$$
\lambda=\frac{q}{p} \frac{\bar{A}_{f}}{A_{f}}
$$

We can get $C P$ violation if $\operatorname{Im}(\lambda) \neq 0$, even if $|\lambda|=1$

CP violation in the interference between decays with and without mixing

Decay rate asymmetry:

$$
a_{f_{C P}}=\frac{P\left(\bar{B}^{0} \rightarrow f_{C P}, t\right)-P\left(B^{0} \rightarrow f_{C P}, t\right)}{P\left(\bar{B}^{0} \rightarrow f_{C P}, t\right)+P\left(B^{0} \rightarrow f_{C P}, t\right)}
$$

Decay rate: $\left.\quad P\left(B^{0} \rightarrow f_{C P}, t\right) \propto\left|\left\langle f_{C P}\right| H\right| B_{\text {phys }}^{0}(t)\right\rangle\left.\right|^{2}$
Decay amplitudes vs time:

$$
\begin{aligned}
& \left\langle f_{C P}\right| H\left|B_{\text {phys }}^{0}(t)\right\rangle=g_{+}(t)\left\langle f_{C P}\right| H\left|B^{0}\right\rangle+(q / p) g_{-}(t)\left\langle f_{C P}\right| H\left|\bar{B}^{0}\right\rangle \\
& =g_{+}(t) A_{f_{C P}}+(q / p) g_{-}(t) \bar{A}_{f_{C P}} \\
& \left\langle f_{C P}\right| H\left|\bar{B}_{\text {phys }}^{0}(t)\right\rangle=(p / q) g_{-}(t)\left\langle f_{C P}\right| H\left|B^{0}\right\rangle+g_{+}(t)\left\langle f_{C P}\right| H\left|\bar{B}^{0}\right\rangle \\
& =(p / q) g_{-}(t) A_{f_{C P}}+g_{+}(t) \bar{A}_{f_{C P}}
\end{aligned}
$$

$$
\begin{aligned}
& a_{f_{C P}}=\frac{P\left(\bar{B}^{0} \rightarrow f_{C P}, t\right)-P\left(B^{0} \rightarrow f_{C P}, t\right)}{P\left(\bar{B}^{0} \rightarrow f_{C P}, t\right)+P\left(B^{0} \rightarrow f_{C P}, t\right)}= \\
& =\frac{\left|(p / q) g_{-}(t) A_{f_{C P}}+g_{+}(t) \bar{A}_{f_{C P}}\right|^{2}-\left|g_{+}(t) A_{f_{C P}}+(q / p) g_{-}(t) \bar{A}_{f_{C P}}\right|^{2}}{\left|(p / q) g_{-}(t) A_{f_{C P}}+g_{+}(t) \bar{A}_{f_{C P}}\right|^{2}+\left|g_{+}(t) A_{f_{C P}}+(q / p) g_{-}(t) \bar{A}_{f_{C P}}\right|^{2}}= \\
& =\frac{\left(1-\left|\lambda_{f_{C P}}\right|^{2}\right) \cos (\Delta m t)-2 \operatorname{Im}\left(\lambda_{f_{C P}}\right) \sin (\Delta m t)}{1+\left|\lambda_{f_{C P}}\right|^{2}} \quad \lambda=\frac{q}{p} \frac{\bar{A}_{f}}{A_{f}} \\
& =C \cos (\Delta m t)+S \sin (\Delta m t) \quad
\end{aligned}
$$

Non-zero effect if $\operatorname{Im}(\lambda) \neq 0$, even if $|\lambda|=1$

$$
\text { If }|\lambda|=1 \rightarrow a_{f_{C P}}=-\operatorname{Im}(\lambda) \sin (\Delta m t)
$$

Decay asymmetry predictions - example $\pi^{+} \pi^{-}$

N.B.: for simplicity we have neglected possible penguin amplitudes (which is wrong as we shall see later, when we will do it properly).

Peter Križan, Ljubljana

Decay asymmetry predictions - example $\mathrm{J} / \psi \mathrm{K}_{\mathrm{S}}$

$\mathrm{b} \rightarrow \mathrm{c} \overline{\mathrm{c} s}:$ Take into account that we measure the $\pi^{+} \pi^{-}$ component of K_{s} - also need the $(\mathrm{q} / \mathrm{p})_{\mathrm{K}}$ for the K system

$$
\begin{aligned}
& \lambda_{\psi K s}=\eta_{\psi K \mathrm{~K}}\left(\frac{V_{t b}^{*} V_{t d}}{V_{t b} V_{t d}^{*}}\right)\left(\frac{V_{c s}^{*} V_{c b}}{V_{c s} V_{c b}^{*}}\right)\left(\frac{V_{c d}^{*} V_{c s}}{V_{c d} V_{c s}^{*}}\right) \\
& =\eta_{\psi K s}\left(\frac{V_{t b}^{*} V_{t d}}{V_{t b} V_{t d}{ }^{*}}\right)\left(\frac{V_{c b}}{V_{c b}{ }^{*}} \frac{V_{c d}^{*}}{V_{c d}}\right)
\end{aligned}
$$

$\operatorname{Im}\left(\lambda_{\mu K s}\right)=\sin 2 \phi_{1}$

$$
\beta \equiv \phi_{1} \equiv \arg \left(\frac{V_{c d} V_{c b}^{*}}{V_{t d} V_{t b}^{*}}\right)
$$

Peter Križan, Ljubljana

