

Heavy Flavors III

Peter Križan University of Ljubljana and J. Stefan Institute

"Jožef Stefan" Institute

Contents, this lecture

- •Flavor physics: introduction, with a little bit of history
- Flavor physics at B factories: CP violation
- •Flavor physics at B factories: rare decays and searches for NP effects
- •Super B factory
- •Flavor physics at hadron machines: history, LHCb and LHCb upgrade

Why hadron machines?

•large bb production rates - compare to 1.1nb at Y(4s) •large boosts \rightarrow <L> = < $\beta\gamma$ > 480 μ m •in addition to B⁰/B⁺⁻ also B_s, B_c, Λ_{b} ...

bb events at e⁺e⁻ machines: BELLE

bb event at CDF

bb event at HERA-B:

Needle

 $B \rightarrow J/\psi Ks$

in haystack...

and the rest

bb event at LHCb:

Fully simulated bb event in Geant3

- MC Pythia 6.2 tuned on CDF and UA5 data
- Multiple pp interactions and spill-over effects included
- Complete description of material from TDRs
- Individual detector responses tuned on test beam results
- Complete pattern recognition in reconstruction:
- MC true information is never used

IM inclusive bb events produced in Summer 2002

- New "Spring" production ready: 10M events for September TDRs
- Sensitivities quoted here are obtained by rescaling earlier studies to the new yields

Marco Musy

Fermilab 3th May 2003

B detection in hadron collisions

What do we have to consider when designing a detector for b mesons and baryons at a hadron machine?

High particle fluxes \rightarrow radiation hard detectors

Early selection of interesting events \rightarrow selective triggers

Use the characteristic features of a B decay

B detection in hadron collisions

Early selection of interesting events \rightarrow selective triggers:

- high p_t decay products: $B \rightarrow \mu\nu X$, $B \rightarrow J/\psi Ks \rightarrow \mu^+\mu^- \pi^+\pi^-$, $B \rightarrow \pi^+\pi^ \rightarrow$ helps because decay products carry a lot of momentum - typically ~1-2 GeV/c - perpendicularly to the flight direction (p_t), while backgrounds have low p_t
- displaced vertex: $\langle L \rangle = \langle \beta \gamma \rangle c\tau_{\mathbf{B}} = \langle \beta \gamma \rangle 480 \ \mu m \rightarrow$ helps because other decay products are promt = originate directly in the interaction point

Proof of principle: CDF, D0 at the Tevatron collider. Most importnat measurement: Observation of B_s mixing.

HERA-B

First attempt to make a precision flavour physics measurement at a hardon machine.

Fixed target B - Factory at HERA (DESY): parasitic use of the proton beam with an adaptable target in the beam halo

Originally designed for measurement of CP violation in $B \rightarrow J/\psi K_S^0$

```
920 GeV prootons, sqrt(s)=42 GeV
```

```
\sigma(b bar-b) ~ 12 nb -> \sigma(b bar-b)/ \sigma(inel) ~10<sup>-6</sup>
```

BR for interesting decays of ~ 10^{-5} - 10^{-4}

 \rightarrow 11 orders of magnitude

 \rightarrow Need multiple events for 40 MHz interaction rate (=0.4 10⁸ s⁻¹)

 \rightarrow LHC like experiment 10 years before LHC

HERA-B Summary

- •First LHC like experiment before the LHC
- •Designed with a very ambitious goal
- •Many components behaved very well (e.g. SVD, RICH, calorimeter and muon system)
- •Several critical components were less successful (tracking)
- •Trigger efficiency (which heavily relied on the tracking system efficiency) was >10x lower than expected
- \rightarrow No precision tests in B physics were possible
- •Still: a solid physics program could be carried out (i.e. bb and cc production cross sections, a limit on $D \rightarrow \mu\mu$, pentaquark searches)
- •HERA-B experience: An important input for LHC experiments

b-production in pp collisions at LHC

Cross section for bb pair production much higher at LHC

b-production in pp collisions

 Pairs of bb quarks are mostly produced in the forward/backward direction:

$$\sigma_{b\bar{b}} = 500 \mu b$$

 $10^{12}b\overline{b}$ produced per year

Figure 2.1: Polar angles of the b- and \overline{b} -hadrons calculated by the PYTHIA event generator.

LHCb

LHCb Collaboration

Vertex locator - VELO

Vertex detector Key element surrounding the IP:

Measure the position of the primary and the B_{d,s} vertices Used in L1 trigger.

Vertex locator

- 21 pairs of silicon strip detectors arrange in two retractable halves:
 - Strips with an R-φ geometry:
 - R strip pitch: 40-102 µm
 - ϕ strip pitch: 36-97 μ m
 - 172k channels.
- Operated:
 - In vacuum, separated from beam vacuum by an Al foil
 - Close to the beam line (7 mm)
 - Radiation $\leq 1.5 \times 10^{14} \text{ n}_{eq}/\text{cm}^2$ per year
 - Cooled at -5 °C

Key elements to find tracks and to measure their momentum.

Tracking system

- Trigger Tracker:
 - Microstrip silicon detector
 - 144k channels
- Three T stations:
 - Inner tracker:
 - Microstrip Silicon detector
 - 130k channels
 - Outer tracker:
 - Straw tubes (5 mm)
 - 56k channels

Key elements to identify pions and kaons in the momentum range $p \in [2, 100]$ GeV/*c*

LHCb RICHes

RICH system divided in two detectors equipped with 3 radiators to cover the full acceptance and momentum range:

Particle ID with RICH

Efficient particle ID of π, K, p essential for selecting rare beauty and charm decays

K-identification and π-misidentification efficiencies vs. particle momentum

Calorimeters

LHCb calorimeters

• System subdivided in 3 parts:

Scintillating Pad Detector (SPD) and Preshower:

• Two layers of scintillator pads separated by a 1.5cm lead converter

Electromagnetic Calorimeter (ECAL):

- Shashlik types,
- Lead+ scintillator tiles
- 25 X₀
- Hadronic calorimeter (HCAL):
 - Iron + scintillator tiles
 - $-5.6 \lambda_{I}$
- A total of 19k channels readout by Wave Length Shifter fibres connected to PMs or MaPMTs.

Particle ID with the Muon System

Triggers

Level-0:

- fully synchronous custom electronics at 40 MHz
 - 11 MHz of visible interactions reduced to max. 1 MHz
 - select single objects with large $p_T(E_T)$, typically $p_T(\mu) > 1$ GeV/c and $E_T(h,e,\gamma,\pi^0) > 3-4$ GeV

High-level trigger

- Farm of 1500 multi-processor boxes
- Stage 1: add tracking info, impact parameter cuts
- Stage 2: full reconstruction + selections
- Output:
 - $\sim 1 \text{ kHz charm}$, $\sim 1 \text{ kHz B}$, $\sim 1 \text{ kHz others}$

	Typical efficiencies
B decays with μμ	70–90%
Fully hadronic B decays	20-45%
Fully hadronic charm decays	10-20%

Time dependent measurements at LHCb

• The proper time of the signal B decay is measured via:

- the position of the primary and secondary vertexes;
- the momentum of the signal B state from its decay products.

Flavour Tagging

Opposite side:

- e, µ from semileptonic b decays;
- K[±] from b decays chain;
- Inclusive vertex charge.

Same side:

- Effective tagging efficiencies vary between 3% and 9% depending on the final state.
- K^{\pm} from fragmentation accompanying B_s meson.

N.B. Effective tagging efficiencies is >30% at B factories, ~2% at CDF/D0

LHCb results – a selection

- B_s system parameters
- Angle of the unitarity triangle: precise measurements
- FCNC processes

Measurement of Δm_s

New J.Phys. 15 (2013) 053201

B_s mix much faster the B_d mesons! First observed at CDF in 2005: $\Delta m_s = 17.33 + 0.42 + 0.07$ (syst) ps⁻¹

LHCb: Precision measurement

Similar as B \rightarrow J/ ψ K decays, but now measuring one of the smaller unitary triangles.

S. Playfer, 50 years of CP violation, London, 2014

Measuring one of the thinner unitary triangles – angle $\sim 2^{\circ}$ (instead of 21°) \rightarrow small and therefore sensitive to possible New Physics effects

CP violating phase

 $\phi_s = 0.07 \pm 0.09(\text{stat.}) \pm 0.01(\text{syst.})$

In good agreement with SM expectations.

In the same measurement it is also possible to measure the (large) decay width difference in the B_s system.

Decay width difference

$$\Delta \Gamma_{s} = (\Gamma_{L} - \Gamma_{H})$$

= 0.100 ± 0.016(stat.) ± 0.003(syst.)/ps

S. Playfer, 50 years of CP violation, London, 2014

Two vector mesons in the final state (+ a non-resonant KK component): odd and even angular momenta \rightarrow CP odd and even parity possible \rightarrow have to combine CP violation measurement with an angular analysis

The power of a dedicated experiment: comparison of LHCb to the results from general purpose detectors.

New physics search in the decay $\rm B_s \to \mu^+ \mu^-$

Decay, very sensitive to the presence of New Physics (remember the role of $K_L \rightarrow \mu\mu$ in getting an indication of the charm quark)

Standard Model prediction

 $BR_{SM} = (3.2 \pm 0.2) \times 10^{-9}$

Buras et al., JHEP 10 (2010) 009

New physics search in the decay $\rm B_s \to \mu^+ \mu^-$

Challenge: very very rare in SM

Advantage: extremly clear signature, two high transverse momentum muons

Result

$$BR(B_s^0 \to \mu^+ \mu^-) = (2.9^{+1.1}_{-1.0}(stat)^{+0.3}_{-0.1}(syst)) \times 10^{-9}$$

In excellent agreement with SM prediction

Buras et al., JHEP 10 (2010) 009

$$\mathbf{B}^{0} \to \mathbf{K}^{*0} \mu^{+} \mu^{-}$$

- Forward-backward asymmetry in the $\mu\mu$ rest frame $A_{FB}(s)$ is a sensitive probe of new physics
- SM: proceeds through a box diagram

 Sensitivity at 1 fb⁻¹: zero point crossing location to +-0.9 GeV²

LHCb Trigger – Limitations

- Final states with muons 224
- \rightarrow Linear gain
- Hadronic final states
- \rightarrow Yield flattens out
- → Must raise p_T cut to stay within 1 MHz readout limit

LHCb 2012

 To profit of a luminosity of 10³³cm⁻²s⁻¹, information has to be introduced that is more discriminating than E_T.

> Upgrade strategy: 40MHz readout rate Fully software trigger 20kHz output rate

Storage: event size ~60kB

B. Schmidt , 50 years of CP violation, London, 2014

Detector upgrade to 40 MHz R/O

- upgrade ALL sub-systems to 40 MHz Front-End (FE) electronics
- replace complete sub-systems with embedded FE electronics
- adapt sub-systems to increased occupancies due to higher luminosity
- keep excellent performance of sub-systems with 5 times higher

B. Schmidt , 50 years of CP violation, London, 2014

LHCb upgrade - expected precision

Flavor physics at hadron machines -summary

- CDF and D0 at Tevatron: excellent B physics is possible even in the hostile environment of a hadorn collider
- HERA-B: first attempt to do precision physics at a hadron machine
- In the last four years, LHCb has contributed significantly to the progress in flavour physics, a number of very important results, some selected measurements also with ATLAS and CMS
- LHCb is ready for data taking in Run 2
- Preparations for the upgrade of LHCb well underway

Backup slides

Why hadron machines?

Production	$e^+e^- \to \Upsilon(4s) \to B\bar{B}$	$e^+e^- \rightarrow Z^0 \rightarrow b\bar{b}$	$pA \rightarrow b\bar{b}X$	$p\bar{p} \rightarrow b\bar{b}X$	$p\bar{p}(p) \rightarrow b\bar{b}X$ forward
Accelerator	CESR, DORIS	LEP, SLD	HERA p	Tevatron	Tevatron, LHC
Spectrometer	CLEO, ARGUS BaBar, BELLE	ALEPH, DELPHI, L3, OPAL, SLD	HERA-B	$\mathrm{CDF},\mathrm{D0}$	BTeV, LHCb
$\sigma(bar{b})$	$pprox 1 \ { m nb}$	$\approx 6 \text{ nb}$	$\approx 12~{\rm nb}$	$\approx 50 \ \mu \mathrm{b}$	$\approx 100 \ \mu b \ (\approx 500 \ \mu b)$
$\sigma(bar{b}){:}\sigma(had)$	0.26	0.22	10^{-6}	10^{-3}	$2 \cdot 10^{-3} \ (6 \cdot 10^{-3})$
B^0, B^+	yes	yes	yes	yes	yes
$B^0_s, B^+_c, \Lambda^0_b$	no	yes	yes	yes	yes
boost $< \beta \gamma >$	0.06~(0.5)	6	≈ 20	$\approx 2-4$	$\approx 4 - 20$
$b\bar{b}$ production	B's at rest (in c.m.s)	$b \overline{b}$ back-to-back	$b\bar{b}$ not back-to-back	$b\bar{b}$ not back-to-back	$bar{b}$ not back-to-back
multiple events	no	no	yes, 4	yes	yes, 2
trigger	inclusive	inclusive	$\begin{array}{c} \text{lepton pairs} \\ \text{(high } p_t \text{ hadrons)} \end{array}$	leptons only (high p_t hadrons)	displaced vertex

Expected luminosity evolution LHC

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026

LS 2

LHCb

upgrade

LHC Run I pp runs with - 50ns bunch spacing - E_{CM} 7TeV and 8TeV LHCb $\mathcal{L} \sim 4 \times 10^{32}$ /cm²/s LHCb $\int \mathcal{L} \sim 3/\text{fb}$

LS1 LHC splice consolidation

LHC Run II pp runs with - 25ns bunch spacing, - ECM 13 TeV LHCb *L*>4x10³²/cm²/s LHCb $\int L > 5/fb$

LHC Run III HL-LHC prep LHC injector pp runs with upgrade - 25ns b.spacing GPD phase 2 - ECM 14 TeV upgrades $f > 1 \times 10^{33} / \text{cm}^2 / \text{s}$ $LHCb \int L > 15/fb$

LHC Run IV

£=2x10³³/cm²/s $\int L > 23/fb$

LHCb up to 2018 \rightarrow ~ 8 fb⁻¹:

find or rule-out large sources of flavour symmetry breaking at the TeV scale

LSa

LHCb upgrade $\rightarrow \ge 50$ fb⁻¹:

- increase precision on quark flavour physics observables
- aim at experimental sensitivities comparable to theoretical uncertainties

Kick Mixing-induced CPV in $B_s \rightarrow J/\psi\phi$

 $■ B_s → J/ψφ is strange counterpart of B⁰ → J/ψK⁰$ $- φ_s = phase difference between the B_s → J/ψφ$ decay amplitudes without or with oscillation $- φ_s is the equivalent of the phase 2β for B⁰ → J/ψK_s$ $Φ_s is small in SM, hence very sensitive to$ New Physics contributions to B_s mixing: $<math display="block"> φ_s = φ_s^{SM} + φ_s^{NP}$ with $φ_s^{SM} = -2β_s = -2 \arg \left(-\frac{V_{ts}}{V_{cs}}\right)$

$$\frac{V_{tb}}{V_{cb}^{*}} = -0.036 \pm 0.002$$
J. Charles et al.
PRD 84 (2011) 033005

□ Important differences between B_s and B⁰ cases:

- $-\Delta m_s >> \Delta m_d \rightarrow$ need excellent proper time resolution to resolve oscillations
- $-\Delta\Gamma_s >> \Delta\Gamma_d \rightarrow access to \cos\phi_s in addition to \sin\phi_s$
- $-B_s \rightarrow J/\psi$ KK final state is a mixture of CP-even and CP-odd eigenstates, with 4 contributing transversity amplitudes \rightarrow need angular analysis
 - KK in P-wave state: amplitudes $A_{\perp}(t)$, $A_{\parallel}(t)$, $A_{0}(t) \rightarrow$ final state is CP-odd or CP-even
 - KK in S-wave state: amplitude $A_{s}(t) \rightarrow$ final state is CP-odd

Trigger Tracker 1.4 m Ħ 2 Ч <u>0° layer</u> Microstrips silicon detector - Two groups of two layers $(0^{\circ}, +5^{\circ}, -5^{\circ}, 0^{\circ})$ separated Staggered front-end readout hybrids by 30 cm Pitch Silicon sensors Strip pitch 198 µm adaptor Strip length 11, 22 and 33 cm Interconnect cable Radiation $\leq 9 \times 10^{12} \text{ n}_{eq}/\text{cm}^2$ _ Support rails over 10 years Cooled at -5 °C

T Station: inner tracker part

Microstrips silicon detector:

- Same sensors as Trigger Tracker
- Four layers (0°, +5°, -5°, 0°)
- Strip length 11, 22 cm
- Radiation $\leq 9 \times 10^{12} n_{eq}/cm^2$ over 10 years
- Cooled -5 °C

T station: outer tracker part

- Straw tubes:
 - Four double layers (0°,+5°,-5°,0°)
 - Staw length 5 m read on both sides
 - $Ar/CF_4/CO_2$

Performance of Flavour Tagging

Channel	$\varepsilon_{\mathrm{tag}}$ (%)	w~(%)	$\varepsilon_{\mathrm{eff}}$ (%)
$B^0 \rightarrow \pi^+ \pi^-$	41.8 ± 0.7	34.9 ± 1.1	3.8 ± 0.5
${ m B^0} ightarrow { m K^+} \pi^-$	43.2 ± 1.4	33.3 ± 2.1	4.8 ± 1.0
$\mathrm{B^0}\! ightarrow\mathrm{J}\!/\!\psi(\mu\mu)\mathrm{K_S^0}$	45.1 ± 1.3	$36.7 {\pm} 1.9$	$3.2{\pm}0.8$
$\mathrm{B}^{0} \rightarrow \mathrm{J} \psi \left(\mu \mu ight) \mathrm{K}^{*0}$	41.9 ± 0.5	$34.3 {\pm} 0.7$	4.1 ± 0.3
${ m B_s^0} ightarrow { m K^+K^-}$	49.8 ± 0.5	$33.0{\pm}0.8$	5.8 ± 0.5
${ m B_s^0} ightarrow \pi^+ { m K}^-$	49.5 ± 1.8	30.4 ± 2.6	7.6 ± 1.7
$B_s^0 \rightarrow D_s^- \pi^+$	54.6 ± 1.2	$30.0{\pm}1.6$	8.7 ± 1.2
${ m B}^0_{ m s} ightarrow { m D}^{\mp}_{ m s} { m K}^{\pm}$	54.2 ± 0.6	$33.4 {\pm} 0.8$	6.0 ± 0.5
$B_{s}^{0} \rightarrow J \psi (\mu \mu) \phi$	50.4 ± 0.3	33.4 ± 0.4	5.5 ± 0.3

- Effective tagging efficiencies vary between 3 and 9% depending on the final state.
- The wrong tag fraction is measured using control channels with similar topology, e.g.

 $B_d \rightarrow J/\psi K^{*0}$ for $B_d \rightarrow J/\psi K_S$

N.B. Effective tagging efficiencies is >30% at B factories, ~2% at CDF/D0

HERA-B Summary 2

- First LHC like experiment before the LHC \rightarrow messages for the LHC experiments
- -do not use micro-strip gas chambers (MSGC)
- -large area trackers are not easy
- -trigger processors can get saturated by high occupancy events which are not necessarily interesting
- -RICH counters are more robust than anticipated
- -retractable SVD works reliably