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1. Introduction

Our understanding of physics in general and particle physics in particular has been mainly put forward by
the discovery of symmetries. It is remarkable, that most of the symmetries discovered have, however,
finally turned out to be only “almost-symmetries”, i.e. to be more or less broken.

The only unbroken symmetries so far discovered are the U(1) charge-phase symmetry and the SU(3)
colour symmetry. The consequences are, that the electric and colour charges are exactly conserved in
all observed reactions, and that the position in SU(3)-space cannot be determined, e.g. a “red” and a
“blue” quark cannot be distinguished.

Each of the symmetries between leptons and quarks of different flavour is broken by the different masses
and electro-weak charges of these particles, and is best approximated in strong interactions as isospin
symmetry between the u and d quark due to their almost identical constituent mass.

Although physics laws are strictly symmetric under translation or rotation, space-time translational
and rotational symmetry is broken through the solutions: The fact that matter is not distributed
homogeneously throughout the universe introduces a locally asymmetric structure of space-time,
or asymmetric boundary conditions to any microscopic system. The spatial symmetries are best
approximated on a macroscopic scale—the universe—or for microscopic systems isolated from other
matter by large distances.

Mirror symmetry (parity P) is broken in a more fundamental sense by weak interaction, which makes a
maximal distinction between fermions of left and right chirality. First ideas of this unexpected behaviour
emerged as a solution of the “@ 7 puzzle”, the fact that the neutral kaon decays both to P = +1 and
P = —1 eigenstates [1], and a direct observation as left-right-asymmetry in weak beta decays followed
soon [2]. It is most pronounced in the massless neutrinos, which are produced in weak interactions
only with lefthanded helicity, or righthanded in the case of anti-neutrinos, thus violating the charge-
conjugation symmetry (C) at the same time.

The product of both discrete symmetries, CP, 1s almost intact, and seems to be conserved even in weak
interaction processes. A small violation has first been observed in 1964 [3] in K° decays, which are
up to now the only system which does not respect CP symmetry completely. The explanation of this
violation in the Standard Model will be briefly discussed in the next chapter. This is not the only possible
description, but the one with no additional assumptions. At the same time, the Standard Model predicts
CP violating effects in the decay of beauty mesons (B, By, BT), which should be even large in some
rare decay channels.



2. Particle Anti-Particle Oscillations and CP
Violation

Mesons are neither particles nor anti-particles in a strict sense, since they are composed of a quark and
an anti-quark. This implies the existence of mesons with vacuum quantum numbers (e.g. fo). More
important 1s the existence of pairs of charge-conjugate mesons, which can be transformed into each other
via flavour changing weak interaction transitions. These are K/K" (5d/sd), D°/D° (cu/eu), B®/B°
(bd/bd), and B,/B; (bs/bs).

2.1 The Unitary CKM Matrix

The charged current weak interactions responsible for flavour changes are described by the couplings of
the W boson to the current

Ve 1— s e
cec —
o =\ Vu Lo+ >
Vr T r,g,b

1— s
2

Yu V.|s (2.1)

O &I

with a non-trivial transformation matrix V in the quark sector, the Cabibbo-Kobayashi—-Maskawa
(CKM) Matrix [4,5]:

Vud Vus Vub
V=1V Ve Ve
Vie Vis Vi

The quark flavours in (2.1) are defined as the mass eigenstates. A completely equivalent picture is to
use the states (d',s',b") with V = 1, and define a non-diagonal mass matrix. Since mass generation
i1s accomplished in the Standard Model via couplings to the Higgs field [6], this moves the question of
the origin of the CKM matrix elements into the realm of mass generation, which belongs still to the
more “mysterious” parts [7] of the Standard Model. The exploration of the Higgs sector is the main
motivation for the LHC storage ring, which is built at CERN and will start operation around 2005 [8].
The Higgs-quark couplings alone involve 10 independent parameters of the Standard Model, the quark
masses and the parameters of the CKM matrix, which are not related within the theory.

Local gauge invariance and baryon number conservation requires the CKM matrix to be unitary. If there
were more than three quark families, this would not hold for the 3 x 3 submatrix, but this possibility is
unlikely, given the limit on neutrino flavours from LEP experiments, who find n, = 2.9914+0.016 [9] for
neutrinos with mass much below the Z° mass. Thus, if a fourth generation exists, it must incorporate a
massive neutrino which is more than a factor 1000 heavier than the tau neutrino, even if we assume the
experimental upper limit for the latter.

From the 9 real parameters of a general unitary matrix, 5 can be absorbed in 1 global phase, 2 relative
phases between u,c,t and 2 relative phases between d, s,b which are all subject to convention and in
principle unobservable. If two quarks within one of these two groups were degenerate in mass, even the
sixth phase could be removed by redefining the basis in their two-dimensional subspace.

Rephasing may be accomplished by applying a phase factor to every row and column:
Vig — ei(%—m)vjk (2.2)

Note that j = u,¢,t, k = d, s, b, and the six numbers ¢, ¢, ¢+, g, @5, ¢p represent only five independent
phases in the CKM matrix, since different sets of {¢;, ¢x} yield the same result. Any product where each
row and column enters once as Vj; and once via a complex conjugate Vi like V;;V, Vi Vk*j is Invariant
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under the transformation (2.2). This implies that observable phases must always correspond to similar
products of CKM matrix elements with equal numbers of V' and V* factors and appropriate combination
of indices.

Removing unphysical phases, the CKM matrix is described by 4 real parameters, where only one is a
phase parameter, while the other three are rotation angles in flavour space. The standard parametrization
[9] (first proposed in [10], notation follows [11]) uses a choice of phases, that leave V4 and V;; real:

1 0 0 C13 0 8136_i613 C12 s19 0
V = 0 Co23 593 0 1 0 —819 C19 0
0 —8923 €23 —8136i613 0 C13 0 0 1
€12C13 S12€13 51367100
= | —siaca3—ci12513523€701  claca3—512513523€1018 €13523 (2.3)
512523—C12513C23€6'01%  —C12823— 512513023601 €13C23

with ¢;; = cos8;, si; =sinb;;, and s;; > 0, ¢;; > 0 (0 < 6;; < 7/2).

A convenient substitution® is s19 = A, sa3 = AXZ, s138indis = AX3ny, and s;zcosdis = AA3p, which
reflects the apparent hierarchy in the size of mixing angles via orders of a parameter A. This leads to

1 0 0
V=10 1-A2)\ AN?
0 —AN? V1 — A2\
V1= AZX5(p2 +n2) 0 AN (p — in) V1= )2 A 0
0 1 0 . - VI=AZ 0
—AN(p + i) 0 /1—A2X5(p2 +9?) 0 0 1

-5 - % A AA?’(pin))

- —/\—Az/\5(p+in—%2) 1= 20— (L4 4 AN?
AN = (p+in)(1—5)] —AN = AN (p+in—§) 1-34°N

+0(\%) (2.4)

and agrees to O(A3) with the Wolfenstein approximation [12]:

1-% A AN (p — i+ En)?)
V= ~A — A AT AN (1 4 in)2) (2.5)
AX3(1 — p —in) —AN? 1
-5 A AN (p—in)
~ ~A - AN (2.6)
AN (1 —p—in) —AN? 1

Equation (2.4) is more convenient [13] in higher orders than the original proposal of Wolfenstein, or an
exact parametrization [14] using the Wolfenstein parameters.

Assuming a unitary 3 X 3 matrix, from experimental information these parameters are [9]

A =0.22054 0.0018
A=0.80£0.08

VP2 + 12 = 0.36 4 0.08

while the phase and therefore each individual value of p and 7 is still very uncertain. Inserting these
parameters, equation (2.6) shows clearly the dominance of the diagonal matrix elements, indication
that transitions between quarks of different families are suppressed. It is the unitarity constraint which

L An equivalent choice is A = s12¢13 which leads to the same parametrization to O()\E’).
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makes Vi, = 0.999240.0002 the best known matrix element. Experimental constraints on the magnitude
(90%CL limits [9]) are:

0.9745...0.9757  0.219...0.224 0.002...0.005
0.218...0.224 0.9736...0.9750 0.036...0.046
0.004...0.014 0.034...0.046  0.9989...0.9993

With already one more family of quarks, we have five additional real parameters, of which two are new
non-trivial phases. Therefore, the measurement of all CKM matrix elements and their relative phases is
an important test of the Standard Model.

2.1.1 Unitarity Triangles

If nature provides us with just these three families of fermions, unitarity requires the following 12
conditions to be fulfilled:

|Vud|2 + |Vus|2 + |Vub|2 =1 (27&)
Ve + [Ves|? + [Vao|* = (2.7b)
Veal” + [Vis” + Vel = (2.7¢)
Vaal® + [Veal® + [Vaal* = (2.7d)
|Vus|2+ |Vcs|2 + |Vts|2 = (276)
Vaol” + [Ves|* + [Va]* =1 (2.71)
ViaVea + VisVes + VipVer = 0 (2.7¢g)
ViaVia + VaiVie + Vi Vi, = 0 (2.7h)
ViV + VAV, + ViV =0 (.70
VuaVas + VeaVes + VgV, =0 (2.7))
VuaVap + VeaVep + ViaVip = 0 (2.7k)

An arbitrary phase for the whole matrix cancels in VYV. A phase common to all elements in a line
(column), corresponding to arbitrary phases between w,c,t (d,s,b) will vanish in eqns. 2.7j-1 (2.7g-)
and become a common factor in eqns. 2.7g-1 (2.7j-1).

Dividing (2.7k) by AN ~ —V,_, V7 yields the unitarity triangle? as shown in figure 2.1a. In the
Wolfenstein approximation, it corresponds to

(p+in) =14+ (1 —p—1in) =0 (2.8)

A second one from (2.7h) is shown in figure 2.1b. Dividing by AX® ~ —V2XV,, and using the
approximation V4 & 1 gives the same triangle (2.8). A closer look, however, reveals slightly different
lengths and angles to O(A?).

The angles® of the unitarity triangles (2.7k and h) in figure 2.1 are defined by

eioc — thVubVJthZ
|ViaVioViaVis|

o — _ ViaVaVeaVew  ip _ _ ViaYus Ve Vaa
|ViaVeoVeaViol |ViaVis Vis Vudl

e = _ Vu*bV;chqud ~ ei'y' - _ VJtht’Vuthb
|Vubvcdvcbvud| |Vubvtsvusvtb|

2 this geometric interpretation has been pointed out by Bjorken ~ 1986; its first documentation in printed form

is in ref. 15 and more general in ref. 16.

3 in the complex plane, the angle o — 3 between two vectors A = ae'® and B = be'? is defined by

¢'(®=F) = AB*/|AB| and sin(a — 8) = Im(AB*)/|AB| = (AB* — A* B)/(2i|AB).
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VoaVan /AN = p + in VidVis /AN = 1 — p —in

V Vi ]AN & —

Vi Vi /AN = p + i V*V, /AN & 1 — p —in

Vu*s Vts/‘A/\3 ~ -

Fig. 2.1 Unitarity triangles in the complex plane, corresponding to a:(2.7k) and b:(2.7h). Up to corrections

of O()\4) the top points are (p,n) in (b), but ([1— —]p7 [1— >‘2] ) in (a), and the rightmost points
are (1,0) in (a), but (1 — )\2[% — p],)\zn) in (b). The angles are related via v —v' = 8’ — 8 &~ \n

These are rephasing invariant expressions, hence the angles resemble physical quantities independent of

the CKM parametrization. It was first emphasized by Jarlskog [17], that CP violation can be described
via a rephasing invariant quantity

J =2ImV,;V, Vi Vi; = A%
which is up to a sign independent of i, 5, k,[, provided ¢ # k, j Z .

I =Im(VuaVes Vi, Vi) = Im(VuaVes Vi Vi)
= —Im(Vuchqu*dV*) = Im(VuchbVJbV*)
= =Im(VubVedViiaVes) = = Im(Vuo Ves Vi, Vap) = = Im(VaeVeaViiaVin) = — Im(Vue Vas Vi, Via)
= Tn(VeaViViVi) = Tn(VeaVa Vi Vi) = —Tm(VecViaVaaVis) = Tm(Ves Vi V3 Vi)
= —Im(Vcthchthb) = —Im(VeoVis Vi Vip)

= Im(VuaVes Vi Vi) = Im(VaaVes Vi Via)
= = Im(Vus ViaViaVis) = Tm(Vus Vie Vi Vi)
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These terms are all products of the type Zm AB* = |A||B| Ime'(er8A—ar8B) — | 4|| B| sin(arg A — arg B),
which is twice the area of a triangle with sides A and B, and A and B are sides of a unitarity triangle.
The areas of all six unitarity triangles are equal and have the value J/2. As will be shown below, CP
violating observables are typically proportional to the sine of the angles in unitarity triangles, like

Im(Vi VeV Vaa) J
VaoVeaVeoVual  [VusVeaVes Vadl

siny =Zme' =

and vanish for J = 0, i1.e. if all triangles collapse into lines. If the non-trivial phase is 0 or m, the
parameter 7 is 0 and hence J = 0. This would also be the case if two quarks of a given charge had the
same mass, since then a rotation between these two flavours could be chosen that removes the phase
factors, as can be seen in (2.3) where 613 = 0 would remove all terms with the phase d13.

The area of all triangles defined by (2.7g-1) is J/2. This corresponds to an area & 1/2 for the ones in
figure 2.1, since their sides have been reduced by the factor AX3. If J = 0, also the area of the unitarity
triangles would shrink to zero.

The angles of all six triangles (2.7g-1) can be determined using the standard parametrization (2.3) in a
rewritten form B
|Vaal Vs | |Vip|e ™7
Vo= | —[Veale!® [Vesle™e [V (2.9)
Veale™® —[Visle'®= Vi

with ¥ = 6,3. Here, absolute values and phases are given as separate factors. The angles ¢, ~ nA2,
¢a ~ nAZXY, and ¢g &= nAZXE are all positive and very small and their subscript indicates the order in
A of their magnitude. The unitarity triangles in figure 2.1 have angles

523-1-4154
B =B+ oo
Y=9— ¢4
’Y/::Y—sz
a=r—f-7

In the Wolfenstein approximation, the unitarity relations read (all terms given to order A? or, if this is
still 0, [in brackets] to leading order)

A+ I A-IN + AN (p+in)] =0 (2.7¢")

AN (1 —p—in) — AN + AN (p+in) =0 (2.7h")
[AN (1 —p—in)] — AN + AN =0 (2.71)
— I A+ N - AN (1 —p—in)] =0 (2.77)

AN (p+in) — AN 4+ AN(1—p—in) =0 (2.7Kk")
[ANY(p +in)] + AN — AN =0 (2.71)

and define three pairs of unitarity triangles, 6 in total:

e (2.7h') and (2.7k’) are the ones shown in figure 2.1 with three sides of similar length, all of order
AMN3. This is “the unitarity triangle”. The other ones are quite flat, and it will require very high
precision to prove experimentally that they are not degenerate to a line.

e (2.7) and (2.71') have two sides of length AA? and one much shorter of order AA*. This limits the
small angles, which are ¢o + ¢¢ and ¢2 — ¢¢, respectively. They are close to the differences of angles
in the large triangles vy — v = 3/ — 8 = ¢2 — da.

e (2.7¢') and (2.7j') have two sides of length A and one very much shorter of order A2\ with a small
angle ¢4 — ¢s and ¢4 + ¢g, respectively. Both are of order \*.
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Tiny differences between the two standard unitarity triangles are ((\?) corrections,

AN} (1 —p—in) + — AN + AN (p + i) =0 (2.7h")
+AN (p+in— )+ 0(NT)  +AN(E —p—in) + 0O\ +O(A7)
AN} (p +in) + — AN + AN (1 — p —in) =0 (2.7k")
—3AN (p+in) + 0(A7) + 0\ + AN (p + in) + O(XT)

The angles in these two triangles can be estimated from experimental constraints on a 3 x 3 unitary
CKM matrix, leading to 95%CL limits [18]

25° < a < 125°
11° < B < 35°
40° < 5 < 145°

All phase angles are only weakly constrained by these limits, and one of the aims of experiments designed
to observe CP violation in B meson decays is a first measurement, and ultimately a precise determination
of their values. However, deviations from or extensions to the Standard Model may imply that the two
triangles are dissimilar, or even that they are no (closed) triangles at all. Therefore, it is important to
distinguish measurements of different parameters, even if they are expected to have identical or close
values within the three family Standard Model.

2.1.2 Phases and Observables

The fact that phases of quark fields are unobservable numbers has been used to show that some phases in
the CKM matrix are not observables either, and there remains some arbitrariness in the parametrization
for this matrix. The freedom to choose quark phases may be extended to antiquarks, with six more
phases ¢y, bc, b1, b, G5, bp. With the new quark states

0 =g, =g j=uetd s b
also the phase induced by the CP operation is changed. The transition
CPlgj) = e¥orilgy) = CPlgp) = '%erslgp)

requires

Pepj = dcpj +¢5 — 65

This equation leaves (b’cpj still completely undefined, since all three phases on the right-hand side are not
observable, and therefore subject to arbitrary changes. It becomes meaningful, however, if it is applied
to observables, like CP eigenvalues. Two CP eigenstates constructed from a meson and anti-meson state
with eigenvalues +1 are related accordingly:

050k} €'09P |qpgy) = 7O Tgigh)  eferir gl )

The new states |¢;q,) £ ¢'Pop i |g;.73) have the same eigenvalues, and differ by an overall unobservable
phase from the old ones.

The CP operation on a meson, e.g. the pseudoscalar B® meson |bd), is
CP |B®) = ¢i%crB|BY) (2.10)

where the phase factor ei?cpe = (BY| CP|B) depends on the parity of the bound-state wave function,
and the chosen quark and antiquark phase convention. It is thus an unobservable, arbitrary phase.
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Quark phase changes can in principle be compensated by phase changes of the CKM matrix elements
according to (2.2), leaving terms like

(giVinlaw)
invariant. However, this is not a physical requirement, and in fact the CP transformed
€k (g Vil k) (2.11)

has a phase which changes with the quark phases. Since none of the two terms corresponds to an
observable, the actual choice of phases in the CKM matrix parametrization can be made independent
of the choice of quark phases.

The appearance of an additional phase factor in (2.11) can be avoided by the restriction (/;j = —¢;
for quark phase changes, and an appropriate phase convention which makes terms related by a CPT
transformation relatively real. If a choice of phases is possible where all CKM matrix elements can be
made real, also charged current weak interactions would not violate CP symmetry.

Phase conventions will also enter into relations among decay amplitudes. An amplitude for a weak decay
B% — X via a single well defined process can be written as

A = (X|H|B%) = (X|OV|B) (2.12)

where V 18 a product of the appropriate CKM matrix elements and O is an operator describing the rest
of the weak and possibly also subsequent strong interaction processes involved in the transition. Since
strong interaction and also weak interaction—except for nontrivial phases in V—are CP invariant, the
charge conjugate mirror process B — X has an amplitude

A = (X|H|B%) = ¢crx (X|CP OV CPT e~%crs | BO)
— ei¢cpx—¢CPB)<X|OV*|BO>

_ ilberx—bcrn) V4 (2.13)
V
where also -
V_ — e—Zi argV

is just a phase. Especially, if X is a CP eigenstate with eigenvalue nx = +£1,

A = pxei(Popst2argV) 4 (2.14)

relates the two amplitudes, and the ratio A/A flips sign with the CP eigenvalue.

All physical observables must be independent of the choice of phases. This is the case if only absolute
values of amplitudes are involved, but for interference terms the phase convention cancels often in a more
subtle way. Some examples will be shown in the following chapters. On the other hand, expressions
where the arbitrary phases are still present cannot be observables.
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2.2 Oscillation Phenomenology

An unstable meson can be described by the non-relativistic Schrodinger equation i9;¢p = (m — %F)ﬂ),
with the solution ' .
|¥) = [o)e™ ™ e 5 (2.15)

which reproduces the exponential law of radioactive decay, since |¢g[¥)]? = e~1%.

The four meson pairs K°/K°, D°/D° BY/B° and B,/B, can be described as decaying two-component
quantum states obeying the Schrodinger equation

iy = Hy

with a general Hamiltonian

(2.16)

H—M_ %I‘: (mll_%rll miz — %Flz)

» i T i
miy — 3l ™Moy — 5l

where M and T' are hermitian, but H is not [19]. If the B%/BY system is taken as a representative to
illustrate the behaviour of oscillating meson pairs, the indices 1 and 2 correspond to base vectors | BY)
and |B°), respectively. These states are assumed to be normalized, i.e. (B°|B%) = (B°|B%) = 1.

CPT invariance requires my; = mag := m and I'y; = I'sp := '} reducing the number of real parameters
of the Hamiltonian to six.

H= (;f fgz) = " 5F e :?F” (2.17)
21 m12 — grlz m — gr
CPT invariance is one of the indispensable premises of any relativistic field theory within or beyond the

Standard Model [20]. The generalized phenomenology including CPT violation will therefore not be
considered here, but can be found in textbooks [21].

The parametrization of the off diagonal elements is convenient for calculation, but 1t is still the most
general case, since 4 real parameters suffice to describe any Hio and Hoy:

mis = $(Hio + Hp)
Remis = %(Re His+ Re Ha)
Im mis = %(Im H12 —Im H21)

Lo = i(H — H3,)
Relys =Im His+ Im Ho
Iml'is = Re His — Re Hoy
Re His = Remqs + %Imflz
Re Hoy = Remqs — %Imflz
Im Hip = Immis — + Re s
Im Hoy =Immys — %Re I'is

Solving the eigenvalue problem det(H — a - 1) = (H — a)? — H12H21 = 0, one obtains two eigenstates
with eigenvalues a = H £ +/H12Ho1, explicitly

aj =my — %FL =m — %F — \/(mlz — %F12) (m”fz — %FTZ) (218)

ag = myg — %FH =m— %F + \/(mlz — %Flz) (m”l‘2 — %Ffz)
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where L, H stands for “light” and “heavy”. It is immediately seen that m and I' are the average mass
%(mH + myg) and width %(FH +T'z). The differences are

Am  mg—m i i
T = % = Re \/(m12 — §F12) (mTZ —_ §F12) (219)

AT Ty -Ty

7'ﬁ7’4m¢wr?@@%ﬂ@

Aa ag—a i N i s . «
5 = AT 3 L \/(mu - §F12) (m12 - Erlz) = \/|mlz|2 - %|F12|2 — i Re(mi2I'],)

The connection between mass and lifetime (width) differences and the off-diagonal elements in the mass
matrix are showing up in these equations, especially Am = 0 if mys = 0 and AT’ = 0 if 'y = 0.
Squaring the last line leads to the useful relation

Am - AT = 4Re(my2T7,) (2.20)

which relates the sign of Am and AT with the off-diagonal elements mi; and T'15. It is convenient to
define the dimensionless parameters

_Am AT Tyg-Tp rm—1m

X s Yy=——= =
T 2T Iy +T1; L + T

(2.21)

where x is a non-negative real number, and y may only assume values between —1 and 1. It is an
asymmetry parameter in the widths or, equivalently, in the lifetimes 7, 7g7.

The eigenvectors |Br, g) = (fq

Ny 1= q_ C__ [Hn 12 2712 (2.22)
p  l+e Hyy Am — zAT

6_1—77m_vH12+\/H21_ Hiy— Hoy
T+nm  VHis—+vHai  His+Hoi —2v/HioHo

Normalization requires |p|? + |¢|? =1, i.e.

) are found by inserting (2.18) into H|By, ) = ar m|Br #), giving the

ratio

and

1+¢ 1
p: f—
V20 +Tel?) 1 [l
1—¢ NIm

TR Vit P

and single particle eigenstates are described by one complex parameter n,,. This parameter? is defined
only up to an arbitrary phase, and only |n,,| is a measurable quantity. The value of the phase depends
on conventions, one of them is the definition of the phase ¢cpp = arg(B°| CP |B"). This makes also €
(sometimes also denoted €, e.g. in [23]) an arbitrary quantity. The standard choice of the CKM matrix
(2.3) and ¢cpx = 0 make |¢| small in the K°/K" system, but a consistent convention ¢cpp = 0 leaves
it at @(0.1...1) in the BY/B° system. A different definition of ¢ for the kaon system given in [22] is
independent of arbitrary phases. In general, convention independent parameters can be defined if decays
are involved. They can usually be expressed via the unitarity angles (see fig. 2.1) and will be given for
the B and K systems at the appropriate places below.

4 Nm O —m 1s sometimes called « in the literature, e. g. in [22,23].
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The original Hamiltonian can be rewritten using the parameter 7, as

] Am— £ AT ; T 1 .
o Mo TTm T o omoEt ) (2.23)
— D Am—;AF m— T —gnm (x — iy) m— 5T

and the mass and flavour eigenstates are related by the equations

|BL) = p|B°Y + q|B%)
|Br) = p|B") — ¢|B)
1BY) = %ufm + |B))
BY) = %<|BL> — |Bu))

The eigenstates for non-hermitian H, i.e. I'y» # 0, are not orthogonal:

_1—|nm|*  2Ree
L T

§ = (Br|B) = |p|* - lq|” (2.24)

In contrast to € the real number ¢ is an observable. The deviation of |5, | from one (called d, in [22])

1S
1—9
|77m|—1—\/1_|_—6—1~—5

¥(0)) = brr|Brr) +bp|Br) = a B°) + a| B°)

For an arbitrary initial state

where the amplitudes are related via
1/a  a a+a/nm
= (28) < 220
’ 2\p ¢ 2p
a=p(br+bm), a=q(br—"bn)

its time evolution may be described using a scaled time variable
T:=1t (2.25)

where I' 1s the average width of the eigenstates By and Bp. These states have a simple exponential
development with time. Their masses mpg; = m + a:g and widths 'y ; = I'(1 £ y) can be expressed
with the dimensionless parameters  and y defined in (2.21).

|(t)) = bye™ M By ) 4 ppemi e iTE /2 By )
i(e—iy)T/2 —i(e—iy)T/2 _
+26 (a|B%) + a|B%))

i(z—iy)T/2 _ —i(z—iy)T/2 / = —
26 <L|BO> + anm|BO>) (2.26a)
Im

—imt— €
— —imt T/2

4 emimt=T/2 €

= ¢~imt=T/2 [(a|BO> + a| B%)) cos(x — iy)% +i (nimlB% + anm|§0>) sin(w — iy)g] (2.26b)

Starting with pure B mesons at t = 0 corresponds to @ = 0 and

[¥(t)y = ae”imt=T/2 [cos(a: - iy)Z|BO> + i sin(z — zy)%

5 |§0>] (2.27)
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Starting with pure B mesons at ¢ = 0 is described by replacing ., <+ 1/1,,. This case corresponds to
a =0 and

[ (t)y = ae= ™ =T/2 | cos(e — iy)§|§0> + A sin(z — iy)§|BO> (2.28)

Tim

The numbers of B® and BY at time T for Ny pure B” mesons at T = 0 are®

-T
Npo(t) = No[(B°|4(t,a = 0,a= 1)) = No%(cosh yT + cos 2T

-7
Ngo(t) = No[{B [¥(t,a = 0,a = 1))|* = No || eT(cosh yT —cos zT) (2.29)

These numbers, however, can not be observed. What is accessible by experiment is only the rate of
decays to flavour specific final states X and X at a given time 7. These decay modes are often called
tagging modes, since they serve as a “tag” to indicate the flavour of the mother particle at decay time.
The rates can be obtained from (2.27) by multiplying with (X|H or (X |H, respectively, to obtain the
amplitudes. They are converted into rates

NBU_>X(t) = No/ dPS (X |H|¢(t,a = 0)))* = %Noe_TFX(cosh yT + coszT)
]\'750_”?(15) = No/ dPS (X |H[¥(t,a = 0))]* = %]\70|nm|2 e~ TTx (cosh yT — cos 2T (2.30)

where

Tx = [ apS|X[EIBY)P = [ dPs (e E)P

is the partial width for a non-oscillating meson. It agrees in value for the two CP conjugate processes if
the amplitudes differ only by phases. Integrating over all times the total number of decays are

N —/OOJ'V (t)dt—NFX L L1
BV X — o BO X — 0 T 2(1_y2) 2(1—|—l‘2)

BoX o BeoX T 20 —y?)  2(1+ 2?)

The corresponding numbers for initial B” mesons are obtained with the replacement 5, — 1/n,,. If we
ignore CP violating effects in the oscillation, i.e. for |9,| = 1, we can define a meaningful branching
fraction as

1 [ . . I'x 1I'x  1TI'x
B(B° X)=— Npo t Ngo 7)]dt= ——= "+ -——
(8" X) = 5 [ Waox ()4 N g dt = e = 5K 4 52

which agrees with B(B? — X) defined accordingly for the same number Ny of BY mesons at ¢ = 0.

5 for example, cosu = %(ei“ + e_i“)7 (cosu)* = %(ei“* + e_i“*)7 therefore

(6i(u+u*) +6i(u—u*) +6i(u*_u) +6—i(u+u*)) = %(cosZReu—l—coshZIm u)

N

|cosul? =
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2.2.1 Mechanical Analogon

Equation (2.17) characterizes also the mechanical system of two coupled pendula of the same length:
Without coupling, they are both described by an oscillation frequency m and a damping constant I'.
They correspond to the meson X° and its antiparticle X°.

If they are coupled by a spring whose elasticity is proportional to a non-negative real number m;», and
a non-negative real damping constant I';2, the solutions correspond to a “long-lived” (= low damping),
“light” (= low frequency) eigenstate where the pendula oscillate strictly in phase, and a “short-lived” (=
high damping), “heavy” (= high frequency) eigenstate where one pendulum oscillates as a mirror image
of the other, i.e. with phase difference 180°. The differences in frequency and damping are Am = 2ms
and AT = 2I'y4, respectively.

When one pendulum is excited, it will slowly transfer its energy to the other and back. This beating
corresponds to the oscillation between a meson X° and its antiparticle X°. The beat frequency is Am.
While the oscillating part e=*™" in (2.15) is an unobservable phase factor, in meson anti-meson oscillation

a mass difference can actually be observed as a frequency!

Due to the restriction of mj2 and T';2 to non-negative real values, this system has always AmAT > 0 (in
contrast to the oscillating mesons), and can also not simulate CP violation since there are no non-trivial
phases.

2.2.2 Standard Model Predictions

The Hamiltonian (2.17) can be obtained using
H=H,+H,

where Hy is the strong and electromagnetic Hamiltonian

[ Ey O
m=(0 5)
which has the stable flavour eigenstates B® and B”, and H,, is the weak interaction perturbation. The
Wigner-Weisskopf approximation for small H,, leads to [24]

1

= Hoje+ Gl K + 30 P [ APS Gl L)X 18 |
X
where the sum runs over all multiparticle states X which are eigenstates of Hy, and P denotes the
principal value of the integral. The mass (hermitian) and decay (anti-hermitian) parts defined by (2.16)
are
(J [ Ho | X)(X|Hy [k)
FEo— Ex

myr = 5(Hjk + Hij) = Eo 0 + (j|Hu k) + ZP/ dPs
X

and

Ujw = i(Hpe — Hyy) = 271'2/ dPS (j|H,, | XWX |H,, k) §(Ey — Ex)
X

The off-diagonal elements H12 21 have non-zero contributions in the sum from states X which can be
reached in weak decays of both B® and BY. In contrast to the neutral kaon system, for B°/B° these are
only a small fraction of all B decays, and they contribute with alternating signs. Therefore Hi5 2 are
dominated by the leading term (BY|H,,|B") which corresponds to the box diagrams

b W d b u,c,t d

u, e, t + :W "W

)
o
)
<
)
O
o~
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They give approximately [25]

GF

— 0 RO\ ~ —
Hyy = (B |H|B >~m12——12ﬂ_2

e~ PerE VRV miy mp [f5 Bg] - [S(m7 /miy) -naen]  (2.32)
The CP phase is introduced during the evaluation of the hadronic part of the matrix element. The

Inami—Lim function
1 9 3 322 Inzx

4 4(1—2) 20—2) 2(1—zx)3

(2.33)

from the loop [26] is to lowest order a factor m?/m#,. An evaluation of the product S(m?/m,) and
nqcp within a consistent renormalization scheme yields S & 2.3, nqcp ~ 0.55 [27].

The hadronic part of the matrix element is approximated by

(B[, " |B% = S (B°|J,|X) (X|J*|B°) = Bg - (B|J,,|0) (0| B°) = By fpup” (2.34)
X

where fp 1s the B decay constant, and Bp accounts for the corrections to the vacuum insertion
approximation. A big uncertainty is the product f3 Bg, where the most reliable calculations now
come from lattice gauge theory [28] with values around fp+/Bp = (200 £ 40) MeV.

In this approximation, we have for the B system
Am = 2|m12|

which can be used to determine |V;4| (since Vi, = 1) from experimental results on B°/B° mixing. The
eigenstates are determined by

27,2 .
N = — miy — elbcre Vtzz Vtzd — (dcps—26) (2.35)
|12 Via Vil
with —5 = arg V;}V, ;- This phase depends on the CKM parametrization and is—Ilike the CP phase—not
an observable. The arbitrariness cancels only in physical observables, which include decay amplitudes
with further CKM elements and a CP phase. The corresponding

Sin arg 1,
1+ cosarg nm,

is purely imaginary, i.e. Ree = 0 and therefore § = 0. Within the same framework, for the B,/B,
system
Nms = ei(¢CPBS+2¢2) (2.36)

It must be emphasized, however, that there exist common final states for all four meson pairs, and
I'12 never vanishes completely, leaving always a small 4, and also a small AT'. Within the Standard
Model 'y can be approximated by the absorptive part of the box diagram, corresponding to a quark
representation of the final states. This is a poor approximation to light hadronic final states which are
dominating in the K/K system, and may still change the prediction for B/B considerably. The box
calculation yields [25]

3T m? 8SmZV, V> mt
s~ —mys - Lol oS ed g (= (2.37)
5t )y |1+ 3w Vv + O Gp)

and AT and Am have opposite signs. The ratio can be estimated using (2.20) to be

Al 2y 37rmg 1

— = ~ ~—— 2.38
Am x 2 m? 250 ( )
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This ratio applies to both the BY and B, systems.
To leading order in T'13/m15 equation (2.22) yields

F12 2 m2 va*d
| — 1= -1 Tm — =~ < Im —<b¢ (2.39)
" U mu o S(m/miyy ) mi, TV VY
from (2.37). This leads to a rough estimate of the convention-independent number
2 Ve || VL i
(5%1—|7}m|%—2ﬂ'm6| cb|| cd| . Slnﬁ (2.40)

———— Sln ~ —
m? |Vip||Vaal 2000

with 8] <« 1 where 2 is the CKM unitarity angle in figure 2.1a. Since this result is based on a leading
order quark diagram, the number should be taken only as an order of magnitude. In particular, at this
level of precision it can not be used to measure 3.

2.2.3 Behaviour of the Four Neutral Meson Anti-Meson Systems

All four meson pairs K°/K°, D°/D° BY/B° and B,/B, show a different oscillation behaviour, since
they have all different relations of I', AI', and Am. The same symbols will be used for all four
systems. Only when two specific systems shall be compared, their parameters will be distinguished
by the subscripts K, D, d, and s, respectively. The dimensionless parameters  and y give the ratios
of time constants involved: 7 = 1/T" is the harmonic average of the lifetimes, tos. = 27/Am = 277 /2 is
the period of the oscillation, and ) = 2/AT = 7/y is the lifetime of the oscillation amplitude, i.e. the
damping time constant of a relaxation process. Numerical values are summarized in table 2.1.

Table 2.1 Parameters of the four neutral oscillating meson pairs [9].

description K9/ KY DY/ DY BY/BY B,/ B,

7 [ps] 89.3+£0.1; 51700 £ 400 | 0.415+.004 1.5440.03 1.5240.07
L [s7!] 5.61-10° 2.4-10'2 (6.4140.16) - 101 | (6.240.4) - 10!
y = AT /2T —0.9966 ly] < 0.08 ly| < 0.01 —0.05...—0.15*
Am [s71] (5.30 £ 0.02) - 10° <2-10t! (4.6540.19) - 101! > 7.8-1012
Am [eV] (3.494£0.01) - 107 <13-107* (3.14£0.1)-1074 >5.1-1073
r=Am/T 0.945 4 0.002 < 0.09 0.7240.03 11...40*

) (3.274£0.12) - 1073 ~—1073* |6] < 1073*
7 |2 0.99348 + 0.00024 ~ 1 1...1.002* ~1*

* Standard Model expectation [29,18]

While the parameters of the K°/K" system are well measured [9], theoretical assumptions enter into
the B meson columns. Many precise lifetime measurements for neutral B mesons have become available
last year. All lifetime measurements are summarized in table 2.2, and average to 74 = (1.54 &+ 0.03) ps.

Figures 2.2-2.5 show the number of mesons and anti-mesons as a function of the scaling lifetime variable
T =t/7 and the asymmetry

o(T) = NX = X)=NX = X)| (1= |nm|?) coshyT + (1 + |1pm|?) cos & T (2.41)
B N(X —>X)—|—]\.7(X—>)?) . (14 |9m|?) cosh yT + (1 — [nm|?) cos 2T ’

for a meson produced at 7" = 0 as a flavour eigenstate X, and decaying to a flavour-specific final state
as X or X at a later time T'. Expressed via the small real parameter § instead of |n,,| this reads

cos 2T + d cosh yT'
cosh yT" + d cos 2T

a(T) = (2.42)
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Table 2.2 B lifetime measurements. Measurements which have been replaced by more recent ones are
not included.
14 15 16 1.7 18 74 [ps] experiment
———— 1.534+0.12+£0.08 OPAL 95 [30]
—_— 1.61£ (2 £0.08 DELPHI 95 [31]
—_— 1.634+£0.14+£0.13 DELPHI 95 [32]
— 1.554+0.06 £0.03 ALEPH 96 [33]
— 1.537 £ 0.041 £ 0.039 DELPHI 96 [34]
— 155+ 015 £0.09 SLD 96 prel. [35]
—t 1.63 4+ 0.07 4+ 0.08 SLD 96 prel. [36]
—_— 1.584+£0.09 £ 0.02 CDF 96 [37]
— 1.484+0.04 £ 0.05 CDF 96 [37]
—+ 1.5440.03 average

For an anti-meson produced at 7' = 0 as a flavour eigenstate X, and decaying to a flavour-specific final
state as X or X at time 7', we obtain a similar expression, where only the cos 7" part changes sign:
N()?—)X)—N()?—))?) cosxT — d cosh yT

T) N(X%X)-FN(X—)X)T coshyT' — é cosxT

The approximation |7,,| = 1 corresponding to § = 0 leads to a simpler expression
T
a(T) = —=22 — _G(T) (2.43)

coshyT —

where x is clearly seen as the oscillation parameter, and y as the damping parameter.

The kaon has both & 1 and y & —1, i.e. the long-living state is the heavier mass eigenstate. With
these parameters one half of a sample of kaons of either flavour decays rapidly, mainly into two pions
with CP = +1, and the other half transforms to a sample of the long-living K states, which decay
(aside from the small CP violation) to CP = —1 eigenstates and to flavour-specific states. The ratio
of lifetimes of the two states (table 2.1) is approximately 580. The time evolution of an initially pure
K9 flavour eigenstate is shown in figure 2.2. The upper diagram shows the number of remaining K°
and K after a scaled time 7' = I't, where I' & I's/2 = 1/(275s) is the average width of the short- and
long-living state. The decay rate into flavour-specific final states is proportional to these numbers, while
the dominant decays to CP eigenstates follow different evolution functions due to CP violation, and will
be discussed below.

The D° meson decays mainly to flavour specific states with well defined strangeness, with only a few
decays to CP = 41 eigenstates, as n7r, KK, K'7° and CP = —1 states, as K27° or K%. This leads
to equal lifetimes for the two eigenstates, i.e. y & 0. The corresponding box graph has a b quark as the
heaviest particle in the loop, which 1s accompanied by the small CKM elements V., and V. The mass
difference induced that way by the Standard Model is very small, corresponding to < 0.002. Therefore,
almost no asymmetry is visible in figure 2.3, although the number & = 0.02 used for the plot is a factor
10 higher. The value = 0.002 corresponds to a total mixed fraction of initially pure D° states given by

Npoox  __ 2

- NDU—>X+N50_>)? - 2(1—|—l‘2)

X (2.44)

as y ~ 21079,

The parameters of the B%/BY system have been introduced above. A good approximation is y = 0 and
§ = 0, which leads for Ny pure B® at t =0 to

Npo(T) = %Noe_T(l + cos 2T
Ngo(T) = %Noe_T(l —coszT) (2.45)
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1.0

N/Nog

0.5

Fig. 2.2 KY/K° mixing is
determined by the parameters x =
| 0.95, y = 0.996, and |nm|? = 0.994.
] T = t/7 is the lifetime in units of
: T & 27g, the inverse of the average
width of K? and KY. The upper
diagram shows the number of KO
(solid) and K° (dotted) as a function
of T for a sample starting with 100%
_05 K° mesons. The lower diagram
shows the asymmetry « = (Ng —
| i NI?)/(NK + NI?)' The relaxation
: . process soon dominates, leaving only
- : K after not much more than one
1.0 N oscillation.

0.0 2.0 4.0 6.0

0.5

0.0

as shown in figure 2.4. The decay rate for flavour-specific final states (which are the majority of B°
decays) follows the same time evolution. The asymmetry function is simply

a(T) = cosaT (2.46)

This asymmetry can be observed using a flavour-tagging decay, like BY — D~{Tv. The rate of mesons
decaying at time T into the channel X are given by (2.30) where y = 1 makes coshyT = 1 leading to
the same asymmetry function a(7T) = cos 2T'. Integrating over all times, the observed numbers are

%NF_XM
1+ 22

. FX l‘z
_ 1
NEM)?—/NEM)?(T)dt— N T

Npo_,x = /NBD_LX(T)dt =

Their asymmetry becomes
Ngo,g—Npoox 1
NED_>)?+NBU—>X 1—|—l‘2

Aint =
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1.0

N/Nog

0.5

0. 6.0
. . . . I .
1.0
al ]
05| -
0.0
05 [ ] Fig. 2.3 D"/DP oscillations have
| | not yet been observed, and will be
I i hardly visible even with z = 0.02,
: . which is about 10 times the expected
- : value. The other parameters in this
—-1.0}F | . plot are y = 0 and |m| = 1.
0.0 2.0 4.0 6.0
T
and the mixing probability is as in (2.44)
Npoo, x z’

X (2.47)

- NBU—>X —|—N§D_>)? - 2(1—|—l‘2)
It was this net effect which gave the first proof for a sizeable mixing parameter z ~ 0.7 in the B® meson
system in 1987 [38]. The time-dependent particle anti-particle oscillations of the neutral B meson have
been first seen six years later by experiments at LEP [39]. With x ~ 0.7, about one period is visible
before most of the mesons are decayed.

If we assume the Standard Model predictions to be true, the Bs; meson is a very interesting case. There
will be a small y and a very large z. Figure 2.5 is plotted with z; = 15, which is close to the lower limit
of the theoretical range. The time-integrated mixing probability is for |n,| =1

B x2+y2
AT
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N/Nog
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0.5

0.0 Fig. 2.4 BY/B° evolution
is dominated by the oscillating part,
with the parameters x = 0.70, y =
0, and |nm| = 1. The ratio of
the areas under the dotted and solid
curve in the upper plot is the mixing
probability y. The zero transition
in the asymmetry, which marks the
crossover point in the upper plot, is
at T' = 4.

—-0.5

—-1.0
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For large =, > 1, this approaches its maximum value of 0.5, where a measurement of this quantity has
no sensitivity on z any more. To observe the rapid oscillations, a very good lifetime resolution will be
required. Experimentally, a lower limit z; > 15 has been found at LEP (see below).

In the general case |n,,| # 1, the integrated mixing probability depends on the initial flavour. Tt is

_ [ *(2* + 97) _ (=@ +y) a
T2 ) = P (= alP) 2T+ 27 431 )] (2.482)

for an initial B and
(* + ) (1+0)(a* + 1)

v — = 2.48b
N T 0 i) 4 (0= i)~ 04 2% — (1 = o)) (2.480)

for an initial B (which is x with |9, | replaced by 1/[nm| or 6 by —d). This exhibits already CP violation,
since the probabilities P(X — X)) and P(X — X) are different. It is also T violation, since the transition
X — X is the time reversed process X — X.
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10

N/No ||

- A
6.0
T
T
1.0} .
f b oL 1ot
i f A
a
0.5 H
0.0
—05} ! i ) _
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2.2.4 CP Eigenstates Versus Mass Eigenstates

The following discussion will again use B°/B" as an example, but is applicable to each of the four
systems accordingly.

The standard phase convention requires all J¥¢ = 0=+ mesons to have CP |X) = —|X), fixing ¢cpp = 7.
Independent of any convention, two orthogonal CP eigenstates

1

V2

1

|BEIJ—> = V2

(1B +CP[BY),  [B) = —= (|B% - CP|B")) (2.49)

with CP |B}) = |B}) and CP|B%) = —|B%) can be defined. If a state agrees with one of these except
for a phase factor, it will be a CP eigenstate.

The mass eigenstates of the BY/B" system are not CP eigenstates. Using CP |BY) = ¢!¢cP5|B) | they
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are transformed by a CP operation as

idcpB —i¢cpp idcpB —idcrr
[ e m (& (& NMm
CP|BL>:<277 + 5 )|BL>_<277 - 7 )IBH>
~ cos 23 |Br) — sin 23 | Brr)

ei¢CpB e—i¢cp5 m 6i¢CPB e—M’CPB m
CP|BH>:—<277 + 5 d )|BH>+<277 - 7 L )|BL>

~ —cos 20| By} +sin 26 |Br)

Where the approximation for the B°/B" system depends on the phase convention for the CKM matrix
which determines the angle 5 If 5 = 0 is chosen by an appropriate phase redefinition e.g. of the b field,
these states would be eigenstates with CP = %1, respectively. Still, there would be CP violation in their
decay, and the CP eigenvalue of the final state would be different. Therefore, the question of which of
the mass eigenstates is closest to which CP eigenstate has no convention independent answer. Only the
CP eigenvalue of a decay product of one of these states is an observable, and the weak interaction does
not conserve CP.

A meaningful question is which of By or By decays more often into CP = £1 eigenstates. In contrast to
the neutral kaon system, most final states from B decays are flavour-specific, and both mass eigenstates
decay into them via either their B® or their BY component. The small fraction of states that can be
reached both by BY and B° includes the contribution from CP eigenstates which appear mainly through
three processes. On the tree level, there are two main decay channels that can produce CP eigenstates:
b — céd with the cédd final state, and b — utd with the quark content wudd. A state of the first kind
will have decay amplitudes

A= (X[ HIBY) = ViVegAdo, A= (Xeo[H|BY) = nxe™oPB v, Vi Ag

where nx = =£1 is the CP eigenvalue of the state. The corresponding decay amplitudes of By and B
are

Ap g = {(Xe|H|Br g) = pA+qA

—idops VebVed
= pA (1 £ pnx e POPE Lt
Ve Vea
= pA (L £ [nlnxe™ )
The decay ratio is then (in the approximation |n,| = 1)
Agr)? 1— nye 2182 1 —nxcos2
_ n _ n

= - = 2.50
|ALI2 [1+nxe=2F8]12 1+ nxcos2f (250

which is for 3 < % less than 1 for nx = +1 and vice versa. In this case, the heavier state By will decay
more often into states with negative CP eigenvalue, nx = —1.

Accordingly, for the uudd states
Ap g = (Xua|H|Br i) = pA (1 £ |0y nxe®®)

and the ratio )
Agl? 1 — nxe?i®|? 1 — nx cos 2«
| _ n _l-m

A2 |1+ nxe?@2 1+ nx cos2a

depends on the angle o, which is likely to be larger than 7. This would give the opposite answer, i.e.

the heavier state By will decay more often into states with positive CP eigenvalue, nx = +1.



22 2. Particle Anti-Particle Oscillations and CP Violation

Some decays with an intermediate state céds or céds proceed into K° or K, which finally result in cédd
via a K? or KY sequential decay. Among those is the gold-plated decay B° — J/ KY. The total decay
chain involves almost the same CKM element phase factors as the direct b — céd decay, leading to the
same answers as for this decay mode (a more detailed discussion follows below in section 2.3).

For decays via W exchange, like bd — ¢¢ or bd — uti, the same CKM elements are involved, and the
same arguments lead to the same answers as above. Also, the favoured penguin-type transition b — s
with subsequent hadronization into a K2 or K2 has a net phase close to 3’ leading to the ratio (2.50).

CP ecigenstates with quark content dd can be reached via CKM-suppressed penguin-type loops. Due to
the top quark dominance the amplitudes are

A=(XyHIB%) = ViiVigdo, A= (Xy|H|B%) m nxe™ 9PBV, VigAg

and the CKM element phases cancel, which gives

|[Au|  1-nx
ALl 1+nx
1.e. By decays exclusively into states with negative CP eigenvalue, nx = —1, and By into states with

nx = +1.

All these results receive corrections from non-leading terms, like ¢ quark loops in the last case, or b — d
penguin corrections to the b — u transition final states. Since systems with a ¢¢ pair probably constitute
the major part for both CP eigenvalues, the heavy mass eigenstate can be said to be the one which
decays more often into final states with CP = —1, and the light one into those with CP = +1, but
both have also substantial branching fractions into final states with the opposite CP value. This is a
consequence of the CP violating phase in the CKM matrix, but is not a CP violating decay, since none
of the two B mass eigenstates was a CP eigenstate before it decayed.

The situation would be different for a purely real CKM matrix (up to phases that can be removed
by quark phase changes). In this case, all unitarity triangles would be degenerate to lines, and their
angles would be 0 or w. Therefore, cos2a = cos 28 = 1, and the heavier state would be the only to
decay to CP = —1, while CP = 41 final states would be reached exclusively via decays of By . For
decay products which are CP eigenstates this situation would correspond to a perfectly predictable CP
eigenvalue corresponding to the mass eigenstate By or By . A natural choice of phases in this case would
force all terms of the weak interaction Hamiltonian to be real, corresponding to n,, = e'?cP5. Then
CP|BL) = +|Br) = |By) and CP |Bg) = —|Bg) = —|B_), and CP is conserved in decays where this
quantum number is meaningful.

Exactly this situation is almost true for the K°/K" system. The light KY decays to about 99.9%
into the CP = +1 eigenstates 7t7~ and 7%7% while the K" decays to one third into a CP = —1
eigenstate with 3 pions, the rest being mainly flavour specific semileptonic decays, and only 0.3% are to
the CP = +1 two pion state [9]. Therefore, a parametrization is chosen where K% ~ K and K0~ K_.
If we have a K as decay product of the B, we are used to assign it a CP = +1 eigenvalue contribution
to the whole final state. To be precise, this is only correct if the K? decays into a CP = +1 final state.
In this case also a KY — 7 will be assigned the same CP = +1 eigenvalue, i.e. the “K2” denotes its
final state rather than the undecayed particle, and a K2 — wlv as a flavour specific state is not included
in this use of the label KY.
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2.2.5 Oscillation at the Y (4S)

The BB system from strong interaction 7'(4S) decay is in an odd C and P eigenstate with angular
momentum L = 1, retaining the quantum numbers JX¢ = 17~ of the mother particle. This system has
to be treated as a coherent quantum state. The time evolution of a state with odd symmetry is different
from that of one with even symmetry. This is due to the fact, that only one anti-symmetric X X state,
X (1)X(2)) - [X(1)X(2)
1s possible, so it has to stay constant. There are, however, three symmetric states,
X (1)X(2)) + [X(1)X(2)
| X(1)X(2))
X (1)X(2))
and their relative amplitudes may change with time. The quantum numbers characterizing the two

different mesons, which are represented by (1) and (2) here, can be thought of as the spatial wave
functions ¢ (2) and ¢ (—a) or alternatively the states in momentum space [p) and |—p).

Explicitly, for initial BB states of well defined symmetry,
¥(0) = |B°(1)B°(2)) + |B"(2) B"(1))
the time evolution from (2.26b) translates into
1/)(t) — 6_2imt6_T~
(1B W) +innscl P OF ) + ael 505 () - £ B2 F(1) )

+ <c2|30(2)§0(1)> + inmse|BY(1)B°(2)) + nimsc|30(1)30(2)> - 52|BO(1)§0(2)>)] (2.51)

for —:
b (t) = e 2T [|B°(1) B (2)) - [B°(2) B(1))] (2.51a)

for +:

(1) = T conte — )T (1B B + B B(1)

+isin(x — iy)T (nim|30(1)30(2)> + nm|§0(1)§0(2)>)] (2.51b)

where the shorthand notation s = sin(x — iy)T/2, ¢ = cos(z — iy)T/2 has been used in (2.51). This
means, the anti-symmetric state stays always a 100% correlated BB, as long as none of them has decayed.
This is a typical example of a coherent quantum state, where both mesons always have exactly opposite
flavour, although none of the single mesons is in a flavour eigenstate. Only when one decays into a state
revealing its flavour (not necessarily the first one that decays) the state “collapses” and the second one
continues as a one-particle state evolving in time according to (2.26).

The second case (2.51b) of an even wave function leads to a probability oscillating with twice the single- B
frequency between a like-sign (BB or BB) and opposite-sign (B B) flavour state.

For different times 77 and T of B meson (1) and (2), e.g. the times of decay of the two B mesons, we
have for the anti-symmetric state

; 1 T -1 — —

[Y— (T, To)) = el=m/TH2) T+ T2) [COS(I - iy)% (1B"(1)B"(2)) — |B"(2) B°(1)))

~ isin(e — iy) 1 - T2 (nim|30(1)30(2)> - nm|§0(1)§0(2)>)] (2.524)

e(—im/T+5)(T14T2)

= cos(x — 1y
2pq [ ( )

D (B0 Br (2)) + |BL(2) Bu (1))

T =Ty
2

(1BL(1)Bu (2)) + IBL(Q)BH(1)>)] (2.52b)

— isin(x — iy)
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Again 1t is seen that for 77 = 75 only the anti-symmetric state is present, and mixed states, i.e. two
final states indicating the same beauty flavour, will show up only at 7} # T>. The mixing probability
(B and B denote the flavour at decay time)

N(BB + BB)
N(BB+ BB+ BB + BB)

=y (2.53)

is identical to that for a single B meson. This can be understood from the fact that the second B
meson is 1n a flavour eigenstate exactly when the first one decays into a tagging mode, and then evolves
in time as a single oscillating B meson until it decays itself. The probability can also be obtained
from equation (2.52a) using N(BB) = N [ |<BO(1)BO(2)|1/)_(T1,T2)>|2 dTydTs, and N(BB), N(BB),
N (BB) accordingly. The normalization factor A" depends on the branching fractions into tagging modes
and in general on the parameters y, § and «, but cancels anyway in the ratio.

For incoherent BYB° pair production, e.g. in bb jet fragmentation, the integrated mixed-rate is
determined by two independent mixing probabilities

N(BB + BB)
N(BB+ BB+ BB + BB)

=2x(1-x)

Equation (2.52b) is an expansion in the two mass eigenstates. The anti-symmetric wave function is
always composed of two different states, there will be never By By or By By, even at different decay
times.

The question of CP eigenstates can only be answered after both B mesons have decayed. This involves
the phases in decay amplitudes, and includes all effects of CP violation which will be discussed in detail
below.

For the symmetric state, the wave function is

(13,12 = =TT oo — i) L () B 2) + 5@ B (1)
+isin(z — iy) 2 ;TZ (nim|30(1)30(2)> + nm|§0(1)§0(2)>)]
e(=im/T+3)(T1+T2) T+ Ty
= 507 [cos(x—zy) 5 (BL(1)BL(2)) — |Br(1)Br(2))
T +1T5

+isin(x - iy) (I1BL(1)BL(2)) + |BH<1>BH<2>>>] (2.54)

This 1s very similar to the function of an anti-symmetric state, but the oscillation is in the sum of the
two lifetimes instead of the lifetime difference.

In the approximation |n,,| = 1 and y = 0, the integrated mixed-rate is

N(BB + BB) (3 + 2?)
—— —— = e = X(3 —4x)
N(BB+ BB+ BB+ BB) 2(1+=z?%
In the general case, it is
N(BB + BB) (140 (=" +y*)[B —y* +2° (1 + )]

N(BB+ BB+ BB+ BB) 2[(1+2%)2(14+y%) —62(1 —22)(1 —y?)?]
but cannot be related to the mixing probabilities of single mesons y and y.

The expansion in mass eigenstates shows, that the symmetric wave functions consists always of two
eigenstates with the same mass, i.e. By Bg or Bp Br.
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2.2.6 Determination of the Mixing Parameters of B Mesons

Only a small fraction of B meson decays has been fully reconstructed. However, the flavour of a B
meson can be identified by various “tags”. The first observation of a then unexpected large BB
mixing by ARGUS in 1987 [38] used the best flavour tags available: In multihadron events on the
7'(4S) resonance, 25 like-sign lepton pairs were observed which could not be attributed to other sources
but semileptonic B decays. The charge of the lepton from b — [Tvé in these decays is identical to the
beauty (or bottomness) quantum number of the meson, and these events had to be attributed to B B°
and BY B final states from 7 (4S) decays. The mixing probability y can be calculated from the number
of like- and opposite-sign dilepton events as

_ NI + NE)] (L4 )
X NHH) + NI + NI+
where the ratio of semileptonic branching fractions of neutral and charged B mesons and of their
production rates enters as

[B(BT — [TvX))? B(r4S) — BTB™)

[B(BY — ItvX)]2- B(T(4S) — B°BY)

In addition, this observation was supported by four events with one fully reconstructed B meson plus a
lepton of “wrong” sign, and one exclusive event 7(4S) — B BY with both B® mesons reconstructed.

f=

Results on mixing obtained on the 7°(4S) are summarized in table 2.3. In addition to leptons and fully
reconstructed B mesons as flavour tags also fully reconstructed D** mesons, partially reconstructed
D** — (D°/D%)7r# | partially reconstructed B® — D*~ [ty and charged kaons have been used.

Table 2.3 BY mixing parameter y, using f =1
0"10 ‘ 0'?0 0'?0 b% tags experiment
—_— 0.16 £ 0.05 l ARGUS 87 [38]
e s 0.144 4 0.036 & 0.036 CLEO 89 [40]
_ 0.180 + 0.050 I1,D*1,B°% | ARGUS 92 [411*
— 0.157 £ 0.016 £ 0.018 + {027 i CLEO 93 [42] *
———— 0.149 4 0.023 £ 0.021 Bl CLEO 93 [42] *
—_— 0.162 4 0.044 4+ 0.039 (DU ARGUS 93 [43]~
0.20+0.13+£0.12 DK ARGUS 96 [44]
: 0.19 £ 0.07 £ 0.09 B°K ARGUS 96 [44]*
—— 0.159 £ 0.020 all (*) averaged

While only the integrated effect can be observed on the 7°(4S) at presently existing symmetric colliders,
an observation of the oscillating behaviour was possible at the Z°, where the lifetime can be measured.
This yields directly the frequency Am from the asymmetry

N(B) - N(B)
N(B)+ N(B)|,

=cos Amt

a(t) =

Results are summarized in table 2.4.

The mixing parameter z can be calculated from the mixing probability using (2.47) and from the
oscillation frequency as # = Am7 which requires also precise knowledge on the average lifetime
74 = (1.54 4 0.03) ps of the B® meson (table 2.2).

z=Am71=0.729+0.027 LEP+4+SLD+CDF avg. 96

r= /7 = 0.683 £ 0.063 ARGUS, CLEO avg. 96
57X
2

xr =0.722£0.025 comimon average
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Table 2.4 BO/E0 eigenstate mass difference from the oscillation frequency

040 050 0.50 Am [psT!] tags experiment
0.10 0.04 *
—_— 0524 019+ 002 D*l ALEPH 93 [39]
—— 0.504 00T+ 011 i ALEPH 94 [45]
—— 0.436 & 0.026 £ 0.020 D*/l/jet charge ALEPH 96 [46] *
: 0.50 +0.12 + 0.06 DELPHI 94 [47]
— 0.531 4 7050 +£0.078 I/ K [jet charge DELPHI 96 [48] *
— 0.496 £ 0.034 D*/l/jet charge DELPHI 97 [49] *
_— 0.508 4+ 0.075 £ 0.025 jet charge OPAL 94 [50]
— 0.548 £ 0.050 £ 022 Dl OPAL 96 [511 *
— 0.444 4 0.029 £ 2022 jet charge [ OPAL 97 [52] *
— 0.430 £ 0.043 + 028 n OPAL 97 [53] *
—_— 0.496 £ J02% £0.043 1 L3 96 [54] *
—— 0.58 +0.07 £ 0.08 K ¢ SLD 96 prel. [551*
e 0.56 £ 0.08 + 0.04 jet charge ¢ SLD 96 prel. [55]*
— 0.520 & 0.072 £ 0.035 I SLD 96 prel. [561*
—_— 0.452 & 0.074 & 0.049 jet charge [ ¢ SLD 96 prel. [571*
—_ 0.446 £ 0.057 £ J 021 (Brt) CDF 96 [58]  *
—_— 0.471+ 0078 4+ 0.034 n+ /DI CDF 97 [59]
— 0.50 £ 0.05 + 0.06 n CDF 96 [60]  *
-+ 0.474 £0.015 all (*) averaged

¢ using the Z0 polarization asymmetry at SLC

The two independent methods agree very well, and yield a common value of the scaled mass difference
with 4% precision. A value z ~ 0.7 compatible with the present best estimate will be used within this

paper.

Table 2.5 BS/ES eigenstate mass difference from the oscillation frequency.

Am [ps1]

experiment

> 1.8 (95%CL)
> 6.1 (95%CL)
> 6.6 (95%CL)
> 3.1, ¢ [5.0,7.6] (95%CL)
> 7.8 (95%CL)

ALEPH 94 [45]

ALEPH 95 (jet charge {) [61]

ALEPH 96 [62]
OPAL 97 [52]
ALEPH 96 [63]

> 10.0 (95%CL) LEP combined 97 [64]

From average b/b mixing at ete™ annihilation and Z° decay, a value y, ~ 0.5 can be inferred with
large errors (2 0.2 [9]) due to the small B, fraction in b jets. Direct (non-) observations of the
oscillation leads to more stringent limits on the frequency, summarized in table 2.5. For the B,/B,
system, using the latest lower limit on the oscillation frequency Am, > 7.8/ ps and the B; lifetime value
7s = (1.52 £ 0.07) ps (table 2.6), the present lower limit is x5 > 15, which is already close to the lowest
expected values. It corresponds to a mixing probability y, > 0.496.
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Table 2.6 B; lifetime measurements. Measurements which have been replaced by more recent ones are
not included.
1.‘2 1.‘3 1.‘4 1.‘5 1.‘6 1.‘7 1.‘8 1.‘9 TS [ps] experiment
: 154+ 070 +£0.06 D,l, OPAL 95 [65]
_— 137+ 075 £0.04 D,l, CDF 96 [66]
: 1.34£ 072 £0.05 Jfib ¢, CDF 96 [67]
: 1.654 o5 £0.12 D,h, DELPHI 96 [68]
: 1.60£0.26 + 012 D,, DELPHI 96 [68]
: 176 £0.20 & 70 ¢l, DELPHI 96 [68]
—_— 153+ 317 +£0.07 D,l, DELPHI 96 prel. [69]
: 161+ g% + 018 D;h, ALEPH 96 [70]
—_— 154+ 075 £0.04 D,l, ALEPH 96 [62]
: 1724 030 £ 078 Dy, OPAL 97 [71]
—t— 1.52 4+ 0.07 average

2.2.7 Predictions for z,, y; and §;

Since the lifetimes of B and Bj agree within present precision, a first approximation using (2.32) is

Ls |Vt8|2
zg  |Vial?

which gives an estimate of the expected s range between 3 and 100. It suffers from the poor knowledge on
Via, which has to be obtained from the measured z4. With the top mass known and lattice calculations
giving more reliable numbers for fg, fp., Bp and Bpg,_, theoretical predictions for xz; become more
precise. The Standard Model now favours numbers between 15 and 40. Recently reported ranges are

13.4...27.8 [18] and 20.1£ 1;° [72].

The B; meson eigenstates are expected to have also different widths. A value of 2y, = AT/T =

2
0.18 (203‘%) is predicted from quark level QCD calculations [73], a similar number 2y, &~ 0.15 is

obtained using exclusive decay channels [74]. In the naive quark model a larger value around 0.20 is

. . _ 0.11
expected, and a recent QCD evaluation gives 2y, = 0.16 & ;o [75].

The refined ratio (2.38) is

&5 2mf 0.5440.02
2y, mm}3— 8mZ/m}

~ —(200...250)

and corresponds to a lowest order estimate [76] neglecting QCD corrections. The range given reflects
only a variation of quark masses.

Finally, replacing d with s equation (2.40) can be used to estimate §; ~ sin(¢a + ¢¢)/2000 ~ 1075,
Again, large corrections to this simple calculation may be expected.
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2.3 CP Violation

Standard Model weak interactions are long known to violate parity and charge conjugation symmetries, in
most cases even maximally. However, the combined symmetry operation CP leads generally to transitions
identical to the original ones, i.e. CP symmetry is conserved. A typical example is the weak decay of a
7 lepton into wv;, as shown in figure 2.6. While a 7~ lepton can decay into a left-handed neutrino and
a pion, the charge-conjugate decay of a 71 into a left-handed anti-neutrino is forbidden. However, if one
looks at the mirror-image, i.e. one applies a parity transformation at the same time, the decay is allowed,
and even more the amplitudes for both decays are equal. If we extend our definition of “anti-particle”
to mean not only sign-flip of all charge-like quantities, but also of the spin, we have the CP operation
and a perfect symmetry even for most weak-interaction processes. CP violation, on the contrary, is a
true violation of particle anti-particle symmetry, which can not be restored by a mirror.

P
T 4— T ©O— U; Vrp $o— T —— T
—

forbidden

_ P _
Tt e— 71t v, v, eo— 7t — 7t
<

forbidden

Fig. 2.6 Parity (P) and charge conjugation (C) operations on 7~ — 7~ vr. The upper right and lower left
processes are forbidden.

If all interactions were CP symmetric, we had no way to distinguish left-/right-handedness, posi-
tive/negative charge etc. Parity and C violation in weak interaction connects handedness with charge,
but still does not allow a distinction between the two members of a pair. CP violating K° decays, how-
ever, provide a different decay rate function of time for K® and K°, which could be used to explicitly
distinguish them by a dip or bump in this function.

Although we are presently not able to observe the difference of matter and anti-matter at far regions
of the universe, the absence of regions of matter anti-matter annihilation boundaries suggests that the
whole universe is made of matter, violating CP asymmetry to a large extent. Small asymmetries of the
order 10719 at the early universe are sufficient to explain this present situation, however, it is difficult
to create these from the CP violation in the Standard Model which has particle anti-particle asymmetry
only in mesons, whereas baryon number violation is observed in the universe. If one assumes baryon
number violating processes at phase boundaries of the early universe, e.g. at the symmetry breaking
phase transition to the electroweak interaction in the Standard Model, still the CP asymmetry via the
CKM phase is many orders of magnitude smaller than the observed number of baryons per background
photon [77]. Thus, CP violating mechanisms beyond the Standard Model are likely to exist, and we
will possibly observe them as small deviations from the Standard Model predictions.

The origin of CP violation in K and B mesons may be only within the Standard Model, but other
possibilities are not ruled out. The observation of CP violation in B mesons may either yield a consistent
picture with one set of Standard Model parameters, or produce contradictory results, making extensions
or an alternative theory unavoidable.
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Complementary searches for CP violation will give additional constraints: Only small CP violating
effects are predicted by the Standard Model in weak decays of other particles, like D° mesons or strange
baryons [78]. CP asymmetries in the yet unobserved neutrino oscillations [79] or CP violation in
lepton decay [80] are potential windows to alternative models. The search for magnetic monopoles or
electric dipole moments [81] in pointlike or spherically symmetric particles, e.g. in leptons, quarks or
the neutron, is another way to find non-standard CP violation. However, in contrast to CP violation in
weak interaction, these would not be examples of broken symmetry between particles and anti-particles,
but rather of mirror symmetry, while the charge conjugation symmetry is conserved. At present, only
upper limits on these effects exist, and no glimpse beyond the Standard Model has been obtained.

2.3.1 CP Violation in B Decays

The BY/B" meson system has a simple description in the Standard Model: One parameter z is sufficient
to parametrize the oscillation, since y = 0 and |5,,| = 1 are good approximations.

CP violation in B decays occurs always via interference, in three different ways:

1) Direct CP violation I'(B — X) # I'(B — X) can be observed by final state counting experiments.
An example is the B decay to K, where an asymmetry

N(B® - K+7=) = N(B° - K—=7)

— <0.1
N(B® — K+t7=) + N(B® - K-=+)

~

is expected. Decays with CP asymmetries like this example require in the Standard Model (at least)
two interfering channels with different CKM phase ¢1 » and a strong phase difference d15 = ds — d;.
This defines the amplitudes

A(BY = X) = Ajei® 4 Agel92ei0r (2.55)
A(BY = X) = Aje7'%1 4 Agemi92¢i012

where A; and Ase®12 is unchanged due to CP invariance of the strong interaction. They contribute
to the rates as

|A]2 = |A1]* + |A2]® + 2 Re(AL A3) cos(p1 — ¢ — 612)
|A]? = |A1]? + |A2|* 4+ 2 Re( AL AS) cos(da — é1 — d12)

which are different if cos(¢1 — ¢2 — 612) # cos(¢a — ¢1 — d12). This is not the case if 15 = 0 or if
1 = ¢o.

In the example B — K, the first amplitude is from a b — s penguin diagram which has a
dominant contribution from the ¢ quark in the loop, with a CKM phase arg(V;;V;,) and a K=«
state with isopsin % The second amplitude occurs via a tree diagram b — u + us transition, with
arg(V5V,,) and isospin % and % amplitudes. The interference terms are proportional to cos(y’ £d12).

Asymmetries of this type can also be observed in charged B decays, e.g. B¥ — K0,

CKM unitarity angles can be extracted from those asymmetries using flavour SU(3) and isospin
relations to constrain the strong phase difference [82].

2) CP violation induces also a small asymmetry in the oscillation probability P(B® — B") # P(B° —
BY) due to |9, | # 1. This is due to the interference of other amplitudes with the leading box diagram
of B/ B mixing, with a t quark in the loop. The oscillation asymmetry (2.42) starting with an initial
BY meson can be expanded in é as

a(T) =

N(B) — N(B)
V(B

_ coszT 5 ( cos?zT
N(B) + N(B)

= + -+ 0 2.56
cosh yT (josh2 yT) ( ) ( )

T
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a) u b) e
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Fig. 2.7 Diagrams for B — D°K? (a) and B — D'K? (b).

which is for y = 0
)
a(T) ~ cosaT + §sin? 2T = coszT + 5(1 —cos 227

Starting with a B® at 7' = 0 gives for the same asymmetry
V(B J
a(T) = —E) ~ —cosxT + 5(1—COSQ$T)

i.e. if § < 0 as indicated by (2.40) there are always more B — B than B — B oscillations. Using
leptons as flavour tag the net asymmetry can be observed at the 7(4S) as

N(BB = I*1*) = N(BB = 1717) 1—|n,|* 25

N(BB = +1+) + N(BB = 1-1=)  1+|pm|*  1+42

and should be very small in the Standard Model, where (2.39) predicts |24| < 1073, The first upper
limit on this asymmetry of 0.18 (90%CL) [42] was still far above expectation. A recent measurement
at LEP [52] gives a limit of 0.06 (90%CL) (assuming CPT symmetry).

The interference of oscillation and decay leads to lifetime dependent differences [(B%t=0 — X|¢) #
[(B%t=0 — X]|¢) for a common final state of B and B with asymmetry amplitude modulation
o sin Amt.

The final state X can be a CP eigenstate, like J/iy K2 (CP = —1) or 7t 7~ (CP = +1), or a state
that can be reached from both BY mesons via different processes, like B® — D°K? and B® — DK
(figure 2.7).

In the Standard Model, CP violating interference can lead to almost maximum asymmetries. In
many cases, large values are expected, and the time-dependence is a further handle to avoid
misinterpretation of data. Therefore, all proposed experiments focus on these effects, which will
be described in the next section.

A unique case of this interference can be observed in coherent anti-symmetric BB states, i.e. in
T(4S) — BYBY, as a single event
Y(4S) - BB - XY

with CP(XY) = CP(X) CP(Y) (-1)l = —1 # CP(r(4S)) = +1. Here X and Y must be CP
eigenstates, and the expected rate for such events varies with the lifetime difference of the two B
mesons.
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2.3.2 CP Violation in Common Final States of B° and B°

The most pronounced manifestation of CP violation in the B%/B system is expected in interference
of oscillation and decay to final states common to B® and B [83,84]. The effect is largest for CP
eigenstates, but may occur at any final state where the amplitudes of the mixed and unmixed decay can
interfere:
BO

AN
B — X (2.57)

The simplest situation is the evolution of an isolated B meson produced (e.g. incoherently in bb
fragmentation) at ¢ = 0 as a flavour eigenstate. An unambiguous flavour tag for the state at production
time may be a charged state from the second b, which cannot mix. The amplitude for B|,_, — X]|,_,
is derived from (2.27) as

. T T
M(B® = X) = e_”m_T/zA{cos(x — zy)g — érsin(z — zy)g}

using the ratio of the upper and lower path’s amplitudes in (2.57)

o A
A
where A = A(B” = X) and A = A(B" — X) are the decay amplitudes of the flavour eigenstates. The
cos-term describes the lower path with pure b/@ oscillation, while the sin-term is a true interference
term that vanishes if » = 0. The amplitude for B|t:0 — X|,_, is
o . _ T i T
M(B® = X) = e_”m_T/zA{cos(x - zy)g L sin(z — zy)g}
r
If X is a CP eigenstate, the ratio A/A is just a phase, which includes the sign of the CP eigenvalue of
X. The phase of the product r is independent of conventions, and is in fact an observable, as will be
shown below. More general, A and A can have also different magnitudes. Figure 2.7 shows an example
for this case, where the diagrams for B — D°K? and BY — DK are different. Another example is a
mixture of CP eigenstates, as in the final state D*T D*~ which is CP = —1 for L = 1 and CP = +1 for
L =0or 2.

The corresponding decay rates are proportional to

2
+ AP

2
MP? = e-T{|A|2

cos(x — zy)g sin(z — zy)g

T T — - T T — _
+ i sin x5 cos J:E(A*Anm — AA™n;,) +sinh vy cosh yE(A*Anm + AA*n;‘n)} (2.58)
|r|?

1 § 1—
=T |A|2{ % cosh yT' + ————cos #T + cos(arg r) sinh yT' — sin(arg r) sin J:T}

1 2 1— 2
= e_T|A|2{¥cosh yT + icos xT + Rer sinhyT — Imr sin J:T} (2.58a)
o _ 1 2 1— 2 :
|M|? = e_T|A|2{ + Ir] cosh yT — I cosaT + cos(arg 1) sinh y7T" + sin(arg r) sin J:T}
2|r[? 2|r[? 7| 7|
A 2 1 2 1— 2
=7 || ||2{ —|—2|r| oshyT — icos 2T + Rer sinh yT + Imr sin J:T} (2.58b)
Tim

where the oscillating interference term is proportional to

%(A*Enm — AA* ) = Im(A* Any,) = |A]?|r|sinargr = |A]* - Imr
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and the relaxation part of the interference is proportional to |r|cosargr = Rer. For decays to CP
eigenstates, |r| = |nm| & 1 and the amplitude of the asymmetry oscillation is the sine of the phase
angle arg r. For decays like B/ B” — DK where |A| # |A| and consequently |r| # 1, the asymmetry
oscillation gets a physical dilution factor

2] 20A|A]

Dp = = —
PP T AR AP

to the sin 27" term, and a mixing contribution as an additional cos 2T term.

In the approximation |n,,| = 1 and y = 0 the rates are given by

e oV e
2

|IM|? = e_T{ cos zT — |A||A] sin(arg ) sin J:T}

(2.59)

IMJ? =

AP+ A2 A2 - | A -
e_T{| | —;| B i il cos T + |A||A] sin(arg r) sinxT}

This leads to an oscillating asymmetry as a function of the proper lifetime of the signal-B

N(B° - X) - N(B° —» X
a(T) = = (_ = X) . (B~ X) = 6OgcoszT + AgsinaT (2.60)
N(B” = X) + N(B° = X) |,

where the B flavours are taken at T' = 0, and the amplitudes are

|r]?2 —1 2Zmr .
Ng = =D
EEFSE 0 FSEE psinargr

If in addition |A| = |A|, especially if X is a CP eigenstate, this simplifies further to |r| = 1:

M2 = e_T|A|2{1 — sin(arg r) sin J:T} (2.61)

M| = e_T|A|2{1 + sin(arg r) sin J:T}

The corresponding rates N(B°|p=¢ — X) o |M|? and N(B°|p—y — X) o |M]|? are illustrated in
figure 2.8. They show a time-dependent asymmetry

7 N(B® = X) — N(B® = X)
D= F o)1 8B 5 )

= AgsinzT (2.62)
T

with Ay = sinargr.
The scaling time variable is 1" = ¢, /7 defined by the signal B lifetime ¢, for incoherent bb production.
It has to be replaced by T' = (t; — t:)/7 for coherent BB production on the 7(4S), where ¢; denotes

the second B meson in the 1°(4S) decay in a flavour tagging decay mode. This is in full analogy to the
mixing situation described in section 2.2.5, and will be discussed in more detail below.
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2.3.2.1 The B,/B, Case

For the B; meson, y is not negligible, and the asymmetry (2.60) is modulated,

(1) N(ESAX)—N(BS%X) OgcosxT + AgsinzT (2.63)
a = —— - = - .
N(Bs%X)-FN(Bs—)X)T cosh yT' + ¢ sinh yT'
where d; = 0 is used, which is believed to be a very good approximation, and
|r]?2 —1 2Zmr . 2Rer
@OI |r|2+1, Ao:71+|r|2:Dpsmargr, Qoz 1+|r|2:Dpcosargr
with A2 4+ ©2 4+ 22 = 1. For the simpler case |r| = 1 the asymmetry is
N(B; = X) = N(B; = X Agsin 2T
(1) = 21 ) — N )| = Sl (2.64)
. cosh yT + £2q sinh yT'

N(Bs — X) + N(B; — X)
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with Ag = sinargr and §29 = cosarg r. This opens an alternative way to measure CP violation parameter
arg . The time evolution of an equal, untagged mixture of By and B, mesons is given by

_ 1 2
IM|? + |M|? = 26_T|A|2¥{cosh yT + 29 sinhyT} (2.65)
For decays into CP eigenstates |r| = 1, and the time dependence of the decay probability is simply

|IM|? 4+ |M|? = 2¢7T|A)? {cosh yT 4 cosarg r - sinh yT'}
— |42 {(1 + Q)T 4 (1 Qo)e_t/TH} (2.66)

i.e. it is a sum of two exponential distributions with weights (1 & £2p) = (1 £ cosargr). This case is
illustrated in figure 2.9 on a logarithmic scale. The upper and lower solid curve correspond to the CP
conserving case 7 = £1, where e.g. B, decays into either CP = +1 or CP = —1 eigenstates exclusively,
and B;p into the opposite one. The central curve corresponds to maximum CP violation, 1.e. Rer = 0,
where both Bs; and B,y decay into CP = 41 and CP = —1 eigenstates with the same probability, The
other two curves correspond to cosargr = £0.7.

If argr = 2¢ckwm 1s a large angle, a measurement of cos 2écxm via the mixture of short and long lived
states is complementary to a measurement of sin 2¢cxm via an oscillating asymmetry function (2.64).
Due to the large value of z;, the latter requires a very precise measurement of the individual lifetimes
and flavour tagging, while the decomposition of the short and long lived fractions can be done with
untagged events and a modest resolution, but requires a large data sample.

2.3.2.2 Final CP Eigenstates from B’ or B, Decays

Weak decay amplitudes can be described by (2.12) and (2.13). For CP eigenstates with eigenvalue nx
their ratio is then given by

— nXe_i(¢CPB+2 arg V) (2.67)

SN

where arg V' 1s the phase angle of the CKM elements involved in A (i.e. the B or b decay amplitude).
Using the CKM representation (2.9) with 7, = e!(?cp5=26) results in

r = gy e V) (2.68)
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which is a convention independent phase factor of a product of four or more CKM elements. It can be
transformed into an ¢ parameter
1—7r

1+7r

€x 1= (2.69)
which is, in contrast to e defined by (2.22), convention independent, but is specific to a final state X.
A measurement of the angle § = arg(—V3V,,V,,V}) in the CKM triangle (figure 2.1a) requires a decay
with b — ¢+ ed. Examples for final states with this quark content are Ji) 7 or DT D~. In these decays
one has r = nye= %7,

Similarly, for other final states common to B and B the rephasing invariant net product of CKM elements
in the combined amplitude/mixing phase ratio r is easily extracted using (2.9). A summary of common
final states of BY and BY is given in table 2.7. Since the spectator with a b quark is a d quark, the decay
products of the b must have the net flavour of a d quark, accompanied by one or more quark anti-quark
pair.

Table 2.7 Examples of CP eigenstates as final states of BY and EO, and their sensitivity to the CKM
phases. The asymmetry (2.62) has an amplitude Ay = —nx sin 2dcrm -

b decay [T CKM elements angle ¢cxm | some final states
b — céd v;gvtdv v 8 (JIb " me .. )+ (79, p°..), DXIFDEI=
b — ccs, s — uud Vi Vav, Vus B—¢a—ds | (J, ¢ ne.. )+ (K K27, .)
b—)cés,sd—)K(L) V{ZV VcchbV Vs 8 (J/l/),l//,nc...)—l—K(L)
b — uud ViVeaVeaVao —a T, PP - .
b—d Vi ViaViVie 0 ...
b—s,s — uud Vi ViaVis Vo ViaVus e (K2, K2 )+ (%m0 0w, 9 )
b—s,sd— K} | VAV VAV VaVe, | 8/ +dat s | K} + (7m0 0% w,é.. )

Only the dominant contribution to the box diagram for B”BY mixing and to the penguin transitions
b — d and b — s are considered in table 2.7. Very small modifications to the phase angles ¢cxy will
emerge from corrections to this approximation.

A special case are final states with a K2 or KU. If it decays subsequently into a CP = +1 eigenstate, the
whole system can still be taken as a CP eigenstate, and used to extract unitarity angles. In the tables,
the tree level decay s — u + ud is used to determine the CKM phase angles. There may be penguin
contributions as well, which modify the asymmetry. For a ¢ quark in the loop, the relevant unitarity
angle for B — ccKg 1 is exactly 3, for a u quark it is the same as for the tree diagram, and for a ¢
quark it is the small angle ¢» + ¢5.

A more precise treatment of the whole system includes oscillation and decay of the kaons as well, leading
to four amplitudes which all interfere:

Ay = A(B = Blip) - A(B = ceK) - A(K — Kltg) - A(K — )
Ay = A(B — Bltg) - A(B — céK) - A(K — Kltg) - A(K — 77)
As = A(B — Bltg) - A(B — céK) - A(K — K|tg) - A(K = 77)
Ay := A(B = Bltg) - A(B — ceK) - A(K = K|tg) - A(K — nr)

Here the oscillation amplitudes A(K — K) etc. depend on the kaon lifetime tx. For tg = 0 we have
A([? — K) = AK — IT) = 0 and an oscillation Agsin Amptp with an amplitude Ag = sin 2(5 — ¢)
as given in table 2.7. For other times {x, the argument ﬁ b6 & 5 changes by a phase angle of @(\?).
This is small compared to ﬁ, so 1t still measures § to that precision for any kaon lifetime.

If the final kaon is a K?, it will usually be detected via its strong interaction—of a strangeness flavour
component—with the detector material. Since the cross section for its K° part is considerably larger
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than that of the K® part, only two amplitudes need to be considered:

As = A(B — Bltp) - A(B — ceK) - A(K — Kltg — o)
Az = A(B — Bltg) - A(B — ceK) - A(K — Kltg — o)

Their ratio is

Ay _ AB = Bls) ViVi g |
Ay A(B — Bltg) V3V —NmK

The last factor for the K°/K° system is obtained using the limits 7' — co of (2.27) as

_ X T
AK = K) = emimt=T/2 [—ian sin(z — zy)g]

—imt —T/2 [ eliz+y)T/2 _ e—ix—y)T/z]
- € e

o —imt "MK (iz4y—1)T/2 2.70
57 — —e — ¢ (2.70)

_ian

and (2.28) as

AK = K) = e~ imt=T/2 [cos(a: — zy)g] — —e_”m56(”"'3/_1)T/2 (2.71)

For the leading term in the box diagram it is given by

Nk = ei(¢CPK+2 arg V22VZ)
which yields
Az A(B = Bltg) Vo,V
Ay A(B = Blts) ViV

(-1)

1.e. it behaves indeed as a b — céd state with CP = —1.

The angles to be measured via oscillation/decay interference include all the factor ViV, from mixing,
which 1s one side in the triangle 2.7k. Hence only the adjacent angles o and 3 can be measured this
way. Similarly, interference in B, oscillation can be used to measure the angles in the flat triangle 2.71
(see table 2.8). One of them, v/ = 4 — ¢2, is identical to an angle in (2.7h), and differs from the third
angle v in (2.7k) only at order A2. This would allow a test of a + 3+ v = 1 to O(A?).

Table 2.8 Examples of CP eigenstates as final states of Bs and By, and their sensitivity to the CKM
phases. The asymmetry (2.62) has an amplitude Ay = —nx sin 2dcrm -

b decay [T CKM elements angle ¢cxm some final states

b— cts ViV ViV, $2 + 6 (J/w,w',nc )+ (m¢..), DY DT
b — uus _ Vtzvtsvu*svub P)// ¢ + ( )’ I{(*) ( )=
b—wud, 5 = aud | ViV, V>V Vi Vi ~' (m© ,77 p )—1—(A Ko ..

b — uud, 5d — K VtZVtsVJdV bVes Ved vV —¢a—¢s | (7", 0% )+ K]

b—s thvtsvtsvtb 0 (¢ ) ( an )

b—d,s — aud Vi Vi ViV Vi aVess -3 (K¢ )+ ()

b—d, 5d — K Vt”gVVVVV* B —¢s—¢s | KV —|—( )
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Table 2.9 Examples of CP eigenstates relevant for B Y decays, dependent on their relative orbital angular
momentum L.

channel L CP remarks

I +1

! +1

X +1

Ne -1

K? +1

K? -1

K*Y — K20 1 +1

K — K7° 1 -1

Jhp K? 1 -1

Jp (K*° — K97 0,2 +1 helicities: J, = 0,+£1
Jp (K*° — K9xY) 1 -1 helicities: J, = +1
ne(K*° — KinY) 1 +1

DtD- 0 +1

Dt D= 0,2 +1

D*tD*= 1 -1

ata~ 0 +1

ptp” 0,2 +1

ptp” 1 -1

If the given quark level transitions are the only contributions to a final state, the asymmetry with time is
a simple sin 2¢cxy sin 7" behaviour. However, many of the final states can be reached via loop graphs as
well, often with different CKM elements involved. Many details can be found in a recent review [23]. In
this case, both direct CP violation via the interfering amplitudes and the oscillation/decay interference
lead to more complex asymmetries with the matrix elements (2.59) and both a cos 7" and sin T term.

The most promising examples are for CP(X) = —1 B — JA K? with Ay = sin23, and and for
CP(X) = +1 B — ntn~ with Ay = sin2«a up to corrections from the penguin amplitude. The CP
eigenvalues of related channels can be constructed from the data listed in table 2.9.

States with several possible angular momenta, like vector vector final states, are typically a mixture of
CP = 41 and —1 eigenstates. Helicity 0 dominance would simplify these analyses, since it is forbidden
for L = 1 final states, and hence indicates a pure CP eigenstate. In general, though, these states have
to be deconvoluted via a partial wave analysis.

2.3.2.3 Mixtures of CP Eigenstates

An example for a mixture of CP eigenstates is the final state D*tD*~ which is CP = —1 for L = 1
and CP = +1 for L = 0 or 2. Other vector anti-vector decays like By, — DT D*~ or BY — ptp~ or
vector vector decays with two CP eigenstates like By — J/io ¢ or BY — J/ib (K2n%) g+o show the same
properties. In these cases the amplitude 1s

A= (V) (A +A_)

where (V) denotes the common CKM factors, and the subscripts of the residual factors are the CP
eigenvalues, e.g. A(B® — D**D*= L =1) = ViV A_ and A(B® - D**D*~ L =0,2) = VAV ,A;.
They correspond to different helicities of the vector mesons, therefore the factors A4 and A_ have
different phases changing with the angles of the decay products, e.g. D** — D%zt or Jiy — 1HI-.
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Their ratio r4 := A_/A4 depends on the decay angles, conveniently described as 81, 85 and ¢1 — ¢ in
the two helicity frames. The amplitude ratio observable in CP violation experiments is

1—7°A
1+ra

r=¢?

where ¢ is the invariant phase from the CKM elements in mixing and decay, which leads for B® —
D*tD*~ to §
¢i® = VerVia o208
= m =
Ve Vea

and the coefficients in the time evolution (2.58) are

L+ L+ Jral?

2 14 |ral24+2Rera
1—1|r]* 2Rery

2 14 |ral?+2Rery

(1—|ral*)cos¢ +2Tmrasing
T+ |ral?+2Rera

(1= |ral?)sing — 2Zmra cos ¢
T+ |ral?+2Rera

Rer = |r|cosargr =

Imr = |r|sinargr =

It has been emphasized in [85] that interference in mixed CP eigenstates like these can be used to
observe a small phase angle ¢ in untagged B; decays. This is possible since the sum of both initial
flavours is given by (2.65), being proportional to

— 1 2
|IM]2+ | M2 = 26_T|A|2{¥c05h yT — Re rsinh yT}

and the coefficient of the sinh yT" term, Re r, has a component Zm r 4 sin ¢ which becomes dominant in
regions of decay angle space where ZTmrg > 1 — |ral?.

While helicity 0 corresponds to a pure CP eigenstate, the helicities £1 are mixtures of both eigenstates.
However, states of definite transverse spin projections with respect to the decay plane of the second
particle are pure CP eigenstates, too [86], and may be used to decompose the angular distribution into
states with even and odd CP eigenvalue.

2.3.2.4 Non-Eigenstates

CP violation in oscillation/decay interference can also be observed in final states that are not CP
cigenstates, as long as they can be reached by both B and B. As an example [87], the channel
shown in figure 2.7 has the decays b — ¢(su) leading to the final state D° K2 from a B meson (a), and
b — @(5c) leading to the same final state from a B meson (b). The amplitudes are

A o u*bvcs ~ A/\S(p + ”7)
Al V,VE AN

which are of the same order of magnitude. Using VAV, for the K® — K2 amplitude and ignoring small
CKM phase angles @(\*) the observable ratio is

Al * * / /
r= nmé = 1) €Xp (Z arg ‘/cbvu*s‘/cs‘/cd) e—iéAA/ w _ e—i(Zﬁ-I—’y-I—éAA/)w
A Vubvcd

Al Al
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where d4 4/ is the strong interaction phase difference. Similarly, for the final state D°K?

R e 141
A’ | A’]

From an observation of the time-dependent asymmetry (2.60) both the absolute values and the
phases of these numbers can be determined, and the three unknown parameters d44/, 260 + v and
|A|/|A’| be extracted. Measuring separately D°/D® decays into CP eigenstates like 7m or KK,
where both amplitudes interfere, the angle ~ can be extracted from the rate measurement, which
becomes simpler if the non-mixing charged B decay ( — D°/DYK*) [88] or the self-tagging decay
BY — DY/DY(K* 77 )g+o [89] are used.

A similar self-tagging decay Bs; — DF K~ has as weak phase 7 + 2¢5 — ¢6 = v and has been suggested
[90] to determine this angle.

2.3.2.5 The Total Decay Rate

The total decay rate of an initially pure B® sample can be calculated as

dN )
= = No;/ dPS |M|?d(mp — Ex)

using |M|* from equation (2.58) with A = A(B — X). This results in an expression like (2.58) with the
replacements > 5 [A]2 = T, Y |A]> = I, || = |nm|? and 3" 5 A*A = 5 (B |H, | X){(X|H, |B°) =
I'y5. From (2.23) one can write

> i ATA = ppTg = ing (Hiz — H3y)
X

= g [—iz(1 = [nm|*) — y(1 + |nm|*)]
~T(1—6)[~izd —y]

where the last line is an approximation for § < 1, which is good for all four meson pairs. This yields a

total rate

dN L+ [nml]? . .
- = Ng F#e‘T{COSh yI' + d cos T — ysinh yT' + xd sin J:T} (2.72)
In the approximation y = 0 this 1s

dd—]z\f] =NoTe T [1 43 (=14 cosaT + zsinzT)] + O(6?) (2.73)

with [ % dt = Np. An initially pure B sample gives the same rates with the replacement 7, < 1/,
and & 4 —46. The asymmetry (where the B flavour is understood as the one at 7' = 0) is therefore

N(EO — anything) — N(BO — anything)

a(l) = ——= -
() N(BY — anything) + N(BY — anything) .
=6 (1—cosaT —xsinzT)
T
=26 (—g sin 2T + sin® %) (2.74)

A first measurement of the total asymmetry at LEP gave the preliminary result 4 = —0.01140.015+0.005
[911. This is an alternative way to measure CP violation in B°/B° oscillation, and gives a limit
|26| < 0.07 (90%CL), but it implies the danger of a possible bias due to the BY event selection.
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2.3.2.6 CP Violation at the 7 (4S)
B meson pairs from 7' (4S) decay are initially in a CP = 4+1,P = —1,C = —1 eigenstate
|B%(1)B"(2)) — |B°(2) B’ (1))

with angular momentum L = 1. Their time evolution is described by (2.52a), where the two scaled times
T1 and T5 may be taken as the decay times of the two mesons. By multiplying this state function with
(X(1)X(2)|H(1)H(2) where

(X()X(2)E(1LH(2)|B°(1)B"(2)) = (X (1)[H| B (1)) (X (2)[H|B"(2)) = 414,

are the decay amplitudes of two BY mesons and amplitudes of other mixtures of B(i) and B(j) yield
products of A; and A; accordingly, one obtains an amplitude

T1 —T2 Tl _TZ

M = eitoes(TitT) | o cos(x — iy) 5

+iS_ sin(z — iy)

(2.75)

where ¢g is a common, unobservable phase including the imt phases of two free B mesons, and the

coefficients are
A Ay

Tim

C_ = A1 Ay — A1 As, S_ = npAiAs —

There can be always two non-zero amplitude factors separated, leaving coefficients like

C_ 1 Zl A2 S_ _ nmA_1 A2

AA, AL Ay A1 A, Ay N Az

These coeflicients are convention independent factors similar to : CP phases common to A/A and
Nm cancel, and the exchange of quarks with antiquarks ensure that the product of CKM elements has each
quark index in as many V' as V* (or, with the same phase, 1/V) factors. From the general amplitude,
we can derive various special cases listed in table 2.10.

The square | M _|? leads to a general formula [92], which reads on the Y(4S) with the final states X7, X5
from the two B mesons

N(BE — X1 X3) o e_zrtle_T(gl cosh yT + ga sinh yT + hy cos 2T + hosin 2T') (2.76)
with 7' = T2 — T1 = F(tz — tl) and

g1 = 1O 415 P
g2 = 2Re(SEC_)
b= [P~ |5_[*
he =2Im(S2C_)

For BY mesons, we can assume § = 0 and y = 0, which corresponds to the simpler equation

N(BE—) X1X5) o e_zrtle_T(gl + hycos T + hasinzT) (2.77)

This includes tl_le case of BB oscillation, if we set e.g. Ay = Ay = 0._Then_C_ = Alﬂz, S_ =
g1 = hy = |A1As]?, and g5 = hy = 0. For a mixed mode we use e.g. A = Ay = 0. Then C_ =
S_ = —A1As/m, g1 = —h1 = |A1As]?, and g2 = ha = 0. The corresponding asymmetry is

N(X1X2) = N(X1Xs) N(X1X5)— N(X,

a(T) = = — : = —— : _)Ez) =coszT (2.78)
N(X1X2) + N(X1X5)  N(X1X2) + N(X1X5)
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Table 2.10 Coefficients for BB — X1 X5 decays from Y(4S). n,2 are the CP eigenvalues of final states

1,2, respectively, and 112 = nin2. dd denotes a penguin mode with a t quark in the loop,
“com.” denotes a final state that can be reached from both BY and B® and needs not to be a
CP eigenstate. In this case, also strong phases are involved, which can be resolved using the
charged conjugate final state, too. The coefficients of the time-dependent rate according to
(2.77) are also given for 6 = 0.

X1 Xa AA C_/AA S_/AA g1/|AA|2 ]11/|AA|2 h2/|AA|2

B-tag| B-tag| A1 A 0 —1/Nm 1 -1 0

B-tag| B-tag| Aj A 0 Nm 1 -1 0

B-tag| B-tag| A1 As 1 0 1 1 0

B-tag| B-tag| Aj A -1 0 1 1 0
- 1 _ Al 14|r|? 1—|r|? 2T

com. |B-tag| A1 As -1 —r = _nmkl TR BE |7'T|T;T

com. |B-tag| A} As 1 r= ”’Z‘,ﬁl 1+ |r|? 1—|r? —2Imr

cc B-tag Ay As -1 —mezw 2 0 —2n18in 23

cc B-tag| A1 A, 1 ne” %8 2 0 2n1 sin 23

U B-tag| A1 A, -1 —nre~ % 2 0 211 sin 2

U B-tag| A1 A, 1 et 2 0 —2n1 sin 2«

dd B—tag A1A2 -1 —m 2 0 0

dd |B-tag| A1 A, 1 m 2 0 0

cé cé 2A1g2 1_2771% %1622'? + %e‘?w 1 —nacos?2p —12sin? 28 0

cé uil 241 A5 % — %622(5"'0‘) %1622@ + ”7262“)‘ 1 — n12 cos 23 cos 2ar|n12 sin 23 sin 2 0

ct dd 241 A, % — %ezw 7771622'0 + 2 1 —1n15cos2f3 0 0

corresponding to figure 2.4 for positive T' as well as for negative T" with T'— —T..

For a CP eigenstate with eigenvalue 1 = 41 as meson (1), A;/A; = 7]16_2“2’, where q/; is the phase of
the CKM matrix elements involved. If the state (2) is a tagging mode, e.g. Az # 0, A2 = 0 we have the
situation of a tagged decay with

C_ = AjAy - (—1)
S_ = Ay Ay - (— e+
g1 = 2|4, [As?
h1 =0
hy = —2|A; |?| As|*n1 sin 2(¢ + B)
which is the typical situation of CP violation in the oscillatio_n/decay interference, with a 7" dependence
as shown in figure 2.10. The dotted curve corresponds to a B tag As = 0, A # 0 with

C_ = A1 A,

S_ = A1 Ay (7716_2i((5+[§))

91 = 2| A P | As]?

hi1 =0

hy = 2| A1 | Az|* 1 sin 2(¢ + 5)

and the asymmetry of both is described by equation (2.62) with Ay = —n sin 2((/; + 5) The flavour of
the signal-B meson (1) is uniquely defined at the time of decay t5 of the second B meson, since the
flavour of the latter can be identified by its final state.

If both final states are CP eigenstates with eigenvalues m, » = £1, A_lyz/Alyz = 771726_2“2’1’2, where 45172
are the phases of the CKM matrix elements involved, the coefficients are

C_ = A1 As(1 - Ulﬂzezi(él_(;Q))
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Fig. 2.10 Time dependent rate of Y(48) — BY + J/p K9 (
sin 23 = 0.5 and = 0.7.

S = A1A_2(7716_2i($1+5) - ﬂzezi($2+é))
91 = 4| A1]*|A2]*[1 — nimz cos 2(1 + B) cos 2(o + )]
hy = —4|A1)*|As[*n1n2 sin 2(¢1 + B) sin 2(¢2 + 3)
hs =0
which leads to a rate
N(BE — X1 X3) o 4|A1|2|A2|26_Ft16_T [1 — 172 (cos 2¢1 cos 2¢2 — sin 2¢ sin 2¢5 cos 2T)]

where the observable phase angles are ¢; = (/;1 + 5 and ¢5 = (/;2 + 5 If CP were conserved throughout
the decay chain, the eigenvalues are 17, = —n2 since the total CP eigenvalue 41 is achieved via another
factor (—1) from the relative L = 1 angular momentum of both B mesons. This corresponds to

N(BE = X4 Xog) 4|A1|2|A2|26_F(t1+t2) [1+ cos 2¢1 cos 2¢9 + sin 2¢4 sin 2¢4 cos ¢ T (2.79)
while the forbidden rate is
N(BE = X141 Xoy) 4|A1|2|A2|26_F(t1+t2) [1 — cos 2¢1 cos 2¢o — sin 2¢4 sin 2¢4 cos ¢ T (2.80)

If both decays proceed via the same flavour changing transitions, the CKM angles are the same for both
B mesons, ¢1 = ¢35 = ¢, and the forbidden rate is

N(BB — X1+ Xo4) o< 4|41 2| As]2e =T sin® 2¢(1 — cos 27)

This rate should be 0. It does actually vanish for 7" = 0, i.e. equal decay times of both. Only if their
lifetimes differ CP violation builds up in the interference term of oscillation and decay processes. For
different CKM angles, even at 7' = 0 there is a CP violating rate o< (1 — cos(¢1 — ¢2)) which can be
called consistently a special case of direct CP violation. The interference term is here, in contrast to
the example (2.55), not between two amplitudes for one B decay, but between two amplitudes for two
different B decays, which are in a coherent BB state. All these interesting cases will, however, not be
observed in the first generation experiments on the 7°(4S), since they involve a product of two small
branching ratios which are typically below 10~* and corresponds to less than one event per year at the
presently envisaged luminosities.
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2.3.3 CP Violation in K Decays

CP Violation has first been observed in 1964 [3] in K" decays. As shown in figure 2.2, the neutral kaon
system is characterized by all parameters , y and |n,,| having non-trivial values. This makes it much
more complicated than the B meson system. The light KY decays to about 99.9% into the CP = +1
eigenstates 77w and can therefore be identified with a CP = +1 eigenstate K_?_, while K? ~ K_. Using
the convention K_?_ = %(KO + KY),i.e. ¢cpx = 0, this can be written as

1
KQ = ———(K] +¢K?)
1+ |e?
1
K)= ———(K" +¢KY)

V1 |el?

up to an arbitrary common phase factor. For the standard parametrization of the CKM matrix (2.9),
the leading term for mys from the box graph for K°/K?° oscillation with a ¢ quark in the loop yields

N & elPcPK VC*;ZVCzd — oibopk 2i(Batds)

V& Veal

which is for this choice of the CP phase 0, ~ 1+ 2i(¢4 + ¢¢) and corresponds to € & —i(¢4 + ¢g) with

le|] « 1. However, to this order, contributions from T'jo become important, and eventually dominate

the value of €. Within the same convention, the CKM elements in the dominant tree decay s — u + ud

are real, hence the invariant phases including this decay are identical to the phases put into n,,. A
convention independent definition of € similar to (2.69) is

L —nmAg/Ag

— — (2.81)
1 + Uon/Ao

where

Ay = {(ntr™, I = 0|H|K"), Ay = (ntn™, I = 0|H|K")

are the decay amplitudes into the 777~ final state with isospin 0. This quantity is identical to

(mrm™ K%
(mtm- K9

€g =

defined as ex in [23].
There are again three possibilities for CP violation.

1) Direct CP violations have only been observed for neutral kaon decays to wm, where they constitute
a component in the asymmetries observed in interference of oscillation and decay. The effects are
much smaller than the expected ones in B decays. The phenomenology is in complete analogy with
equation (2.55), and will be discussed in more detail below.

2) CP violation in the oscillation can be observed using flavour specific decays like K° — 7= [*w.
The oscillation asymmetry (2.42) starting with an initial K° meson is dominated by the damped
cos zT" oscillation term seen in the lower diagram in figure 2.2. The expansion of the asymmetry in
§ according to (2.56) approaches a(T) — § at large times 7' >> 1 where the long-lived state K0 is
the only remaining one. Tt is the same for an initial K°. Hence, there are more K — K oscillations
than K — K, leaving a net excess of K” mesons a(co0) = § = (3.2740.12) - 1073 [9] which has first
been observed in 1967 [93].

3) A big fraction of neutral kaons decay not as a flavour specific state but as one of the CP eigenstates,
e.g. K_?_ — 7tr™ and K% — 7tr 7% The asymmetry from interference of oscillation and decay
has rates determined by (2.58), and has been observed in all these modes.
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The CP asymmetry in the 777~ final state is a complex interplay between CP violation in oscillation
(1 —r]) and a small phase angle argr. Therefore, a more pragmatic terminology has been introduced,
based on the amplitudes for the two eigenstates using the complex parameter

(rtn~ |[H|K?)

T | HIRY)

with a phase ¢4 _ = argn;_. If the formalism used for the B system is applied defining r;_ = NmAJA
by the K° and K% amplitudes as above, this parameter is an ¢ parameter for the final state #+7~
according to (2.69) and we get (rt7~|H|K?) = pA(1 +ry_) and {(nt 7~ |H|K?) = pA(1 —ry_) and

_1—7°_|__ _1—7]+_

- = s ry_ =
n+ 1—|—7°_|__ + 1+7]+_

Since r4_ is an observable, this holds also for 4 _. The coefficients for (2.58) are

Reny_
2 _ +
L=l =dg =
14 |ng-|?
L+ |ry | = 2|1+77+ 2
1= |ng-|?
Re ry— = |r+_|cos(arg 7°_|__) = m
. Imng_
Imry_ = |rp_|sin(argry_) = —QW

Furthermore, we have direct CP violation from

1—¢

1+¢

A= (77 JH|K®) = (T2~ | CP(CPHCP) CP |K°) = ¢'?cPx (71 17| (CP HCP)|K°) = ¢i?err 4

where ¢’ describes the small difference in the amplitudes. Its origin within the Standard Model lies in
the interference of tree and penguin diagrams, where hadronic penguins contribute only to the isospin
0 final state, while the tree graph and electromagnetic penguins have also a small isospin 2 component.
The two isospin amplitudes have different strong phases, and penguin and tree have a different weak
phase. Therefore there is a small direct CP violation according to (2.55), which would be observed even
without oscillation. If we choose an overall phase to make the isospin 0 amplitude Ay real, we may write
the isospin 2 amplitude as Ase?®e?920 with d59 being the strong phase difference, and ¢ the weak phase
difference. Then the ratio of amplitudes 1s

1 .. 1
AKY 5 7tn7) = \/gAze“f’e“;Q” + \/;Ao
— = : 1 o 1
AK® = wtam) = ¢'ferx (ﬁAze_m@m” + J;AO)

~ elbcPr [ | + \/Iéeiéw (6—i¢ _ eM’) — elbcrr [ ] — \/iéeiézu isin ¢
2 Ao AO

SN

and

Correspondingly we obtain

nmA__l—eo 1—¢

- = = . 1l — 2¢) — 26
"+ A 1+e 1+¢€ € ¢
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a
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| ] Fig. 2.11 Time dependent rate
asymmetry a(1") of K° = 7#t7~ and
K® = atz=. T = t/7 is the lifetime
- in units of 7 & 27g, the inverse of the
—-1.0}F | | N average width of K} and Kg.
0 5 10
T
and
Npe = Crtn- Ao+

Using the present world average [94], these numbers are

¢4 = (43.56 £ 0.56)°
|| = (2.290 4 0.020) - 1073
|r4—| = 0.996687 4 0.000042
sin(argry_) = —(3.156 4 0.043) - 1073
ry_ = 0.996682 — 0.003146 i

Expressed in these variables, the squared matrix elements are

|A]”

|AAP::e-TDHQT;;;:—F{<1+wn+_ﬁ>amhy7t+<1—wn+_ﬁ>ﬁnhyT

+ 2Reny_cosaT + 2Tmmny_ sin J:T} (2.82)
mp=er__1A0 g ?) cosh yT' + (1 ) sinh yT'
IM|"=e FEEE E (L4 |n4-|7) coshyT + (1 — |n4-[") sinh y

—2Reny_cosxT —2TImny_sin J:T}

which corresponds to the asymmetry function

(1) N(K® = 7t77) = N(K® = nt77) 20— |cos(aT — ¢1_) — &[|ns—|2e¥T + e~vT]
a = g = —
N(K® - mt7=) + N(K° — 7tn~) [n4—?e¥T + e=¥T — 2§|n4—| cos(zT — ¢4—)
 2fnyJeos(eT — 64 )
st T ot

(2.83)

shown in figure 2.11, where the K flavour is understood to be the one at 7' = 0. The approximation in
(2.83) is for |nm| = 1.
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The phenomenology for the 7°a° state is similar, with a small change due to the different interference

between

A([{O — 7T07T0) = \/;A262¢6252D _ \/;AO
- 7= ; 2 S 1
A =y (it fo)

. Ay . . . Ay
2 pitork (1 — \/§_A2 eid20 (i _ e_“z’)) = elPorx (1 + 2\/§—A2 €920 jsin qb)
0

| s

0

and

As .
€0 = —V2iZ2 0 5in ¢ = —2¢'
Aqg

which finally leads to 1gg = €gor0 & g — 2¢’.

A more general description of the kaon system waiving CPT invariance can be found in the literature
[21] and is discussed in [22]. Recent results on the kaon system [94] have reached an amazing precision
on many parameters, but are all well compatible with the Standard Model.



3. Measurement of CP Violation at B Meson

Factories

There are two experimental environments suitable to measure CP violation:

1000

ete™ storage rings operating at a cms energy of the 7'(4S) resonance mass, where about 1nb cross
section is available for exclusive BB production, almost at rest. At luminosities between 1-1032 and
1-10%*/cm?/s, they accumulate roughly 107...10% B mesons and the same number B* mesons
per year.

There have been many places proposed for such machines in the past [95-99], of which recently the
storage ring PEP-IT at SLAC (USA) and the storage ring KEKB in the TRISTAN tunnel at KEK
(Japan) evolved into real projects, which both aim at data taking early in 1999 with one detector
each.

Hadron collision experiments at energies far above the bb threshold, which provide a substantially
higher rate of incoherent bb pairs, but need dedicated triggers to select those from a tremendous
background.

The most promising place is LHC, which provides both a high B production cross section and a
high luminosity. There have been several proposals for dedicated experiments, which are either
fixed target experiments at LHC [100,101], or—as a special case—use the pp collider mode with a
detector sensitive in the very forward direction [102,103] where the cross section has a pronounced
maximum (see figure 3.1). This setup selects parton interactions, where one parton has much higher
momentum than the other, and comes therefore close to a fixed target setup, with the advantage of
using the high luminosity provided in beam-beam collisions. In all proposals, the setup has been
chosen to provide a large boost, which allows the separation of B mesons via their lifetime.

800

600

400

200

Fig. 3.1 bb cross section d?s/dfp doz
at 14TeV pp collisions versus fg and 6=
(cross section scale arbitrary, angles in rad
[103]. The distribution shows that B meson
production peaks in the very forward direction,
and that B mesons are accompanied by their
1 1 ’ partner b-jet at close angular distance there.

The number of produced B mesons within a reasonable data taking period is substantially lower at any
envisaged ete™ collider than at hadronic B factories. On the other hand, there is a much better signal-
to-background ratio, and without any sophisticated trigger every B meson can be recorded. Experiments
at the 7(4S) with only B and B in one event make also much better use of statistical methods compared
to an already restrictive event selection used at hadron machines. Therefore, the ete™ colliders will
most likely be able to establish CP violating effects in the B system unambiguously, given their clean
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systematics. An high energy hadron experiment will be required, however, to supply the statistics needed
to determine the parameters with precision.

While the LHC will start as a B factory not before 2005, there are also hadron experiments at lower
energies foreseen in near future: HERA-B [104], a fixed target experiment using the halo of the HERA
820GeV proton storage ring at DESY, and the experiments at Fermilab, the most promising being
an upgraded CDF experiment [105] with improved performance in B physics for the next run at the
Tevatron, a 2TeV pp collider.

All experiments are summarized in table 3.1. The asymmetric eTe™ storage rings PEP-1I and KEKB are
both designed to run with two separate rings and many bunches (1658 and 5000 per ring, respectively).
At KEKB the bunches cross at an angle of 22mrad in parallel orientation (crab crossing), while the more
conservative PEP-II design aims at head-on collision. This allows a closer bunch spacing and slightly
higher focussing at KEKB, resulting in a gain in luminosiy by a factor of 3. If this option proves viable,
also PEP-II can be upgraded to nonzero crossing angle. Another factor of 2 seems possible if one goes
more close to the limits of machine design, so that by the start of the second generation CP experiments
at LHC-B a luminosity of 2-103*/cm?/s at ete™ B factories will be reached.

Table 3.1 Proposed B factories (most of them being rejected, the approved ones are typed in bold)
[95-109]. The cms energy of bb, median B momentum (p(B)) 5, estimated bb cross section
and expected bb pair rate are compared.

machine type Eizoms {(p(B))s N(bb)/a

(beam energies [GeV]) [GeV] [GeV]

CESR. (Cornell) ete” 10.58 0.32 4-10°

BETA (PSI) symm. ete” 10.58 0.32 1-107

ISR-B (CERN) symm. ete™ 10.58 0.32 1-108

CESR III (Cornell) ete” 10.58 0.32 1-107

BETA (PSI) asym. ete™ (T+4) 10.58 L5 1-107

VEPP-5 (Novosibirsk) ete™ (T+4) 10.58 L5 5107

ISR-B (CERN) asym. ete™ (8+3.5) 10.58 2.25 6-107

CESR-B (Cornell) ete™ (8+3.5) 10.58 2.25 3107

KEKB (KEK) ete™ (8+3.5) 10.58 2.25 1-108

PEP II (SLAC) ete™ (9+3.1) 10.58 2.95 3107

HELENA (DESY) ete™ (9.3+3) 10.58 3.15 3107

HERA-B (DESY) p(820) —» C < 39 100 3108

HERA-B’ p(1000) — C < 43 140 6 - 108

LHB (CERN) p(7000) — Be <114 400 1-10t°

GAJET (CERN) p(7000) - H <114 400 1-10t°

BTEV (FNAL) pp forw. < 2000 ~ 30 110!

COBEX (CERN) pp forw. < 14000 ~ 50 510t

LHC-B (CERN) pp forw. < 14000 ~ 50 510t

CDF Run 2 (FNAL) pp < 2000 15 2...10-10%

DO Run 2 (FNAL) pp < 2000 15 2...10-10%

ATLAS, CMS (LHC) pp < 14000 ~ 20 5-10"2

SSC pp < 40000 ~ 20 51011
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Fig. 3.2 Peak cross section of the 7(4S), using I'tet = 10MeV [110] and various I'ce values from 0.21keV to
0.29keV, versus the machine resolution A = g(Ecnms) [111]. The crosses are the ARGUS/DORIS
data (right) and CLEO/CESR (left, errors guessed).

3.0.4 B Production Cross Sections

The cross section on top of the 7°(4S) resonance is proportional to the width T of T(4S) — eTe™,
and varies with the machine energy spread and the total width of the 7°(4S). Using the ARGUS result
Tiot = (10.0£2.84+2.7) MeV [110], the predicted peak cross section is given by the diagram in figure 3.2
for different I'... Unfortunately, the resonance parameters have big errors. Previous measurements by
CUSB and CLEO have used a parametrization valid for narrow resonances and can therefore not be
combined with the ARGUS results. The approximation A > I'to; used for its derivation is not valid for
the broad 7°(10580) and increases the resulting width artificially.

For the machine spread of a typical B factory of 6...6.5MeV, the range is in the 1...1.2nb region. A
better estimate is the observed peak cross section at CESR, which has a similar width in cms energy
(cp = 6.3MeV). CLEO observed a cross section ¢ = (1.05 + 0.02)nb [112], therefore a value of 1nb
seems to be a conservative number for rate estimates.

For pp scattering, the cross section of bb production is dominated by gluon gluon fusion, and depends on
the gluon structure function of the proton. QCD calculations are very uncertain close to threshold, but
more reliable at higher energies. Precise data exist at 1.8 TeV from CDF [113] for a limited phase space
region, and can be used to check QCD calculations. For the proposed machines and detector acceptance
volumes, the uncertainties are still large. Figure 3.3 gives an idea of bb production compared to the pp
total cross section.

The low fraction of bb events from all interactions at the low cms energies of fixed target experiments can
be somewhat compensated by the use of heavy nuclear targets. While the rare bb production cross section
per nucleon remains about constant and is o A, the number of nucleons per nucleus, the total cross
section feels shielding by the densely packed nucleons, and scales approximately with the cross section
area of the nucleus o< A%/3. This brings a gain in the ratio of cross sections o« A3, The scaling of o
with A is supported by measurements of the c¢ production cross section at high beam energies [115]. A
disadvantage of heavy elements is, however, the increased multiplicity due to secondary interactions in
the nucleus, and experiments have to balance the increase in relative rate with the increase in detector
occupancy.

The asymmetric gg collisions dominate the bb production process, producing jets peaked both in forward
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Fig. 3.3 Estimated range for the cross section of pN — bbX (between dotted curves) using the PYTHIA
5.6 parametrization [114] as a lower limit and an estimated upper limit 4 times larger, compared
to the total pp cross section (solid line [91).

or in backward direction, and the b and b jets are close together in these events. This is illustrated in
figure 3.1, where
d?c 10 sin 0 d?c
————— =sinfysinffg——
d6, 4o, P AR, A
is shown versus #, and 6. This fact is exploited by LHC-B [103], which is designed to operate at an

LHC pp collision point, with an acceptance limited to the forward region, but coming as close as some
10mrad to the beam axis.

3.0.5 B Meson Fractions

At the T(4S), the only final states are B B~ and B”B°, which are produced at the same rate, i.e. 50%
each. While unequal fractions due to phase space were discussed in the 80s, with more precise mass
measurements [9] moving the world average mass difference

m(B%) —m(B*%) = (0.20 & 0.28) MeV/c?

close to zero, and with new theoretical insights on the size of the Coulomb correction for charged B
mesons [116], the production ratio is narrowed down to

f+ _ B(X(48) - B*B")

= — =1.0040.04
fo B(r(4S) — B°BY)
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At hadron machines, the B meson fractions depend on fragmentation, and vary with target and cms
energy. An estimate for 8 TeV protons on a p or n target using the Lund fragmentation model [114]
is given in table 3.2. Experimental ratios obtained at LEP are included in this table, and indicate an
underestimated baryon production in the Monte Carlo model. Little is known, however, on the effects
of the initial u and d quarks in pp or pn collisions. Consequently, the model predictions should be taken
as nothing more but an educated guess, which should be correct within better than 10%.

Table 3.2 b hadron production rates per event predicted by the Lund Monte Carlo (8TeV p — p/n).
The fractions on the Z° [64] give the best present experimental knowledge for bb jets without
further quarks from the initial state.

b pp pn b pp pn A
B 0.408 0.430 BY 0.409 0.402 0.39 4+ 0.02
Bt 0.454 0.428 B~ 0.405 0.410 0.39 £0.02
B 0.091 0.093 B 0.118 0.122 0.11£0.02
other 0.006 0.006 other 0.008 0.008

From these estimates, the expected fraction of B® per b jet is about 38%, while studies at the B, meson
must build on samples which are almost a factor four smaller. The expected rates per year are estimated
for five experiments in table 3.3. Although the LHB project is no longer pursued, it is included in the
table as an example for a true fixed target experiment, with the advantage of a very close vertex detector.
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Fig. 3.5 Schematic view of the BABAR detector cut along the beam axis. The focusing quadrupoles and
the beam separation dipoles are inside the detector, leaving only limited space for the silicon vertex
detector. Both are surrounded by a cylindrical drift chamber, followed in radial direction by the
DIRC, the Csl calorimeter, the superconducting magnet coil and the instrumented flux return

(IFR).

3.1 Flavour Tagging

Any oscillation or CP asymmetry observation requires a tag of the initial flavour at 7" = 0. Starting
with the most popular example, the initial flavour is tagged with a charged lepton (e or p) from the
semileptonic decay of the partner b-hadron. The final states are

b— B — JWK?, b—ItX
b— BY = JW K, b= 1" X

Similarly, for other tags there exists always a correlation between a charge @—in most cases the electric
charge of the tagging particle, but e.g. for A hyperons the baryon number—and the beauty flavour of
the tag.

The asymmetry a is in an ideal case, where the flavour BY or B® at 7' = 0 is known unambiguously
from the lepton charge,

(1) = N(B® = JWK?) — N(B® — JjK2)  NJWEKS +1t) — N KL +17)
T RB S IR ¥ N(BO = I RS NKY +10) 4 N KS +1-)
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3.1.1 Observed Versus True Asymmetry

In the real experiment, there are additional asymmetries involved. These are few at 7°(4S) decays, and
many more at hadron B factories using pp collisions:

1)

The number of BY and BY produced in pp collisions are not equal, due to the fact that an excess
of 4 u-quarks and 2 d-quarks is present from the beginning. There are four different fragmentation
probabilities:

fo=N(BY)/N(®)  fo=N(B")/N(b)

fs=N(Bs)/N(b)  fs = N(Bs)/N(b)
This introduces an intrinsic asymmetry, which is not present at ete~ colliders operating at the
7(4S).

The second b-hadron used for tagging can have oscillated into its anti-particle with probability

_ NG =)
X = N(i)—)l) —f0X0+sts
N =1t . _
X= N((bil))'IfOXo-l-sts

Here y is the average probability for & — b, and y for b — b through mixing; xo and x; denote the
mixing probabilities of B® and By, respectively. Due to the coherent BB state in 7(4S) decays, this
effect is absent at B factories operating at the 7°(4S).

The lepton can be from semileptonic charm decay in the b — ¢ cascade. Likewise, almost all tags—
except fully reconstructed b-hadrons—have a chance to occur at the “wrong” charge. Part of this
effect 1s even due to wrong particle identification of b decay products. This mistag probability w is

present at all experiments, but is reduced if determined as a function of discriminating variables; as
described below.

The lepton can be faked by m or K, with absolute multiplicities m4 and m_ for faked positive and
negative tag leptons, with

my = N(7t) - dp -epr + N(KT) -0 s+
m_ =N(r7) 0z eo- + N(K7) - 0x -ex-

Here ex is the kinematic tagging acceptance and dx the misidentification probability for hadron X.
Two sources of hadrons contribute in two different ways:

e At hadronic machines, the charged hadron production through fragmentation yields my # m_
due to the initial quarks from the pp or pn state, with no correlation to the b flavour.

e The charged hadron production through b-hadron decays may show a substantial charge
asymmetry, which is correlated to the b flavour and therefore has also effective tagging power and
mistag probability. This case is absorbed in the mistag probability w, which includes mistags
from true and faked tag leptons.

Two b-hadrons with the same beauty may have been produced simultaneously.

At LHB, the rate of bb events is approximately 2 - 107° per bunch crossing, i.e. 2 in 100000 events
have two separate interactions leading both to a bb pair. According to the Lund model (as simulated
in the PYTHIA program) single interactions with pp — bbbbX have a frequency ~ 2-10~% compared
to all pp — bbX events. The total rate of 4 - 107° can safely be neglected. The rate gets slightly
higher with increasing cms energy, but stays always below the level to become a significant source
of mistag.

A ¢eX event occurs together with a bb event, producing additional leptons from charmed hadron
decays with no relation to the beauty flavour. At LHB this occurs with a frequency ~ 4 - 1073,
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Although it may lead to a small amount of additional uncorrelated mistags, which are included
in Monte Carlo simulations, it is negligible compared to the contribution from secondary charmed
particles in bbX events.

For b and b flavours as tags at 7' = 0 we have two event rates N = dN/dT as a function of the proper
scaling lifetime T'

NUWES 48) = fo(1+a)- N
N KL +b) = fo(1—a) - N

for given true asymmetry a = a(T). Tagging the b or b with an electron or muon at a hadron machine,
the effects mentioned above give the following rates:

Ny =NUWK +1T)= (1—a) - fo - [B(1=x)+Cx+my]-N

+(1+a) fo-[BY+C(—-x)+my] - N

=NUWEKS+17)= (1+a) fo-[BL=X)+Cx+m_] N
+(1—a)-fo-[Bx+C(1—x)+m_]-N (3.1)

with the visible branching fractions B for 6 — =X and C for b — It X being

Bm2[B(b—1"vX)+0.188(B — 1" vX)+0.088(B = D; X)| -ep ~ 0.24ep
CwB(b—cX) 2B(c = 1TvX) sc ~0.20z¢

Here £p is the tagging acceptance for “right sign” leptons from the second b-hadron, ¢ the tagging
acceptance for “wrong sign” leptons, mainly from secondary charmed hadron decays. The given
branching fractions illustrate the main contributions to both classes. Both fractions get additional
contributions from right- and wrong-sign pions and kaons, with an amount depending on the lepton
identification capability of the detector. Note that the resulting event numbers are about equal, if the
efficiency 1s uniform over the whole phase space, and tagging power has to come from the use of kinematic
differences of both lepton samples.

m_ and my are the fake rates from misidentification of hadrons originating not from & decays. Double
tags, e.g. by a true plus a fake lepton, have been ignored in these formulae.

The normalization constant is
N = N(bb)-B(B® = Jp K = 1H-nta) - o(T) - 7|7l

where ¢ is the reconstruction and trigger efficiency. It will cancel in all ratios.

The observed asymmetry aqps 18 then

Ni— Ns
Aobs = ————
Ny + Ny
In(1 = 2w) + 24, (1 — 2w) + I, (1 =2w) [1 — 2xest] + InAm (3.9)
= a - )
(14 (1 = w)™=F"*) (1 + Ioa) (14 (1 — w) ==F"%) (1 + Ipa)
with _ _
_C _ fox — fox ~ Jox + fox
w = ) X — " F . 75 Xeff = —
B+C fo+ fo fo+ fo
Lp="F""2( ), L= fo=1o
B fo+ fo

or approximately, ignoring terms @ (a?),

Aobs = 1+ D -a
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Fig. 3.6 Observed asymmetry acps versus physical asymmetry a for a cut on the tag lepton at p; = 1GeV/c,
using fo = 0.404, fo =0.410, fs = 0.091, fs = 0.119, N(KT) =0.8, N(K~) =112, N(z+) = 9.3
and N(77) = 8.1 (without those from Kg) from the PYTHIA/JETSET Monte Carlo programs,
B(b =1~ X) = 23% and a lepton tagging acceptance of 57%, B(b — ¢ — It X) = 19% and a tagging
acceptance for leptons from charm of 15% (corresponding to p; > 1GeV/c), a misidentification
probability of 2% for K and 1% for =, and a tagging acceptance for fake pions of 8% and for kaons
of 12% (K+) and 17% (K 7). In the linear approximation, these parameters give I = —0.003 and
D = 0.45. The deviation from linearity is below visibility in this plot.

with an “Intrinsic” asymmetry
I=1+2A,+ I,

and a “dilution factor”

_ (1 —2w)(1-1§)
b= 14 (1 — w) 2=t

(L=x=X)=D¢ Dn

where the dilution factor has been split into a tagging component D; and a mixing component
Dy =1 —x— x = 0.78. The linear approximation holds very well for all practical purposes, as can be
seen in fig. 3.6 from a Monte Carlo simulation using the event parameters for the LHB experiment. The
next order approximation is

aobs = I + Da + DIya®

which will only be important at large production asymmetries between B® and B°.

The rate number of reconstructed tagged events is

Ntot:N1+N2:(B+C+m++m—)'[f0+f0+a(f0—fo)]'N
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On the 7(4S), where a BB pair is produced exclusively and 7' = 0 is the decay time of the tag-B, the
relation (3.2) simplifies considerably, with m_ =m4 =0, x =Y =0, and fy = fo = 0.5 to

dobs = (1 — 2w)a (3.3)

There is no intrinsic asymmetry (I = 0, unless the detector has different acceptances for positive and
negative particles, which is not considered in the relations above), there is no mixing dilution, Dy, =1,
and the dilution factor is related to the mistag probability simply as D = Dy = 1 — 2w. This tagging
dilution, which is also a good first approximation in more complicated jet environments, can be expressed

in the simple form
right-sign — wrong-sign

Di=1-2w= (3.4)

right-sign + wrong-sign
where “right-sign” and “wrong-sign” refers to the number of correct and wrong tags, respectively.

As will be shown in detail below, the error on the observed asymmetry amplitude is ¢, o< 1/4/N; + Ns.
Therefore, the error on the asymmetry amplitude Aq is approximately

1 1
- DYNi+ N, & D?N,

o(Ao)

where Ny is the number of signal events and £, is the tagging efficiency, 1.e. ¢, Ny 1s the fraction of signal
events with a flavour tag. The performance of tagging can therefore be defined by the factor (¢ D?)es
which gives the effective reduction in number regarding statistical precision. It is also called separation,
since it is 1 if & and b can be separated perfectly event by event, and 0 if they cannot be distinguished.

3.1.2 Statistical Tagging

Flavour tagging exploits always a correlation between the beauty flavour of the parent b-hadron and a
charge @—in most cases the electric charge of the tagging particle, but e.g. for A hyperons the baryon
number or strangeness and for DY mesons the charm. This correlation is perfect for fully reconstructed
beauty mesons or baryons.

However, a complete reconstruction of B decays will only be possible in a very limited number of events.
A more universal approach is to collect this information via certain characteristics of the particles which
are able to identify the flavour. In the example above, only leptons have been used, with a charge
correlated to the beauty flavour via semileptonic decays b — [~ De. This tagging method suffers from
two problems:

e only about 20% of all b hadrons decay semileptonically, and
e a substantial fraction of leptons from other sources have the “wrong” charge.

A more complete exploitation of the secondaries from B decays can be achieved in a statistical analysis.
The flavour tagging power of these decay products (like charged leptons) is determined by the values
of a small number of discriminating variables X, X», ... which help to identify their role in the decay
process [117,118,119]. Thus, instead of fitting aons(T) = D AgsinaT + I, we may fit a two-dimensional
distribution

aobs(T, D) = D AgsinaT + 1 (3.5)

to obtain the parameter Ay. Here the mistag contribution to D is not a constant average dilution factor,
but a function of the discriminating variables X, X5, ..., and varies between —1 and +1. Negative
values mean that in the kinematic range defined by {X;, Xs, ...} there are more “wrong-sign” tags with
opposite sign of charge and flavour than “right-sign” (or same-sign) tags. In other words, the correlation
between the charge and the beauty flavour has flipped. D is evaluated event by event in addition to the
scaled lifetime (difference) T.
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Fig. 3.7 Distributions of muons in the 7(4S) cms momentum for “right-sign” ( ) and “wrong-sign”
( ) tags (a), and the corresponding dilution factor (b). The simulation has been done
for the BABAR detector; the peak at low momentum is due to K and 7w decays and particle
misidentification.

While this concept should be applied to all dilution factors, e.g. to mixing dilution as a function of the
lifetime of a B meson in the second jet or to the dilution due to limited precision in the determination
of the oscillation time 7" as a function of vertex precision, in the following sections only the application
to the tagging dilution will be discussed. The relevant information for the fit is the tagging dilution
coefficient Dy (X1, Xo,...) itself. Tt is given by all tag particles, i.e. particles with a nonzero charge-
like quantum number @ that can be correlated to the beauty flavour. The discriminating variables for
each particles have to be chosen in a way to differentiate maximally between kinematic situations with
different correlation strength. An obvious variable is the momentum of the particle in the parent’s rest
frame, if this can be reconstructed. This is illustrated in figure 3.7, where the momentum of muons in
the 7(4S) rest frame—which comes close to the B rest frame—is used as discriminator: Above a value of
about 1.5 GeV/e, almost all muons are from semileptonic B decays, and show therefore an almost perfect
correlation with the beauty flavour. This is indicated by a dilution factor close to 1 in figure 3.7b, which
is calculated from the distributions in figure 3.7a using (3.4). At values below 0.7GeV/c there is an
opposite correlation due to b — ¢ — [Tv X, though diluted to about one fifth. The flip of the correlation

is at 0.9 GeV/c, where the mistag probability is w = %,

and no flavour information is obtained.

Other discriminating variables can be e.g. the impact parameter to the beam axis or the angle to the
closest track from the same B. Often information on the environment may have even better or at least
complementary discriminating power, e.g. the energy of a neutrino as missing momentum in the case of

a charged lepton tag.

In the statistical approach one considers the distributions of the variables X7, Xi2... of daughter
particle 1 with charge @1, the variables Xs1, Xo5... of daughter particle 2 with charge @», and so
on, i.e.

fe(X11, Xio oo, Xog, Xooy ooy |Q1,Q2 )
if the parent was a B meson (or b-hadron), and
fE(XllaX12~"aX21aX22a"""'|Q1’Q2~~~)

if the parent was a B meson (or b-hadron). The mostly continuous variables X;; and the charges Q;
may both be considered random variables. The flavour of this event is assigned by maximum likelihood,
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i.e.if fp > fz the beauty of the event is taken to be +1 and vice versa. This assignment is unique, and
depends on the X and @ variables together. The signed dilution factor is then

fB(X . 0Q. ) = f5(X...]Q...)
fBX . Q. )+ f5(X...1Q..)

D(X....Q..)=

where the sign gives the estimated beauty quantum number, and its absolute value gives the dilution
factor corresponding to this flavour assignment.

For one-dimensional distributions, the true flavour is statistically related to @ by the densities f5(.X;|Q)
of tags with a b quark, and f5(X;|Q) of tags with a b quark. The average beauty flavour of a sample
with a certain value X; and @ is then

B - IB(X;1Q) — [5(X;1Q)
" B(X5Q) + f5(X51Q)

For the opposite charge, the densities are fp(X;| — Q) = f5(X;|Q) and f5(X;|— Q) = fB(X;|Q) up to
negligible explicit CP violations. This reduces four functions in the general ansatz to only two functions.
Instead of treating @ = +1 and —1 as two values of an additional random variable, the flavour of the
parent b-hadron may be a priori assigned to be . This assignment is arbitrary, and could be opposite,
as long as it is uniquely defined. Then the flavour estimator can be written as

(3.6)

The absolute value of the signed factor

B - (X4 fe(Xl+) = fB(X]-)
~ BXGI) + (XG4 fe(XG1H) + f(X-)

Dy (X;)

is the tagging dilution factor for all tags with a value X;. It is |D,| = 1 if the flavour is perfectly
correlated with Q. The sign is a flavour corrector: It is negative if the arbitrary a priori assignment from
@ 1s more often wrong than right:

_ right-sign — wrong-sign

" right-sign + wrong-sign

It is typically a smooth function of X, and can be obtained from a Monte Carlo simulation or from real
data measuring the BB oscillation amplitude as described below.

The flavour estimator B defined in (3.7) is the average flavour of events in a sample with tagging particles
of charge @ and discriminating variable X, e.g. of positive leptons at a given cms momentum:

N f5(X;1Q)

» fB(X]|Q) (_1) .
(X;1Q) + f5(X;1Q) fe(X;|Q) + f5(X;|Q)

B=(41)- T

The coefficients are the fractions (or a posteriori probabilities) of events from B and B, respectively.
This variable is itself a discriminating variable comprising all used information in the event. It can be
split into its sign—used as flavour guess—and its absolute value |B|, which is the tagging dilution factor

Dy(B) = |B|
All informations X;; from one or several tags in an event are combined to estimate the flavour of the

tag hadron more reliably.

A full exploitation of this tagging method is, however, impossible since the detailed information required
to determine the innumerable multidimensional functions cannot be achieved within the statistical
precision of any experiment. Several approximations are proposed to overcome the technical problems.
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One approach is to use only one-dimensional distributions and to assume factorization [117,119]

fe(X11, X120, Xo1 ... |Q1,Q2.. ) = fB(X11|1Q1) - fB(X12]Q1) - - fB(X21]|Q2) - -

With this ansatz, one can add all flavour estimators of the same event like relativistic velocities. For two
tagging particles with variables X1, @1 and X3, @2, inserting (3.7) into the result

L B+ B
B=hiaBy = -2 (38)
14 B1Bs
leads immediately to

[B(X1|Q1) [B(X2|Q2) — f5(X1|Q1) f5(Xa]Q2)

B (X11Q) 5 (X2l Qo) + 15X 1Q0) [ 5( X2 Q)

Repeated addition of the estimators from all tagging particles and discriminating variables yields the
total flavour estimator of the event.

Although factorization is not valid, the approximation is usually quite good and can be tested by
determining D;(B). The deviation D;(B) — |B| is a measure of the correlations; if it is small, the
approximation is a good one, if it i1s large, a different way to combine tagging information may improve
the result.

A very promising approach for this improvement is to combine many discriminating variables for one
particle into one output variable, which is an optimum representation of the flavour information including
the correlations. A linear combination of carefully chosen variables is used in a Fisher discriminant
analysis. Even better results are achieved with the help of learning neural networks [120]. A combination
of both methods, or more flexible neural networks which allow input of a variable number of tag particles
and their corresponding parameters, can finally give a maximum of information.

In a statistical tagging method, the effective performance or separation (z;D?)c can no longer be split
into two factors. In fact, =, is one in the ultimate realization, where every event is used as a tag. The
product, on the other hand, can still be evaluated as

1
de
(gtpf)eﬂz/o d—;Df(s)ds

where

dEt _
ds = f(s)

is the probability density of s = |B| In the general concept, a flavour estimator i1s constructed for every
event—with a value close to 0 if no good tagging information is available—and the performance number

(e Df)er = (Df') = (s%)

is the average tagging dilution of all events.

The idea to calculate a flavour estimator for every event is especially promising on the 7(4S), where
BYBY are produced exclusively. After removing the signal CP channel (e.g. J/i K2), the whole residual
event is from the other B, so every charged particle can be used for statistical tagging.
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3.2 Estimating the Performance

The performance of an experiment can be estimated by the expected error within one year of data taking.
Complications due to penguin amplitudes (“penguin pollution”) are shortly discussed below. The error
on an asymmetry amplitude Ag (or likewise ©@g) is approximated as

1

o) = oA

(3.9)

where the “effective number of events” 1s
Neg = D2DeDZ (24 D?)eqes B(BY — X) - 2fo0(bb) - L - 107s

with the following factors:

107s is the assumed duty time of any dedicated experiment at design luminosity in a year.
L is the luminosity of the machine.

o(bb) is the cross section for b quark pair production.

fo is the fraction of b quarks turned into B® mesons.

B(BY — X) is the product branching fraction of B® into the final state investigated, e.g. B(B® —
TRED) - BUKY = ) - [BUS = c+em) + BUR — o).

€5 1s the signal reconstruction efficiency, including the geometric acceptance and the trigger efficiency.
This may be correlated with e, if a trigger uses information from the tag.

g; is the tagging efficiency. It goes always with the tagging dilution factor D; as the product ,DZ.
Exploiting statistical tagging to its fullest, £, = 1 while all loss from ambiguous tags is moved into the
effective average (D?) = (g, D?)egr.

Dy, is the mixing dilution factor: D, = 1 at the T(4S), D, = 1 — x — ¥ &~ 0.78 for incoherent bb
production and tags from the other b-hadron. Same-jet tagging techniques, like using a jet charge or the
pion from B**t — Bzt are not subject to mixing dilution.

D. =~ 1—c1s adilution factor induced by background to the signal channel. The total number of events is
increased by background by a factor 1/D., and at the same time the asymmetry amplitude is decreased
by a factor D., giving rise to a reduction factor D? for the effective number. This is the simplest way to
incorporate background effects. A detailed study of the time evolution of background can further reduce
its influence on the error.

D, is the dilution factor arising from lifetime resolution.

Comparing the various experimental proposals requires detailed information, since they use different
assumptions for these numbers, and also different levels of realism in detector simulation. It is, however,
fair to predict that—if the Standard Model is right—CP violation will be discovered around the year
2000.
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