Experiments in Particle Physics

Peter Križan
University of Ljubljana and J. Stefan Institute

1st Nagoya Winter School, Ise-Shima, Februar 2009

Contents of this course

-Lecture 1: Introduction, experimental methods, detectors, data analysis
-Lecture 2: Selection of particle physics experiments: flavour physics
\bullet-LHC experiments: see T. Kondo’s lecture

Standard Model: content

Particles:

- leptons $\left(\mathrm{e}, v_{\mathrm{e}}\right),\left(\mu, v_{\mu}\right),\left(\tau, v_{\tau}\right)$
- quarks (u,d), (c,s), (t,b)

Interactions:

- Electromagnetic (γ)
- Weak (W+ ${ }^{+}$W-, Z^{0})
- Strong (g)

Higgs field

Flavour physics

... is about

- quarks
and
- their mixing
- CP violation

Flavour physics and CP violaton

Moments of glory in flavour physics are very much related to CP violation:
Discovery of CP violation (1964)
The smallness of $\mathrm{K}_{\mathrm{L}} \rightarrow \mu^{+} \mu^{-}$predicts charm quark
GIM mechanism forbids FCNC at tree level
KM theory describing CP violation predicts third quark generation
$\Delta \mathrm{m}_{\mathrm{K}}=\mathrm{m}\left(\mathrm{K}_{\mathrm{L}}\right)-\mathrm{m}\left(\mathrm{K}_{\mathrm{S}}\right)$ predicts charm quark mass range
Frequency of $\mathrm{B}^{0} \mathrm{~B}^{0}$ mixing predicts a heavy top quark
Proof of Kobayashi-Maskawa theory $\left(\sin 2 \phi_{1}\right)$
Tools to find physics beyond SM: search for new sources of flavour/CPviolating terms
Distiguished in 2008 by the Nobel prize to Kobayashi and Maskawa

CP Violation

Fundamental quantity: distinguishes matter from anti-matter.

A bit of history:

- First seen in K decays in 1964
- Kobayashi and Maskawa propose in 1973 a mechanism to fit it into the Standard Model \rightarrow had to be checked in at least one more system, needed 3 more quarks
- Discovery of B anti-B mixing at ARGUS in 1987 indicated that the effect could be large in B decays (I.Bigi and T.Sanda)
- Many experiments were proposed to measure CP violation in B decays, some general purpose experiments tried to do it
- Measured in the B system in 2001 by the two dedicated spectrometers Belle and BaBar at asymmetric $\mathrm{e}^{+} \mathrm{e}^{-}$colliders - B factories

What happens in the B meson system?

Why is it interesting? Need at least one more system to understand the mechanism of CP violation.

Kaon system: hard to understand what is going on at the quark level (light quark bound system, large dimensions).
B has a heavy quark, a smaller system, and is easier for interpreting the experimental results.

First B meson studies were carried out in 70s at $\mathrm{e}^{+} \mathrm{e}^{-}$ colliders with cms energies $\sim 20 \mathrm{GeV}$, considerably above threshold ($\sim 2 x 5.3 \mathrm{GeV}$)

B mesons: long lifetime

Isolate samples of high- p_{T} leptons (155 muons, 113 electrons) wrt thrust axis
Measure impact parameter δ wrt interaction point

Lifetime implies \mathbf{V}_{cb} small
MAC: (1.8 $\pm 0.6 \pm 0.4) p s$
Mark II: (1.2 $\pm 0.4 \pm 0.3) p s$

Integrated luminosity at
29 GeV: 109 (92) pb ${ }^{-1}$ ~3,500 bb pairs

MAC, PRL 51, 1022 (1983) MARK II, PRL 51, 1316 (1983)

Systematic studies of B mesons: at Y(4s)

Systematic studies of B mesons at Y(4s)

80s-90s: two very successful experiments:
-ARGUS at DORIS (DESY)
-CLEO at CESR (Cornell)
Magnetic spectrometers at $\mathrm{e}^{+} \mathrm{e}^{-}$ colliders (5.3GeV+5.3GeV beams)

Large solid angle, excellent tracking and good particle identification (TOF, dE/dx, EM calorimeter, muon chambers).

Mixing in the B^{0} system

1987: ARGUS discovers BB mixing: B^{0} turns into anti- B^{0}

Reconstructed event

$$
\chi_{d}=0.17 \pm 0.05
$$

ARGUS, PL B 192, 245 (1987) cited >1000 times.

Time-integrated mixing rate: 25 like sign, 270 opposite sign dilepton events Integrated $Y(4 S)$ luminosity 1983-87: $103 \mathrm{pb}^{-1} \sim 110,000$ B pairs

Mixing in the B^{0} system

$$
\begin{aligned}
& \Delta m \propto \\
& \left|V_{t b}^{*} V_{t d}\right|^{2} m_{t}^{2} \propto \lambda^{6} m_{t}^{2} \\
& \left|V_{c b}^{*} V_{c d}\right|^{2} m_{c}^{2} \propto \lambda^{6} m_{c}^{2}
\end{aligned}
$$

Large mixing rate \rightarrow high top mass (in the Standard Model)
The top quark has only been discovered seven years later!

Systematic studies of B mesons at $\mathrm{Y}(4 \mathrm{~s})$

ARGUS and CLEO: In addition to mixing many important discoveries or properties of

- B mesons
- D mesons
- τ^{-}lepton
- and even a measurement of ν_{τ} mass.

After ARGUS stopped data taking, and CESR considerably improved the operation, CLEO dominated the field in late 90s (and managed to compete successfully even for some time after the B factories were built).

Studies of B mesons at LEP

90s: study B meson properties at the Z^{0} mass by exploiting
-Large solid angle, excellent tracking, vertexing, particle identification
-Boost of B mesons \rightarrow time evolution (lifetimes, mixing)
-Separation of one B from the other \rightarrow inclusive rare $b \rightarrow u$

Studies of B mesons at LEP and SLC

$\mathrm{B}^{0} \rightarrow$ anti- B^{0} mixing, time evolution

Fraction of events with like sign lepton pairs

Almost measured mixing in the B_{s} system (bad luck...)
Large number of B mesons (but by far not enough to do the CP violation measurements...)

Mixing \rightarrow expect sizeable CP Violation (CPV) in the B System

CPV through interference of decay amplitudes

CPV through interference of mixing diagram

CPV through interference between mixing and decảy amplitudes

Directly related to CKM parameters in case of a single amplitude

Golden Channel: $\mathrm{B} \rightarrow \mathrm{J} / \Psi \mathrm{K}_{\mathrm{S}}$

Soon recognized as the best way to study CP violation in the B meson system (I. Bigi and T. Sanda 1987)

Theoretically clean way to one of the parameters $\left(\sin 2 \phi_{1}\right)$

Clear experimental signatures $\left(\mathrm{J} / \psi \rightarrow \mu^{+} \mu^{-}, \mathrm{e}^{+} \mathrm{e}^{-}, \mathrm{K}_{\mathrm{S}} \rightarrow \pi^{+} \pi^{-}\right)$

Relatively large branching fractions for b->CCS ($\sim 10^{-3}$)
\rightarrow A lot of physicists were after this holy grail

Genesis of Worldwide Effort

Time evolution in the B system

An arbitrary linear combination of the neutral B-meson flavor eigenstates

$$
a\left|B^{0}\right\rangle+b\left|\bar{B}^{0}\right\rangle
$$

is governed by a time-dependent Schroedinger equation

$$
i \frac{d}{d t}\binom{a}{b}=H\binom{a}{b}=\left(M-\frac{i}{2} \Gamma\right)\binom{a}{b}
$$

M and Γ are 2×2 Hermitian matrices. CPT invariance $\rightarrow \mathrm{H}_{11}=\mathrm{H}_{22}$

$$
M=\left(\begin{array}{cc}
M & M_{12} \\
M_{12}^{*} & M
\end{array}\right), \Gamma=\left(\begin{array}{cc}
\Gamma & \Gamma_{12} \\
\Gamma_{12}^{*} & \Gamma
\end{array}\right)
$$

Time evolution in the B system

The light B_{L} and heavy B_{H} mass eigenstates with eigenvalues $m_{H}, \Gamma_{H}, m_{L}, \Gamma_{L}$ are given by

$$
\begin{aligned}
& \left|B_{L}\right\rangle=p\left|B^{0}\right\rangle+q\left|\bar{B}^{0}\right\rangle \\
& \left|B_{H}\right\rangle=p\left|B^{0}\right\rangle-q\left|\bar{B}^{0}\right\rangle
\end{aligned}
$$

with the eigenvalue differences

$$
\Delta m_{B}=m_{H}-m_{L}, \Delta \Gamma_{B}=\Gamma_{H}-\Gamma_{L}
$$

They are determined from the M and Γ matrix elements

$$
\begin{aligned}
& \left(\Delta m_{B}\right)^{2}-\frac{1}{4}\left(\Delta \Gamma_{B}\right)^{2}=4\left(\left|M_{12}\right|^{2}-\frac{1}{4}\left|\Gamma_{12}\right|^{2}\right) \\
& \Delta m_{B} \Delta \Gamma_{B}=4 \operatorname{Re}\left(M_{12} \Gamma_{12}^{*}\right)
\end{aligned}
$$

The ratio p / q is

$$
\frac{q}{p}=-\frac{\Delta m_{B}-\frac{i}{2} \Delta \Gamma_{B}}{2\left(M_{12}-\frac{i}{2} \Gamma_{12}\right)}=-\frac{2\left(M_{12}^{*}-\frac{i}{2} \Gamma_{12}^{*}\right)}{\Delta m_{B}-\frac{i}{2} \Delta \Gamma_{B}}
$$

What do we know about Δm_{B} and $\Delta \Gamma_{B}$?
$\Delta m_{B}=(0.502+-0.007)$ ps $^{-1}$ well measured

$$
\rightarrow \Delta \mathrm{m}_{\mathrm{B}} / \Gamma_{\mathrm{B}}=\mathrm{x}_{\mathrm{d}}=0.771+-0.012
$$

$\Delta \Gamma_{\mathrm{B}} / \Gamma_{\mathrm{B}}$ not measured, expected $\mathrm{O}(0.01)$, due to decays common to B and anti-B - O(0.001).
$\rightarrow \Delta \Gamma_{\mathrm{B}} \ll \Delta \mathrm{m}_{\mathrm{B}}$

Since $\Delta \Gamma_{B} \ll \Delta m_{B}$

$$
\begin{aligned}
& \Delta m_{B}=2\left|M_{12}\right| \\
& \Delta \Gamma_{B}=2 \operatorname{Re}\left(M_{12} \Gamma_{12}^{*}\right) /\left|M_{12}\right|
\end{aligned}
$$

and

$$
\frac{q}{p}=-\frac{\left|M_{12}\right|}{M_{12}} \quad=\text { a phase factor }
$$

or to the
next order

$$
\frac{q}{p}=-\frac{\left|M_{12}\right|}{M_{12}}\left[1-\frac{1}{2} \operatorname{Im}\left(\frac{\Gamma_{12}}{M_{12}}\right)\right]
$$

B^{0} and \bar{B}^{0} can be written as an admixture of the states B_{H} and B_{L}

$$
\begin{aligned}
& \left|B^{0}\right\rangle=\frac{1}{2 p}\left(\left|B_{L}\right\rangle+\left|B_{H}\right\rangle\right) \\
& \left|\bar{B}^{0}\right\rangle=\frac{1}{2 q}\left(\left|B_{L}\right\rangle-\left|B_{H}\right\rangle\right)
\end{aligned}
$$

Time evolution

Any B state can then be written as an admixture of the states B_{H} and B_{L}, and the amplitudes of this admixture evolve in time

$$
\begin{aligned}
& a_{H}(t)=a_{H}(0) e^{-i M_{H} t} e^{-\Gamma_{H} t / 2} \\
& a_{L}(t)=a_{L}(0) e^{-i M_{L} t} e^{-\Gamma_{L} t / 2}
\end{aligned}
$$

$A B^{0}$ state created at $t=0$ (denoted by $\mathrm{B}_{\text {phys }}$) has

$$
a_{H}(0)=a_{L}(0)=1 /(2 p) ;
$$

an anti- B at $\mathrm{t}=0$ (anti- $\mathrm{B}_{\text {phys }}$) has

$$
a_{\mathrm{H}}(0)=-\mathrm{a}_{\mathrm{L}}(0)=1 /(2 \mathrm{q})
$$

At a later time t, the two coefficients are not equal any more because of the difference in phase factors $\exp (-\mathrm{iMt})$
\rightarrow initial B^{0} becomes a linear combination of B and anti- B

Time evolution of B's

Time evolution can also be written in the B^{0} in \bar{B}^{0} basis:

$$
\begin{aligned}
& \left|B_{\text {phys }}^{0}(t)\right\rangle=g_{+}(t)\left|B^{0}\right\rangle+(q / p) g_{-}(t)\left|\bar{B}^{0}\right\rangle \\
& \left|\bar{B}_{\text {phys }}^{0}(t)\right\rangle=(p / q) g_{-}(t)\left|B^{0}\right\rangle+g_{+}(t)\left|\bar{B}^{0}\right\rangle
\end{aligned}
$$

with

$$
\begin{gathered}
g_{+}(t)=e^{-i M t} e^{-\Gamma t / 2} \cos (\Delta m t / 2) \\
g_{-}(t)=e^{-i M t} e^{-\Gamma t / 2} i \sin (\Delta m t / 2) \\
M=\left(M_{H}+M_{L}\right) / 2
\end{gathered}
$$

If B mesons were stable ($\Gamma=0$), the time evolution would look like:

$$
\begin{aligned}
& g_{+}(t)=e^{-i M t} \cos (\Delta m t / 2) \\
& g_{-}(t)=e^{-i M t} i \sin (\Delta m t / 2)
\end{aligned}
$$

\rightarrow Probability that a B turns into its anti-particle \rightarrow beat

$$
\left|\left\langle\bar{B}^{0} \mid B_{\text {phys }}^{0}(t)\right\rangle\right|^{2}=|q / p|^{2}\left|g_{-}(t)\right|^{2}=|q / p|^{2} \sin ^{2}(\Delta m t / 2)
$$

\rightarrow Probability that a B remains a B

$$
\left|\left\langle B^{0} \mid B_{\text {phys }}^{0}(t)\right\rangle\right|^{2}=\left|g_{+}(t)\right|^{2}=\cos ^{2}(\Delta m t / 2)
$$

\rightarrow Expressions familiar from quantum mechanics of a two level system

B mesons of course do decay \rightarrow

B^{0} at $t=0$
Evolution in time
-Full line: B^{0}
-dotted: B ${ }^{0}$

T : in units of $\tau=1 / \Gamma$

Decay probability

Decay probability $\left.\quad P\left(B^{0} \rightarrow f, t\right) \propto|\langle f| H| B_{p h y s}^{0}(t)\right\rangle\left.\right|^{2}$
Decay amplitudes of B and antiB to the same final state \boldsymbol{f}

$$
\begin{aligned}
& A_{f}=\langle f| H\left|B^{0}\right\rangle \\
& \bar{A}_{f}=\langle f| H\left|\bar{B}^{0}\right\rangle
\end{aligned}
$$

Decay amplitude as a function of time:

$$
\begin{aligned}
& \langle f| H\left|B_{p h y s}^{0}(t)\right\rangle=g_{+}(t)\langle f| H\left|B^{0}\right\rangle+(q / p) g_{-}(t)\langle f| H\left|\bar{B}^{0}\right\rangle \\
& =g_{+}(t) A_{f}+(q / p) g_{-}(t) \bar{A}_{f}
\end{aligned}
$$

... and similarly for the anti-B

CP violation: three types

Decay amplitudes of B and anti- B to the same final state \boldsymbol{f}

$$
\begin{aligned}
& A_{f}=\langle f| H\left|B^{0}\right\rangle \\
& \bar{A}_{f}=\langle f| H\left|\bar{B}^{0}\right\rangle
\end{aligned}
$$

Define a parameter λ

$$
\lambda=\frac{q}{p} \frac{\bar{A}_{f}}{A_{f}}
$$

Three types of CP violation (CPV):

$$
\left.\begin{array}{l}
\text { ep in decay: }|\bar{A} / A| \neq 1 \\
\text { es in mixing: }|q / p| \neq 1
\end{array}\right\}|\lambda| \neq 1
$$

CP violation in the interference between decays with and without mixing

CP violation in the interference between mixing and decay to a state accessible in both B^{0} and anti- B^{0} decays

For example: a CP eigenstate f_{CP} like $\pi^{+} \pi^{-}$

We can get CP violation if $\operatorname{Im}(\lambda) \neq 0$, even if $|\lambda|=1$

CP violation in the interference between decays with and without mixing

Decay rate asymmetry:

$$
a_{f_{C P}}=\frac{P\left(\bar{B}^{0} \rightarrow f_{C P}, t\right)-P\left(B^{0} \rightarrow f_{C P}, t\right)}{P\left(\bar{B}^{0} \rightarrow f_{C P}, t\right)+P\left(B^{0} \rightarrow f_{C P}, t\right)}
$$

Decay rate: $\left.\quad P\left(B^{0} \rightarrow f_{C P}, t\right) \propto\left|\left\langle f_{C P}\right| H\right| B_{p h y s}^{0}(t)\right\rangle\left.\right|^{2}$
Decay amplitudes vs time:

$$
\begin{aligned}
& \left\langle f_{C P}\right| H\left|B_{p h s s}^{0}(t)\right\rangle=g_{+}(t)\left\langle f_{C P}\right| H\left|B^{0}\right\rangle+(q / p) g_{-}(t)\left\langle f_{C P}\right| H\left|\bar{B}^{0}\right\rangle \\
& =g_{+}(t) A_{f_{C P}}+(q / p) g_{-}(t) \bar{A}_{f_{c P}} \\
& \left\langle f_{C P}\right| H\left|\bar{B}_{p h y s}^{0}(t)\right\rangle=(p / q) g_{-}(t)\left\langle f_{C P}\right| H\left|B^{0}\right\rangle+g_{+}(t)\left\langle f_{C P}\right| H\left|\bar{B}^{0}\right\rangle \\
& =(p / q) g_{-}(t) A_{f_{C P}}+g_{+}(t) \bar{A}_{f_{C P}}
\end{aligned}
$$

$$
\begin{aligned}
& a_{f_{C P}}=\frac{P\left(\bar{B}^{0} \rightarrow f_{C P}, t\right)-P\left(B^{0} \rightarrow f_{C P}, t\right)}{P\left(\bar{B}^{0} \rightarrow f_{C P}, t\right)+P\left(B^{0} \rightarrow f_{C P}, t\right)}= \\
& =\frac{\left|(p / q) g_{-}(t) A_{f_{c P}}+g_{+}(t) \bar{A}_{f_{c P}}\right|^{2}-\left|g_{+}(t) A_{f_{C P}}+(q / p) g_{-}(t) \bar{A}_{f_{c P}}\right|^{2}}{\left|(p / q) g_{-}(t) A_{f_{c P}}+g_{+}(t) \bar{A}_{f_{C P}}\right|^{2}+\left|g_{+}(t) A_{f c P}+(q / p) g_{-}(t) \bar{A}_{f_{c P}}\right|^{2}}= \\
& =\frac{\left(1-\left|\lambda_{f_{C P}}\right|^{2}\right) \cos (\Delta m t)-2 \operatorname{Im}\left(\lambda_{f_{c P}}\right) \sin (\Delta m t)}{1+\left|\lambda_{f_{C P}}\right|^{2}} \\
& =C \cos (\Delta m t)+S \sin (\Delta m t) \\
& \lambda=\frac{q}{p} \frac{\bar{A}_{f}}{A_{f}} \\
& \text { Non-zero effect if } \operatorname{Im}(\lambda) \neq 0 \text {, } \\
& \text { even if }|\lambda|=1 \\
& \text { If }|\lambda|=1 \rightarrow a_{f_{C P}}=-\operatorname{Im}(\lambda) \sin (\Delta m t)
\end{aligned}
$$

CP violation in the interference between decays with and without mixing

One more form for λ :

$$
\lambda_{f C P}=\frac{q}{p} \frac{\bar{A}_{f_{C P}}}{A_{f_{C P}}}=\eta_{f_{C P}} \frac{q}{p} \frac{\bar{A}_{\bar{f}_{C P}}}{A_{f_{C P}}}
$$

\rightarrow we get one more (-1) sign when comparing asymmetries in two states with opposite CP parity

$$
a_{f_{C P}}=-\operatorname{Im}\left(\lambda_{f_{C P}}\right) \sin (\Delta m t)
$$

B and anti-B from the $\mathrm{Y}(4 \mathrm{~s})$

B and anti- B from the $Y(4 s)$ decay are in a $L=1$ state.
They cannot mix independently (either BB or anti-B anti-B states are forbidden with $L=1$ due to Bose symmetry).

After one of them decays, the other evolves independently ->
-> only time differences between one and the other decay matter (for mixing).

Assume
-one decays to a CP eigenstate $f_{C P}\left(\right.$ e.g. $\pi \pi$ or $\left.J / \psi K_{S}\right)$ at time $t_{f C P}$ and
-the other at $\mathrm{t}_{\text {ftag }}$ to a flavor-specific state $\mathrm{f}_{\text {tag }}$ (=state only accessible to a B^{0} and not to a anti- B^{0} (or vice versa), e.g. $B^{0}->D^{0} \pi, D^{0}->K^{-} \pi^{+}$)
also known as 'tag' because it tags the flavour of the B meson it comes from

Decay rate to f_{CP}

Incoherent production
(e.g. hadron collider)

coherent production

$$
\text { at } Y(4 s)
$$

At $\mathrm{Y}(4 \mathrm{~s})$: Time integrated asymmetry $=0$

CP violation in SM

CP violation: consequence of the Cabibbo-Kobayashi-Maskawa (CKM) quark mixing matrix

$$
V_{C K M}=\left(\begin{array}{ccc}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right)
$$

CKM matrix

3×3 ortogonal matrix: 3 parameters - angles
3×3 unitary matrix: 18 parameters, 9 conditions $=9$ free parameters, 3 angles and 6 phases
6 quarks: 5 relative phases can be transformed away (by redefinig the quark fields)
1 phase left -> the matrix is in general complex

$$
\begin{aligned}
V_{C K M}=(& s_{12} c_{13}
\end{aligned} s_{13} e^{-i \delta}\left(\begin{array}{ccc}
c_{12} c_{13} & c_{12} c_{23}-s_{12} s_{23} s_{13} e^{i \delta} & s_{23} c_{13} \\
-s_{12} c_{13}-c_{12} s_{23} s_{13} e^{i \delta} & c_{12} s_{23}-s_{12} c_{23} s_{13} e^{i \delta} & c_{23} c_{13}
\end{array}\right)
$$

CKM matrix

Transitions between members of the same family more probable (=thicker lines) than others
-> CKM: almost a diagonal matrix, but not completely

CKM matrix

Almost a diagonal matrix, but not completely ->
Wolfenstein parametrisation: expand in the parameter
$\lambda\left(=\sin \theta_{c}=0.22\right)$
A, ρ and η : all of order one

$$
V=\left(\begin{array}{ccc}
1-\frac{\lambda^{2}}{2} & \lambda & A \lambda^{3}(\rho-i \eta) \\
-\lambda & 1-\frac{\lambda^{2}}{2} & A \lambda^{2} \\
A \lambda^{3}(1-\rho-i \eta) & -A \lambda^{2} & 1
\end{array}\right)+O\left(\lambda^{4}\right)
$$

Unitary relations

Rows and columns of the V matrix are orthogonal
Three examples: $1^{\text {st }}+2^{\text {nd }}, 2^{\text {nd }}+3^{\text {rd }}, 1^{\text {st }}+3^{\text {rd }}$ columns

$$
\begin{aligned}
& V_{u d} V_{u s}^{*}+V_{c d} V_{c s}^{*}+V_{t d} V_{t s}^{*}=0, \\
& V_{u s} V_{u b}^{*}+V_{c s} V_{c b}^{*}+V_{t s} V_{t b}^{*}=0, \\
& V_{u d} V_{u b}^{*}+V_{c d} V_{c b}^{*}+V_{t d} V_{t b}^{*}=0 .
\end{aligned}
$$

Geometrical representation: triangles in the complex plane.

Unitary triangles

$$
\begin{equation*}
V_{u d} V_{u s}^{*}+V_{c d} V_{c s}^{*}+V_{t d} V_{t s}^{*}=0 \tag{a}
\end{equation*}
$$

$$
V_{u s} V_{u b}^{*}+V_{c s} V_{c b}^{*}+V_{t s} V_{t b}^{*}=0
$$

$$
\begin{equation*}
V_{u d} V_{u b}^{*}+V_{c d} V_{c b}^{*}+V_{t d} V_{t b}^{*}=0 . \tag{b}
\end{equation*}
$$

All triangles have the same area $\mathrm{J} / 2$ (about 4×10^{-5})

$$
J=c_{12} c_{23} c_{13}^{2} s_{12} s_{23} s_{13} \sin \delta
$$

Unitarity triangle

THE unitarity triangle:

$$
V_{u d} V_{u b}^{*}+V_{c d} V_{c b}^{*}+V_{t d} V_{t b}^{*}=0
$$

(a)

Two notations:
$\phi_{1}=\beta$
$\phi_{2}=\alpha$
$\phi_{3}=\gamma$

Angles of the unitarity triangle

$$
\begin{aligned}
& \alpha \equiv \phi_{2} \equiv \arg \left(\frac{V_{t d} V_{t b}^{*}}{V_{u d} V_{u b}^{*}}\right) \\
& \beta \equiv \phi_{1} \equiv \arg \left(\frac{V_{c d} V_{c b}^{*}}{V_{t d} V_{t b}^{*}}\right) \\
& \gamma \equiv \phi_{3} \equiv \arg \left(\frac{V_{u d} V_{u b}^{*}}{V_{c d} V_{c b}{ }^{*}}\right) \equiv \pi-\alpha-\beta
\end{aligned}
$$

(a)

b decays

Why penguin?

Example: $\mathrm{b} \rightarrow \mathrm{s}$ transition

Peter Križan, Ljubljana

Decay asymmetry predictions - example $\pi^{+} \pi^{-}$

N.B.: for simplicity we have neglected possible penguin amplitudes (which is wrong as we shall see later, when we will do it properly).

A reminder:

$$
\begin{aligned}
& \frac{q}{p}=-\frac{\left|M_{12}\right|}{M_{12}} \\
& \Delta m_{B}=2\left|M_{12}\right|
\end{aligned}
$$

$$
\begin{aligned}
& \Delta m \propto
\end{aligned}
$$

$$
\begin{aligned}
& \begin{aligned}
\left|V_{t b}^{*} V_{t d}\right|^{2} m_{t}^{2} & \propto \lambda^{6} m_{t}^{2} \\
\left|V_{c b}^{*} V_{c d}\right|^{2} m_{c}^{2} & \propto \lambda^{6} m_{c}^{2}
\end{aligned}
\end{aligned}
$$

Decay asymmetry predictions - example $\mathrm{J} / \psi \mathrm{K}_{\mathrm{S}}$

$\mathrm{b} \rightarrow \mathrm{c} \overline{\mathrm{c} s}:$ Take into account that we measure the $\pi^{+} \pi^{-}$ component of $K_{s}-a 1$ so need the $(q / p)_{k}$ for the K system

$$
\begin{aligned}
& \lambda_{\mu / K \mathrm{~s}}=\eta_{\psi K \cdot} \cdot \frac{\left(\frac{V_{t b}^{*} V_{t d}}{V_{t b} V_{t d}^{*}}\right)\left(\frac{V_{c s}^{*} V_{c b}}{V_{c s} V_{c b}^{*}}\right)\left(\frac{V_{c d}^{*} V_{c s}}{V_{c d} V_{c s}^{*}}\right)}{(\mathrm{p})_{\mathrm{B}}}= \\
& =\eta_{\psi K s}\left(\frac{V_{t b}{ }^{*} V_{t d}}{V_{t b} V_{t d}{ }^{*}}\right)\left(\frac{V_{c b}}{V_{c b}{ }^{*}} \frac{V_{c d}{ }^{*}}{V_{c d}}\right) \\
& \operatorname{Im}\left(\lambda_{\mu K s}\right)=\sin 2 \phi_{1} \\
& \beta \equiv \phi_{1} \equiv \arg \left(\frac{V_{c d} V_{c b}{ }^{*}}{V_{t d} V_{t b}{ }^{*}}\right)
\end{aligned}
$$

$b \rightarrow c$ anti-c s $C P=+1$ and $C P=-1$ eigenstates

$a_{f_{C P}}=-\operatorname{Im}\left(\lambda_{f_{C P}}\right) \sin (\Delta m t)$

Asymmetry sign depends on the CP parity of the final state $f_{\text {Cpr }} \eta_{\text {fcp }}=+-1$

$$
\lambda_{f_{C P}}=\eta_{f_{C P}} \frac{q}{p} \frac{\bar{A}_{\bar{f}_{C P}}}{A_{f_{C P}}}
$$

$\mathrm{J} / \psi \mathrm{K}_{\mathrm{S}}\left(\pi^{+} \pi^{-}\right): \mathrm{CP}=-1$
$\bullet \mathrm{J} / \psi: \mathrm{P}=-1, \mathrm{C}=-1$ (vector particle $\mathrm{J}^{\mathrm{PC}}=1^{--}$): $\mathrm{CP}=+1$
$\bullet K_{S}\left(->\pi^{+} \pi^{-}\right): C P=+1$, orbital ang. momentum of pions=0 ->

$$
\mathrm{P}\left(\pi^{+} \pi^{-}\right)=\left(\pi^{-} \pi^{+}\right), \mathrm{C}\left(\pi^{-} \pi^{+}\right)=\left(\pi^{+} \pi^{-}\right)
$$

\bullet - orbital ang. momentum between J / ψ and $\mathrm{K}_{\mathrm{S}} \mathrm{L}=1, \mathrm{P}=(-1)^{1}=-1$

$$
\mathrm{J} / \psi \mathrm{K}_{\mathrm{L}}(3 \pi): \mathrm{CP}=+1
$$

Opposite parity to $\mathrm{J} / \psi \mathrm{K}_{\mathrm{S}}\left(\pi^{+} \pi^{-}\right)$, because $\mathrm{K}_{\mathrm{L}}(3 \pi)$ has $\mathrm{CP}=-1$

B meson production at $Y(4 s)$

Principle of measurement

Transform distance into time: need a moving center-off-mass system \rightarrow asymmetric collider

Experimental considerations

Detector form: symmetric for symmetric energy beams; slightly extended in the boost direction for an asymmetric collider.

How many events?

Rough estimate:
Need ~ 1000 reconstructed B-> J $/ \psi \mathrm{K}_{\mathrm{S}}$ decays with $\mathrm{J} / \psi->$ ee or $\mu \mu$, and $\mathrm{K}_{S^{-}}>\pi^{+} \pi^{-}$
$1 / 2$ of $Y(4 s)$ decays are B^{0} anti- B^{0} (but 2 per decay)
$B R\left(B->J / \psi K^{0}\right)=8.410^{-4}$
$\operatorname{BR}(\mathrm{J} / \psi->$ ee or $\mu \mu)=11.8 \%$
$1 / 2$ of K^{0} are $K_{S}, B R\left(K_{S}->\pi^{+} \pi^{-}\right)=69 \%$

Reconstruction effiency ~ 0.2 (signal side: 4 tracks, vertex, tag side pid and vertex)

$$
\begin{aligned}
\mathrm{N}(\mathrm{Y}(4 \mathrm{~s})) & =1000 /(1 / 2 * 1 / 2 * 2 * 8.410-4 * 0.118 * 0.69 * 0.2)= \\
& =140 \mathrm{M}
\end{aligned}
$$

How to produce 140 M BB pairs?

Want to produce 140 M pairs in two years
Assume effective time available for running is $10^{7} \mathrm{~s}$ per year.
\rightarrow need a rate of $14010^{6} /\left(210^{7} \mathrm{~s}\right)=7 \mathrm{~Hz}$
Observed rate of events $=$ Cross section \times Luminosity

$$
\frac{d N}{d t}=L \sigma
$$

Cross section for $\mathrm{Y}(4 \mathrm{~s})$ production: $1.1 \mathrm{nb}=1.110^{-33} \mathrm{~cm}^{2}$
\rightarrow Accelerator figure of merit - luminosity - has to be

$$
L=6.5 / \mathrm{nb} / \mathrm{s}=6.510^{33} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}
$$

This is much more than any other accelerator achieved before!

Colliders：asymmetric B factories

Be11e $p\left(e^{-}\right)=8 \mathrm{GeV} p\left(\mathrm{e}^{+}\right)=3.5 \mathrm{GeV}$

Accelerator performance

$\rightarrow 1182 / \mathrm{pb} /$ day

Peter Križan, Ljubljana

Belle spectrometer at KEK-B

BaBar spectrometer at PEP-II

Flavour tagging

Was it a B or an anti- B that decayed to the CP eigenstate?

Look at the decay products of the associated B

- Charge of high momentum lepton

Flavour tagging

Was it a B or anti-B that decayed to the CP eigenstate?
Look at the decay products of the associated B

- Charge of high momentum lepton
- Charge of kaon
- Charge of 'slow pion' (from $D^{*+} \rightarrow D^{0} \pi^{+}$and $D^{*-} \rightarrow D^{0} \pi^{-}$ decays)
-

Charge measured from curvature in magnetic field,
\rightarrow need reliable particle identification

How to measure $\sin 2 \phi_{1}$?

To measure $\sin 2 \phi_{1}$, we have to measure the time dependent CP asymmetry in $\mathrm{B}^{0} \rightarrow \mathrm{~J} / \Psi \mathrm{K}_{\mathrm{s}}$ decays

$$
a_{f_{C P}}=-\operatorname{Im}\left(\lambda_{f_{C P}}\right) \sin (\Delta m t)=\sin 2 \phi_{1} \sin (\Delta m t)
$$

$$
\lambda_{f_{C P}}=\eta_{f_{C P}} \frac{q}{p} \frac{\bar{A}_{\bar{f}_{C P}}}{A_{f_{C P}}}
$$

In addition to $\mathrm{B}^{0} \rightarrow \mathrm{~J} / \Psi \mathrm{K}_{\mathrm{s}}$ decays we can also use decays with any other charmonium state instead of J / Ψ. Instead of K_{s} we can use channels with K_{L} (opposite CP parity).

Reconstructing chamonium states

Reconstructing final states X which decayed to several particles (x, y, z):
From the measured tracks calculate the invariant mass of the system $(i=x, y, z)$:

$$
M=\sqrt{\left(\sum E_{i}\right)^{2}-\left(\sum \vec{p}_{i}\right)^{2}}
$$

The candidates for the X ->xyz decay show up as a peak in the distribution on (mostly combinatorial) background.
The name of the game: have as little background under the peak as possible without loosing the events in the peak (=reduce background and have a small peak width).

A golden channel event

$$
\begin{aligned}
& \text { E. Expra Run } 272 \text { Farm } 5 \text { Event } 1088 \\
& \text { B■- - - } \quad \begin{array}{l}
\text { Eher } 8.00 \text { Eler } 3.50 \text { Tue Nov } 1623 z 12 z 081999 \\
\text { TrgID } 0 \text { DetVer } 0 \mathrm{MaglD} 0 \text { BField } 1.50 \text { DspVer } 5.10
\end{array} \\
& \text { Ptot(ch) 11.0 Etot(gm) 0.2 SVD-M O CDC-M O KLM-M O }
\end{aligned}
$$

Reconstructing chamonium states

Reconstructing $\mathrm{K}^{0}{ }_{\mathrm{S}}$

$$
\begin{gathered}
K_{S} \rightarrow \pi^{+} \pi^{-} \\
\sigma_{M}=4.1 \mathrm{GeV} / \mathrm{c}^{2}
\end{gathered}
$$

$K_{S} \rightarrow \pi^{0} \pi^{0}$
$\sigma_{M}=9.3 \mathrm{GeV} / \mathrm{c}^{2}$

Continuum suppression

$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow q q$ "continuum" ($\sim 3 \mathrm{xBB}$)

To suppress: use event shape variables

Reconstruction of b-> c anti-c s

 $C P=-1$ eigenstatesReconstructed decay modes for 78/fb, 85M B B pairs, Belle 2002

Reconstruction of b-> c anti-c s $C P=+1$ eigenstates

\rightarrow detection of K_{L} in KLM and ECL

- K_{L} direction, no energy

- $p^{*} \approx 0.35 \mathrm{GeV} / \mathrm{c}$ for signal events
- background shape is determined from MC, and its size from the fit to the data

Principle of CPV Measurement

Final result

CP is violated! Red points differ from blue.

Red points: anti- $B^{0}->f_{C P}$ with $C P=-1$ (or $B^{0}->f_{C P}$ with $C P=+1$)

Blue points: $B^{0}->f_{C P}$ with $C P=-1$ (or anti- $\mathrm{B}^{0}->\mathrm{f}_{\mathrm{CP}}$ with $\mathrm{CP}=+1$)

Belle, 2002 statistics (78/fb, 85M B B pairs)

Fitting the asymmetry

Fitting function:

$$
P_{\text {sig }}(\Delta t)=\frac{e^{-|\Delta t| / \tau}}{4 \tau}\left\{1+q\left(1-2 w_{l}\right) \operatorname{Im} \lambda \sin \Delta m t\right\} \otimes R(t)
$$

Miss-tagging probability

Resolution function:
from self-tagged events $\mathrm{B} \rightarrow \mathrm{D}^{*} \mathrm{I}, \mathrm{D} \pi, \ldots$
$\mathrm{q}=+1$ or $=-1$ (B or anti-B on the tag side)

Fitting: unbinned maximum 1ikelihood fit event-by-event Fitted parameter: Im (λ)

BaBar vs Belle $\sin 2 \phi_{1}$

$$
\begin{aligned}
& \sin 2 \phi_{1}=0.741 \pm 0.067 \pm 0.034 \text { (ваваг) } \\
& \sin 2 \phi_{1}=0.719 \pm 0.074 \pm 0.035 \text { (ве11е) }
\end{aligned}
$$

More data....

Larger sample \rightarrow

-smaller statistical error $(1 / \sqrt{ } \mathrm{N})$
-better understanding of the detector, calibration etc
\rightarrow error improves by better than with $1 / \sqrt{ } \mathrm{N}$

$b \rightarrow c$ anti-c s $C P=+1$ and $C P=-1$ eigenstates

$$
a_{f_{C P}}=-\operatorname{Im}\left(\lambda_{f_{C P}}\right) \sin (\Delta m t)
$$

Asymmetry sign depends on the CP parity of the final state $\mathrm{f}_{\mathrm{CP},} \eta_{\mathrm{fcp}}=+-1$

$$
\lambda_{f_{C P}}=\eta_{f_{C P}} \frac{q}{p} \frac{\bar{A}_{\bar{f}_{C P}}}{A_{f_{C P}}}
$$

$\mathrm{J} / \psi \mathrm{K}_{\mathrm{S}}\left(\pi^{+} \pi^{-}\right): \mathrm{CP}=-1$
$\bullet \mathrm{J} / \psi: \mathrm{P}=-1, \mathrm{C}=-1$ (vector particle $\mathrm{JPC}^{\mathrm{PC}}=1^{--}$): $\mathrm{CP}=+1$
$\bullet K_{S}\left(->\pi^{+} \pi^{-}\right): C P=+1$, orbital ang. momentum of pions=0 ->

$$
\mathrm{P}\left(\pi^{+} \pi^{-}\right)=\left(\pi^{-} \pi^{+}\right), \mathrm{C}\left(\pi^{-} \pi^{+}\right)=\left(\pi^{+} \pi^{-}\right)
$$

\bullet-orbital ang. momentum between J / ψ and $\mathrm{K}_{\mathrm{S}} \mathrm{I}=1, \mathrm{P}=(-1)^{1}=-1$

$$
\mathrm{J} / \psi \mathrm{K}_{\mathrm{L}}(3 \pi): \mathrm{CP}=+1
$$

Opposite parity to $\mathrm{J} / \psi \mathrm{K}_{\mathrm{S}}\left(\pi^{+} \pi^{-}\right)$, because $\mathrm{K}_{\mathrm{L}}(3 \pi)$ has $\mathrm{CP}=-1$

Peter Križan, Ljubljana

$C P$ violation in the B system

CP violation in B system: from the discovery in $\mathrm{B}^{0} \rightarrow \mathrm{~J} / \Psi \mathrm{K}_{\mathrm{s}}$ decays (2001) to a precision measurement (2006)

$\sin 2 \phi_{1}=\sin 2 \beta$ from $b \rightarrow c C S$

535 M BB pairs

$$
\sin 2 \phi_{1}=0.642 \pm 0.031 \text { (stat) } \pm 0.017 \text { (syst) }
$$

Unitary triangle: one of the sides is determined by V_{ub}

| \mathbf{V}_{ub} | measurements

|vub
|vub

From semileptonic B decays

$\mathrm{b} \rightarrow \mathrm{clv}$ background typically an order of magnitude larger.

Traditional inclusive method: fight the background from $\mathrm{b} \rightarrow \mathrm{clv}$ decays by using only events with electron momentum above the $\mathrm{b} \rightarrow \mathrm{clv}$ kinematic limit. Problem: extrapolation to the full phase space \rightarrow large theoretical uncertainty.

New method: fully reconstruct one of the B mesons, check the properties of the other (semileptonic decay, low mass of the hadronic system)
-Very good signal to noise
-Low yield (full reconstruction efficiency is 0.3-0.4\%)

Fully reconstructed sample

Fully reconstructed sample

Clean environment but small sample: $\varepsilon_{\text {reco }} \approx 3 \cdot 10^{-3}$

$\mathbf{B}^{+} \rightarrow \mathbf{D}^{(*)} \boldsymbol{\pi}^{+} / \mathbf{D}^{(*) 0} \rho^{+} / \mathbf{D}^{(*)} \mathbf{a}_{1}{ }^{+} / \mathbf{D}^{(*) 0} \mathbf{D}_{\mathrm{s}}{ }^{(*)}{ }^{+}$

M_{x} analysis

Use the mass of the hadronic system M_{x} as the discriminating variable against $\mathrm{b} \rightarrow \mathrm{clv}$
$M_{x}=$ mass of all hadrons from the B decav.

Expect:

$\cdot \mathrm{M}_{\mathrm{x}}$ for $\mathrm{b} \rightarrow$ clv to be above 1.8 GeV ($\mathrm{b} \rightarrow$ clv results in a D meson with $>1.8 \mathrm{GeV}$)

- M_{x} for $\mathrm{b} \rightarrow$ ulv to mainly below
$1.8 \mathrm{GeV}(\mathrm{B} \rightarrow \pi \mathrm{lv}, \rho|v, \omega| v . .$.

Peter Križan, Ljubljana

M_{x} analysis

$\mathbf{M}_{\mathrm{x}}<1.7 \mathrm{GeV} / \mathrm{c}^{2} / \mathrm{q}^{2}>8 \mathrm{GeV}^{2} / \mathrm{c}^{2}$
Total error on $\left|\mathrm{V}_{u b}\right| \ldots . .12 \%$

$253 \mathrm{fb}^{-1}$

$$
\begin{gathered}
\left|\mathrm{V}_{u b}\right|=(4.93 \pm 0.25 \pm 0.22 \pm 0.15 \pm 0.13 \pm 0.46+0.20) \times 10^{-3} \\
\text { stat syst } \quad \begin{array}{c}
\mathrm{b} \rightarrow \mathrm{u} \rightarrow \mathrm{~b} \rightarrow \mathrm{c} \quad \mathrm{SF} \text { theo } \\
\text { model dep. }
\end{array}
\end{gathered}
$$

$\mathbf{M}_{\mathrm{x}}<1.7 \mathrm{GeV} / \mathrm{c}^{2} /$ no q^{2} cut : total error on $\left|\mathbf{V}_{u b}\right| \ldots . .11 \%$
$253 \mathrm{fb}^{-1}$

$$
\left|\mathrm{V}_{u b}\right|=\left(4.35 \pm 0.20 \pm 0.15 \pm 0.13 \pm 0.05 \pm 0.40_{-0.14}^{+0.13}\right) \times 10^{-3}
$$

All measurements combined...

Constraints from measurements of angles and sides of the unitarity triangle \rightarrow

\rightarrow Remarkable agreement

Diagrams for $\mathrm{B} \rightarrow \pi \pi, \mathrm{K} \pi$ decays

$\pi \pi$

-Penguin amplitudes (without CKM factors) expected to be equal in both.

- $\operatorname{BR}(\pi \pi) \sim 1 / 4 \operatorname{BR}(K \pi)$
$\cdot \mathrm{K} \pi$: penguin dominant \rightarrow penguin in $\pi \pi$ must be important

CP asymmetry in time integrated rates

$$
a_{f}=\frac{\Gamma(B \rightarrow f)-\Gamma(\bar{B} \rightarrow \bar{f})}{\Gamma(B \rightarrow f)+\Gamma\left(\bar{B}^{-} \rightarrow \bar{f}\right)}=\frac{1-|\bar{A} / A|^{2}}{1+|\bar{A} / A|^{2}}
$$

Need $|\overline{A /} A| \neq 1$: how do we get there?
In general, A is a sum of amplitudes with strong phases δ_{i} and weak phases ϕ_{i}. The amplitudes for anti-particles have the same

$$
\begin{aligned}
& A_{f}=\sum_{i} A_{i} e^{i\left(\delta_{i}+\varphi_{i}\right)} \\
& \bar{A}_{\bar{f}}=\sum_{i} A_{i} e^{i\left(\delta_{i}-\varphi_{i}\right)}
\end{aligned}
$$ strong phases and opposite weak phases ->

$$
\begin{gathered}
\left|A_{f}\right|^{2}-\left|\bar{A}_{\bar{f}}\right|^{2}=\sum_{i, j} A_{i} A_{j} \sin \left(\varphi_{i}-\varphi_{j}\right) \sin \left(\delta_{i}-\delta_{j}\right) \\
\quad \rightarrow \text { Need at least two interfering amplitudes } \\
\text { with different weak and strong phases. }
\end{gathered}
$$

A difference in the direct violation of CP symmetry in B^{+}and B^{0} decays to $\mathrm{K} \pi$

CP asymmetry

$$
\mathcal{A}_{f}=\frac{N(\bar{B} \rightarrow \bar{f})-N(B \rightarrow f)}{N(\bar{B} \rightarrow \bar{f})+N(B \rightarrow f)}
$$

nature

nature
LETTERS
Difference in direct charge-parity violation between charged and neutral B meson decays
The Belle Collaboration*

~ 1 in $10^{5} \mathrm{~B}$ mesons decays in this decay mode

Experimental methods in D^{0} mixing searches

The method: investigate D decays in the decay sequence: $\mathrm{D}^{*+} \rightarrow \mathrm{D}^{0} \pi^{+}, \mathrm{D}^{0} \rightarrow$ specific final states

Used for tagging the initial flavour and for background reduction

$\mathrm{p}_{\mathrm{cms}}\left(\mathrm{D}^{*}\right)>2.5 \mathrm{GeV} / \mathrm{c}$ eliminates D meson production from $\mathrm{b} \rightarrow \mathrm{c}$

D^{0} mixing in $\mathrm{K}^{+} \mathrm{K}^{-}, \pi^{+} \pi^{-}$

$\mathrm{D}^{0} \rightarrow \mathrm{~K}^{+} \mathrm{K}^{-} / \pi^{+} \pi^{-}$
CP even final state; in the limit of no CPV: $C P\left|D_{1}\right\rangle=\left|D_{1}\right\rangle$ \Rightarrow measure $1 / \Gamma_{1}$

$$
\begin{aligned}
& y_{C P} \equiv \frac{\tau\left(K^{-} \pi^{+}\right)}{\tau\left(K^{-} K^{+}\right)}-1=y \cos \varphi-\frac{1}{2} A_{M} x \sin \varphi= \\
& { }_{\text {no } C P V}^{=} y
\end{aligned}
$$

A_{M}, ϕ : CPV in mixing and interference
Signal: $D^{0} \rightarrow K^{+} K^{-} / \pi^{+} \pi^{-}$from D^{*} $\mathrm{M}, \mathrm{Q}, \sigma_{\mathrm{t}}$ selection optimized in MC

	$\mathrm{K}^{+} \mathrm{K}^{-}$	$\mathrm{K}^{-} \pi^{+}$	$\pi^{+} \pi^{-}$
$\mathrm{N}_{\text {sig }}$	111×10^{3}	1.22×10^{6}	49×10^{3}
purity	98%	99%	92%

D^{0} mixing in $\mathrm{K}^{+} \mathrm{K}^{-}, \pi^{+} \pi^{-}$

Decay time distributions for $\mathrm{KK}, \pi \pi$, $\mathrm{K} \pi$

Difference of lifetimes visually observable
in the ratio of the distributions \rightarrow

Real fit:

$$
y_{C P}=(1.31 \pm 0.32 \pm 0.25) \%
$$

evidence for D^{0} mixing (regardless of possible CPV) $\quad \rightarrow \mathrm{y}_{\mathrm{CP}}$ is on the high side of SM expectations

D^{0} mixing: all results combined

Assuming no CPV

$$
\begin{aligned}
& x=\left(0.87 \pm{ }^{0.30} 0.34\right) \% \\
& y=\left(0.66 \pm \mathbf{0 . 2 1}_{0.20}\right) \% \\
& \delta=0.33 \pm{ }^{0.26} 0.29
\end{aligned}
$$

$$
(x, y)=(0,0) \text { excluded by }>5 \sigma
$$

Purely leptonic decay $B \rightarrow \tau \nu$

- Challenge: B decay with at least two neutrinos
- Proceeds via W annihilation in the SM.

- Branching fraction

$$
\mathcal{B}\left(B^{-} \rightarrow \ell^{-} \bar{\nu}\right)=\frac{G_{F}^{2} m_{B} m_{\ell}^{2}}{8 \pi}\left(1-\frac{m_{\ell}^{2}}{m_{B}^{2}}\right)^{2} f_{B}^{2}\left|V_{u b}\right|^{2} \tau_{B}
$$

- Provide information of $f_{B}\left|V_{u b}\right|$
$-\left|V_{u b}\right|$ from $B \rightarrow X_{u} \mid v \Rightarrow f_{B}$
$\Leftrightarrow \quad$ cf) Lattice
$-\operatorname{Br}(\mathrm{B} \rightarrow \tau \mathrm{v}) / \Delta \mathrm{m}_{\mathrm{d}} \quad \Rightarrow\left|\mathrm{V}_{\mathrm{ub}}\right| /\left|\mathrm{V}_{\mathrm{td}}\right|$
- Limits on charged Higgs

Full Reconstruction Method

Fully reconstruct one of the B's to

- Tag B flavor/charge
- Determine B momentum
- Exclude decay products of one B from further analysis

\rightarrow Offline B meson beam!
Powerful tool for B decays with neutrinos

Event candidate $\mathrm{B}^{-} \rightarrow \tau^{-} \nu_{\tau}$

$$
\begin{aligned}
& B^{+} \rightarrow D^{0} \pi^{+} \\
&\left(\rightarrow K \pi^{-} \pi^{+} \pi^{-}\right) \\
& B^{-} \rightarrow \tau(\rightarrow e \nu \bar{\nu}) \boldsymbol{\nu}
\end{aligned}
$$

$B \rightarrow \tau v$

τ decay modes

$$
\tau^{-} \rightarrow \mu^{-} \nu \bar{v}, e^{-} \nu \bar{v}
$$

$$
\tau^{-} \rightarrow \pi^{-} v, \pi^{-} \pi^{0} v, \pi^{-} \pi^{+} \pi^{-} v
$$

- Cover 81% of τ decays
- Efficiency 15.8\%

Event selection

- Main discriminant: extra neutral ECL energy

Fit to $\mathrm{E}_{\text {residual }} \rightarrow 17.2_{-4.7}^{+5.3}$ signal events.
$\rightarrow 3.5 \sigma$ significance including systematics

$B \rightarrow \tau \nu_{\tau}$

$$
\frac{\mathrm{BF}\left(B^{+} \rightarrow \tau^{+} v_{\tau}\right)=\left(1.79_{-0.49-0.51}^{+0.56+0.46}\right) \times 10^{-4}}{\Gamma^{S M}\left(B^{+} \rightarrow \ell^{+} v\right)=\frac{G_{F}^{2}}{8 \pi}\left|V_{u b}\right|^{2} f_{B}^{2} m_{B} m_{\ell}^{2}\left(1-\frac{m_{\ell}^{2}}{m_{B}^{2}}\right)}
$$

\rightarrow Product of B meson decay constant f_{B} and CKM matrix element $\left|V_{u b}\right|$

$$
f_{B} \times V_{u b}=\left(10.1_{-1.4-1.4}^{+1.6+1.3}\right) \times 10^{-4} \mathrm{GeV}
$$

Using $\left|V_{u b}\right|=(4.39 \pm 0.33) \times 10^{-3}$ from HFAG

First measurement of f_{B} !

$$
\begin{aligned}
& f_{B}=229_{-31-37}^{+36+34} \mathrm{MeV} \\
& \text { of } \mathrm{f}_{\mathrm{B}}!\quad 15 \% \\
& \hline
\end{aligned}
$$

$f_{B}=(216 \pm 22) M e V$ from unquenched lattice calculation [HPQCD, Phys. Rev. Lett. 95, 212001 (2005)]

Charged Higgs contribution to
$B \rightarrow \tau \nu$
$m_{b} \tan \beta+m_{u} \cot \beta$

The interference is destructive in 2HDM (type II). $B>B_{S M}$ implies that H^{+}contribution dominates

Charged Higgs limits from $B^{-} \rightarrow \tau^{-} v_{\tau}$

If the theoretical prediction is taken for \mathbf{f}_{B} \rightarrow limit on charged Higgs mass vs. $\tan \beta$

$$
m_{b} \tan \beta+m_{u} \cot \beta
$$

$$
r_{H}=\frac{B F(B \rightarrow \tau v)}{B F(B \rightarrow \tau v)_{S M}}=\left(1-\frac{m_{B}^{2}}{m_{H}^{2}} \tan ^{2} \beta\right)^{2}
$$

\square Proceed through electroweak penguin + box diagram.
\square Sensitive to New Physics in the loop diagram.
\square Theoretically clean: no long distance contributions.
■ May be sensitive to light dark matter (C. Bird, PRL 93, 201803 (2004))

$b \rightarrow s+$ Missing E may be enhanced by this extra diagram.

No sensitivity to light dark matter ($\mathrm{M}<10 \mathrm{GeV}$) in direct searches

$B \rightarrow K^{(*)} \mathrm{Vv}$: present limits

\square Limit on light dark matter based on the $K^{+} v \nu$ limits (using theory predictions, C. Bird, PRL 93, 201803 (2004)

\square Limit depends on $\mathrm{P}^{*}(\mathrm{~K})$ momentum cut

$B \rightarrow K^{(*)} \mathrm{vv}$: prospects for 10/ab
 (1)

Assuming no changes in the analysis \& detector:

$\begin{array}{ll}\text { with the same } P^{*}(K) & \text { with a lower } P^{*}(K) \\ \text { threshold }(1.6 \mathrm{GeV}) & \text { threshold }(0.7 \mathrm{GeV})\end{array}$

Why FCNC decays?

Flavour changing neutral current (FCNC) processes (like $\mathrm{b} \rightarrow \mathrm{s}, \mathrm{b} \rightarrow \mathrm{d}$) are fobidden at the tree level in the Standard Model. Proceed only at low rate via higher-order loop diagrams. Ideal place to search for new physics.

How can New Physics contribute to $b \rightarrow s$?

For example in the process:
$B^{0} \rightarrow \eta^{\prime} K^{0}$

Diagram with
supersymmetric particles

Ordinary penguin diagram with a t quark in the loop

Searching for new physics phases in CP violation measurements in $b \rightarrow s$ decays

Prediction in SM:

$$
B^{0} \rightarrow \eta^{\prime} K^{0}
$$

$$
a_{f}=-\operatorname{Im}\left(\lambda_{f}\right) \sin (\Delta m t)
$$

$$
\operatorname{Im}\left(\lambda_{f}\right)=\xi_{f} \sin 2 \phi_{1}
$$

The same value as in the decay $\mathrm{B}^{0} \rightarrow \mathrm{~J} / \psi \mathrm{K}_{\mathrm{s}}$!

This is only true if there are no other particles in the loop! In general the parameter can assume a different value $\sin 2 \phi_{1}$ eff

Search for NP: $b \rightarrow s q \bar{q}$

$$
\sin \left(2 \beta^{\text {eff }}\right) \equiv \sin \left(2 \phi_{1}^{\text {eff }}\right) \underset{\substack{\text { HF AGG } \\ \text { PRELP } 2006}}{\substack{\text { RRELMNARY }}}
$$

Another FCNC decay: $\mathrm{B} \rightarrow \mathrm{K}^{*} \mathrm{I}^{+} \mathrm{I}^{-}$

$\mathrm{b} \rightarrow \mathrm{s}^{+} \mathrm{I}^{-}$was first measured in $\mathrm{B} \rightarrow \mathrm{K} \mathrm{I}^{+l^{-}}$by Belle (2001).

Important for further searches for the physics beyond SM

Particularly sensitive: backward-forward asymmetry in $\mathrm{K}^{*} \mathrm{I}^{+} \mid$

$$
A_{F B} \propto \mathfrak{R}\left[C_{10}^{*}\left(s C_{9}^{\text {eff }}(s)+r(s) C_{7}\right)\right]
$$

C_{i} : Wilson coefficients, abs. value of C_{7} from $b \rightarrow s \gamma$
$s=$ lepton pair mass squared

Backward-forward asymmetry in $\mathrm{K}^{*} \mathrm{I}^{+}$|

[Y^{*} and Z^{*} contributions in $\mathrm{B} \rightarrow \mathrm{K}^{*}$ II interfere and give rise to forward-backward asymmetries c.f. $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mu^{+} \mu^{-}$]

$A_{F B}\left(B \rightarrow K^{*} I^{+} I^{-}\right)\left[q^{2}\right]$ at a Super B Factory

- Zero-crossing q^{2} for $A_{\text {FB }}$ will be determined with a 5% error with $50 a^{-1}$.

Strong competition from LHCb and ATLAS/CMS

LFV and New Physics

- SUSY + Seasaw ${ }^{\left(m_{i}^{2}\right)_{23(13)}}$
- Large LFV $\operatorname{Br}(\tau \rightarrow \mu \gamma)=O\left(10^{-7 \sim 9}\right)$

$$
\begin{array}{r}
\operatorname{Br}(\tau \rightarrow \mu \gamma) \square 10^{-6} \times\left(\frac{\left(m_{\tilde{L}}^{2}\right)_{32}}{\bar{m}_{\tilde{L}}^{2}}\right)\left(\frac{1 T e V}{m_{\text {SUSY }}}\right)^{4} \tan ^{2} \beta \\
=
\end{array}
$$

model	$\operatorname{Br}(\tau \rightarrow \mu \gamma)$	$\operatorname{Br}(\tau \rightarrow \mathrm{III})$
mSUGRA+seesaw	10^{-7}	10^{-9}
SUSY+SO (10)	10^{-8}	10^{-10}
SM+seesaw	10^{-9}	10^{-10}
Non-Universal Z'	10^{-9}	10^{-8}
SUSY+Higgs	10^{-10}	10^{-7}

Precision measurements of τ decays

B factories: a success story

- Measurements of CKM matrix elements and angles of the unitarity triangle
- Observation of direct CP violation in B decays
- Measurements of rare decay modes (e.g., $B \rightarrow \tau v, D \tau v$) by fully reconstructing the other B meson
- Observation of D mixing
- CP violation in $b \rightarrow s$ transitions: probe for new sources if CPV
- Forward-backward asymmetry (A_{FB}) in $\mathrm{b} \rightarrow \mathrm{sl}^{+}{ }^{-}$has become a powerfull tool to search for physics beyond SM.
- Observation of new hadrons

New hadrons at B-factories

Discoveries of many new hadrons at B-factories have shed light on new class of hadrons beyond the ordinary mesons.

Molecular states

and more...
Peter Križan, Ljubljana

Physics at a Super B Factory

- There is a good chance to see new phenomena:
- CPV in B decays from the new physics (non KM)
- Lepton flavor violations in τ decays.
- They will help to diagnose (if found) or constraint (if not found) new physics models.
- Even in the worst case scenario (such as MFV), B $\rightarrow \tau v$, $\mathrm{D} \tau v$ can probe the charged Higgs in large tan β region.
- Physics motivation is independent of LHC.
- If LHC finds NP, precision flavour physics is compulsory.
- If LHC finds no NP, high statistics B / τ decays would be an unique way to search for the TeV scale physics.

Super B Factory Motivation 2

- A lesson from history: the top quark

- There are many more topics: CPV in charm, new hadrons, ...

KEKB Upgrado Plan
 : Super-B Factory at KEK

- Asymmetric energy $e^{+} e^{-}$collider at $E_{C M}=m(\Upsilon(4 \mathrm{~S}))$ to be realized by upgrading the existing KEKB collider.
- Initial target: $10 \times$ higher luminosity $\cong 2 \times 10^{35} / \mathrm{cm}^{2} / \mathrm{sec}$ after 3 year shutdown

$$
\rightarrow 2 \times 10^{9} \mathrm{BB} \text { and } \tau^{+} \tau^{-} \text {per yr. }
$$

- Final goal. $L=8 \times 10^{35} / \mathrm{cm}^{2} / \mathrm{sec}$ and $\int L d t=50 \mathrm{ab}^{-1}$

Belle Upgrade for Super-B

Aerogel RICH

- Proximity focusing RICH with multilayer aerogel radiator with different indices.

Aerogel radiator
n1 $=1.045$
$\mathrm{n} 2=1.055$

Highly transparent aerogel :
$\Lambda_{\mathrm{t}}>40 \mathrm{~mm}(\lambda=400 \mathrm{~nm})$
Multi-pixel photodetector to measure single photon positions in $B=1.5 \mathrm{~T}$ \rightarrow HAPD/MCP-PMT/G-APD

Aerogel RICH - test results

4 cm aerogel single index

theta cerenkov

SiPMs for Aerogel RICH

Main challenge: R+D of a photon detector for operation in high magnetic fields (1.5T). Candidates:
-MCP PMT: excellent timing, could be also used as a TOF counter
-HAPD: development with HPK
-SiPMs: easy to handle, but never before used for single photon detection (high dark count rate with single photon pulse height) \rightarrow use a narrow time window and light concentrators

SiPM

or combine a lens and mirror walls

Detector module for beam tests at KEK

Photon detector for the beam test

Cherenkov ring with SiPMs

Summary

- B factories have proven to be an excellent tool for flavour physics, with reliable long term operation, constant improvement of the performance.
- Major upgrade in 2009-12 \rightarrow Super B factory, L x10 \rightarrow x40
- Strong competetion from LHCb
- Expect a new, exciting era of discoveries, complementary to LHC

Back-up slides

Introduction to CP

Initial condition of the universe $N_{B}-N_{\bar{B}}=0$
Today our vicinity (at least up to ~ 10 Mpc)
is made of matter and not of anti-matter

$$
\underset{(\text { matter })}{\substack{\text { nb. baryons }}} \frac{N_{B}-N_{\bar{B}}}{N_{\gamma}}=10^{-10}-10^{-9} \underset{\substack{\text { Nb of photons } \\ \text { (microvawe back) }}}{\text { (mo ne }}
$$

In the early universe $\mathrm{B}+\overline{\mathrm{B}} \rightarrow \gamma \leftrightarrow \mathrm{N}_{\gamma}=\mathrm{N}_{\mathrm{B}}+\mathrm{N}_{\mathrm{B}}$ How did we get from
(one out of
$\frac{N_{B}-N_{\bar{B}}}{N_{B}+N_{\bar{B}}}=0$ to $\frac{N_{B}-N_{\bar{B}}}{N_{B}+N_{\bar{B}}}=10^{-10}-10^{-9} ? \begin{aligned} & \begin{array}{l}10^{10} \\ \text { baryons did } \\ \text { not } \\ \text { anihillate) }\end{array}\end{aligned}$

Introduction to CP

Three conditions (A.Saharov, 1967):

- baryon number violation
- violation of CP and C symmetries
- non-equillibrium state

$$
\begin{array}{lll}
\mathrm{X} \rightarrow \mathrm{f}_{\mathrm{a}}\left(\mathrm{~N}_{\mathrm{B}}{ }^{a}, r\right) & \mathrm{X} \rightarrow \mathrm{f}_{\mathrm{b}}\left(\mathrm{~N}_{\mathrm{B}}^{\mathrm{b}}, 1-r\right) & \text { number } \mathrm{f}_{\mathrm{b}} \\
\overline{\mathrm{X}}_{\rightarrow} \overline{\mathrm{f}}_{\mathrm{a}}\left(-\mathrm{N}_{\mathrm{B}}{ }^{a}, \overline{\mathrm{r})}\right. & \overline{\mathrm{X}}_{\rightarrow} \overline{\mathrm{f}}_{\mathrm{b}}\left(-\mathrm{N}_{\mathrm{B}}{ }^{\mathrm{b}}, \mathbf{1 - \overline { r })}\right. & \text { decay } \\
\text { probability }
\end{array}
$$

Change in baryon number in the decay of X :

$$
\begin{aligned}
\Delta B=r N_{B}^{a}+ & (1-r) N_{B}^{b}+\bar{r}\left(-N_{B}^{a}\right)+(1-\bar{r})\left(-N_{B}^{b}\right)= \\
& =(r-\bar{r})\left(N_{B}^{a}-N_{B}^{b}\right)
\end{aligned}
$$

Introduction to CP

$$
\begin{array}{ll}
N_{B}-N_{\bar{B}}=\Delta B n_{X}= & \begin{array}{l}
\mathrm{x} \text { decays to states with } \mathbb{N}_{\mathrm{B}}{ }^{\mathrm{a}} \neq \mathrm{N}_{\mathrm{B}}{ }^{\mathrm{b}} \\
=(r-\bar{r})\left(N_{B}^{a}-N_{B}^{b}\right) n_{X} \\
\\
\\
\\
\\
\begin{array}{l}
\text { r baryon number violation } \\
\text { violation of } \mathrm{CP} \text { in } \mathrm{C}
\end{array}
\end{array} .
\end{array}
$$

In the thermal equilibrium reverse processes would cause $\Delta \mathrm{B}=0->$
need an out-of-equilibrium state

For example: X lives long enough -> Universe cools down $->$ no X production possible

Introduction to CP

C: charge conjugation
$C\left|B^{0}\right\rangle=\left|\bar{B}^{0}\right\rangle$
P: space inversion $P\left|B^{0}\right\rangle=-\left|B^{0}\right\rangle$

CP: combined operation $C P\left|B^{0}\right\rangle=-\left|\bar{B}^{0}\right\rangle$

Introduction to CP

Example: weak decay $\tau^{-}->\pi^{-} v_{\tau}$

C or P transformed processes: forbidden.
CP transformed process: allowed

CP violation in decay

$$
\begin{aligned}
& \text { es in decay: }|\bar{A} / A| \neq 1 \\
& \quad \text { (and of course a1so }|\lambda| \neq 1) \\
& a_{f}=\frac{\Gamma\left(B^{+} \rightarrow f, t\right)-\Gamma\left(B^{-} \rightarrow \bar{f}, t\right)}{\Gamma\left(B^{+} \rightarrow f, t\right)+\Gamma\left(B^{-} \rightarrow \bar{f}, t\right)}= \\
& =\frac{1-|\bar{A} / A|^{2}}{1+|\bar{A} / A|^{2}}
\end{aligned}
$$

Also possible for the neutral B.

CP violation in decay

CPV in decay: $|\bar{A} / A| \neq 1$: how do we get there?

$$
\begin{aligned}
& A_{f}=\sum_{i} A_{i} e^{i\left(\delta_{i}+\varphi_{i}\right)} \\
& \bar{A}_{\bar{f}}=\sum_{i} A_{i} e^{i\left(\delta_{i}-\varphi_{i}\right)}
\end{aligned}
$$

In general, A is a sum of amplitudes with strong phases δ_{i} and weak phases ϕ_{i}. The amplitudes for anti-particles have same strong phases and opposite weak phases ->

$$
\begin{aligned}
\left|\frac{\bar{A}_{\bar{f}}}{A_{f}}\right| & =\left|\frac{\sum_{i} A_{i} e^{i\left(\delta_{i}-\varphi_{i}\right)}}{\sum_{i} A_{i} e^{i\left(\delta_{i}+\varphi_{i}\right)}}\right| \\
\left|A_{f}\right|^{2}-\left|\bar{A}_{\bar{f}}\right|^{2} & =\sum_{i, j} A_{i} A_{j} \sin \left(\varphi_{i}-\varphi_{j}\right) \sin \left(\delta_{i}-\delta_{j}\right)
\end{aligned}
$$

CPV in decay: need at least two interfering amplitudes with different weak and strong phases.

CP violation in mixing

SP in mixing: $|q / p| \neq 1$

$$
\text { (again }|\lambda| \neq 1)
$$

In general: probability for B to turn into an anti- B can differ from the probability for an anti-B to thum into a B.

$$
\begin{aligned}
& \left|B_{\text {phys }}^{0}(t)\right\rangle=g_{+}(t)\left|B^{0}\right\rangle+(q / p) g_{-}(t)\left|\bar{B}^{0}\right\rangle \\
& \left|\bar{B}_{\text {phys }}^{0}(t)\right\rangle=(p / \widehat{q}) g_{-}(t)\left|B^{0}\right\rangle+g_{+}(t)\left|\bar{B}^{0}\right\rangle
\end{aligned}
$$

Example: semileptonic decays:

$$
\begin{aligned}
\left\langle l^{-} \nu X\right| H\left|B_{p h y s}^{0}(t)\right\rangle & =(q / p) g_{-}(t) A^{*} \\
\left\langle l^{+} \nu X\right| H\left|\bar{B}_{\text {phys }}^{0}(t)\right\rangle & =(p / q) g_{-}(t) A
\end{aligned}
$$

CP violation in mixing

$$
\begin{aligned}
& a_{s l}=\frac{\Gamma\left(\bar{B}_{\text {phys }}^{0}(t) \rightarrow l^{+} v X\right)-\Gamma\left(B_{\text {phys }}^{0}(t) \rightarrow l^{-} v X\right)}{\Gamma\left(\bar{B}_{\text {phys }}^{0}(t) \rightarrow l^{+} v X\right)+\Gamma\left(B_{\text {phys }}^{0}(t) \rightarrow l^{-} v X\right)}= \\
& =\frac{|p / q|^{2}-|q / p|^{2}}{|p / q|^{2}+|q / p|^{2}}=\frac{1-|q / p|^{4}}{1+|q / p|^{4}}
\end{aligned}
$$

-> Small, since to first order $|\mathrm{q} / \mathrm{p}| \sim 1$. Next order:

$$
\frac{q}{p}=-\frac{\left|M_{12}\right|}{M_{12}}\left[1-\frac{1}{2} \operatorname{Im}\left(\frac{\Gamma_{12}}{M_{12}}\right)\right]
$$

Expect $\mathrm{O}(0.01)$ effect in semileptonic decays

CP violation in the interference between decays with and without mixing

$$
\begin{aligned}
& a_{f_{C P}}=\frac{P\left(\bar{B}^{0} \rightarrow f_{C P}, t\right)-P\left(B^{0} \rightarrow f_{C P}, t\right)}{P\left(\bar{B}^{0} \rightarrow f_{C P}, t\right)+P\left(B^{0} \rightarrow f_{C P}, t\right)}= \\
& =\frac{\left|(p / q) g_{-}(t) A_{f_{C P}}+g_{+}(t) \bar{A}_{f_{C P}}\right|^{2}-\left|g_{+}(t) A_{f_{C P}}+(q / p) g_{-}(t) \bar{A}_{f_{C P}}\right|^{2}}{\left|(p / q) g_{-}(t) A_{f_{c P}}+g_{+}(t) \bar{A}_{f_{C P}}\right|^{2}+\left|g_{+}(t) A_{f_{C P}}+(q / p) g_{-}(t) \bar{A}_{f_{c P}}\right|^{2}}= \\
& =\frac{\left|(p / q) i \sin (\Delta m t / 2) A_{f_{C P}}+\cos (\Delta m t / 2) \bar{A}_{f_{c P}}\right|^{2}-\left|\cos (\Delta m t / 2) A_{f_{C P}}+(q / p) i \sin (\Delta m t / 2) \bar{A}_{f_{c P}}\right|^{2}}{\left|(p / q) i \sin (\Delta m t / 2) A_{f_{C P}}+\cos (\Delta m t / 2) \bar{A}_{f_{C P}}\right|^{2}+\left|\cos (\Delta m t / 2) A_{f_{c P}}+(q / p) i \sin (\Delta m t / 2) \bar{A}_{f_{C P}}\right|^{2}}= \\
& =\frac{\left|(p / q)^{2} \lambda_{f_{C P}} i \sin (\Delta m t / 2)+\cos (\Delta m t / 2)\right|^{2}-\left|\cos (\Delta m t / 2)+\lambda_{f_{C P}} i \sin (\Delta m t / 2)\right|^{2}}{\left|(p / q)^{2} \lambda_{f C P} i \sin (\Delta m t / 2)+\cos (\Delta m t / 2)\right|^{2}+\left|\cos (\Delta m t / 2)+\lambda_{f_{C P}} i \sin (\Delta m t / 2)\right|^{2}}= \\
& =\frac{\left(1-\left|\lambda_{f_{C P}}\right|^{2}\right) \cos (\Delta m t)-2 \operatorname{Im}\left(\lambda_{f_{c P}}\right) \sin (\Delta m t)}{1+\left|\lambda_{f_{C P}}\right|^{2}} \\
& =C \cos (\Delta m t)+S \sin (\Delta m t)
\end{aligned}
$$

Time evolution for B and anti- B from the $Y(4 s)$

The time evolution for the B anti-B pair from $Y(4 s)$ decay

$$
\begin{aligned}
& R\left(t_{t a g}, t_{f_{C P}}\right)=e^{-\Gamma\left(t_{\text {tag }}+t_{\text {fPP }}\right)}\left|\overline{A_{t a g}}\right|^{2}\left|A_{f_{C P}}\right|^{2} \\
& {\left[1+\left|\lambda_{f_{C P}}\right|^{2}+\cos \left[\Delta m\left(t_{t a g}-t_{f_{C P}}\right)\right]\left(1-\left|\lambda_{f_{C P}}\right|^{2}\right)\right.} \\
& \left.-2 \sin \left(\Delta m\left(t_{t a g}-t_{f_{C P}}\right)\right) \operatorname{Im}\left(\lambda_{f_{C P}}\right)\right]
\end{aligned}
$$

$$
\text { with } \quad \lambda_{f_{C P}}=\frac{q}{p} \frac{\bar{A}_{f_{C P}}}{A_{f_{C P}}}
$$

\rightarrow in asymmetry measurements at $Y(4 s)$ we have to use
$\mathrm{t}_{\text {faa }}-\mathrm{t}_{\text {fCP }}$ instead of absolute time t .

CP violation in SM

$$
\begin{gathered}
\mathcal{L}=V_{i j} \bar{U}_{i} \gamma^{\mu}\left(1-\gamma_{5}\right) D_{j} W_{\mu}^{+}+V_{i j}^{*} \bar{D}_{i} \gamma^{\mu}\left(1-\gamma_{5}\right) U_{j} W_{\mu} \\
\hat{\mathbb{I}} C P \\
\mathcal{L}_{C P}=V_{i j} \bar{D}_{i} \gamma^{\mu}\left(1-\gamma_{5}\right) U_{j} W_{\mu}+V_{i j}^{*} \bar{U}_{i} \gamma^{\mu}\left(1-\gamma_{5}\right) D_{j} W_{\mu} \\
\text { If } \mathrm{v}_{\mathrm{ij}}=\mathrm{v}_{\mathrm{ij}}{ }^{*} \vee \mathcal{L}=\mathcal{L}_{\mathrm{CP}} \text { CP is conserved }
\end{gathered}
$$

CKM matrix

define

$$
s_{12} \equiv \lambda, s_{23} \equiv A \lambda^{2}, s_{13} e^{-i \delta} \equiv A \lambda^{3}(\rho-i \eta)
$$

Then to $O\left(\lambda^{6}\right)$

$$
\begin{aligned}
& V_{u s}=\lambda, V_{c b}=A \lambda^{2}, \\
& V_{u b}=A \lambda^{3}(\bar{\rho}-i \bar{\eta}), \\
& V_{t d}=A \lambda^{3}(1-\bar{\rho}-i \bar{\eta}), \\
& \operatorname{Im} V_{c d}=-A \lambda^{5} \eta \\
& \operatorname{Im} V_{t s}=-A \lambda^{4} \eta \\
& \bar{\rho}=\rho\left(1-\frac{\lambda^{2}}{2}\right), \bar{\eta}=\eta\left(1-\frac{\lambda^{2}}{2}\right)
\end{aligned}
$$

