

Experiments in Particle Physics

Peter Križan University of Ljubljana and J. Stefan Institute

1st Nagoya Winter School, Ise-Shima, Februar 2009

Contents of this course

- Lecture 1: Introduction, experimental methods, detectors, data analysis
- •Lecture 2: Selection of particle physics experiments: flavour physics
- •LHC experiments: see T. Kondo's lecture

http://www-f9.ijs.si/~krizan/sola/nagoya-ise/

- Slides
- Literature

Standard Model: content

Particles:

- leptons (e, ν_e), (μ , ν_μ), (τ , ν_τ)
- quarks (u,d), (c,s), (t,b)

Interactions:

- Electromagnetic (γ)
- Weak (W+, W-, Z⁰)
- Strong (g)

Higgs field

Flavour physics

- ... is about
- quarksand
- their mixing
- CP violation

Flavour physics and CP violaton

Moments of glory in flavour physics are very much related to CP violation:

Discovery of CP violation (1964)

The smallness of $K_I \rightarrow \mu^+\mu^-$ predicts charm quark

GIM mechanism forbids FCNC at tree level

KM theory describing CP violation predicts third quark generation

 $\Delta m_K = m(K_1) - m(K_S)$ predicts charm quark mass range

Frequency of B⁰B⁰ mixing predicts a heavy top quark

Proof of Kobayashi-Maskawa theory ($\sin 2\phi_1$)

Tools to find physics beyond SM: search for new sources of flavour/CP-violating terms

Distiguished in 2008 by the Nobel prize to Kobayashi and Maskawa

CP Violation

Fundamental quantity: distinguishes matter from anti-matter.

A bit of history:

- First seen in K decays in 1964
- Kobayashi and Maskawa propose in 1973 a mechanism to fit it into the Standard Model → had to be checked in at least one more system, needed 3 more quarks
- Discovery of B anti-B mixing at ARGUS in 1987 indicated that the effect could be large in B decays (I.Bigi and T.Sanda)
- Many experiments were proposed to measure CP violation in B decays, some general purpose experiments tried to do it
- Measured in the B system in 2001 by the two dedicated spectrometers Belle and BaBar at asymmetric e⁺e⁻ colliders B factories

What happens in the B meson system?

Why is it interesting? Need at least one more system to understand the mechanism of CP violation.

Kaon system: hard to understand what is going on at the quark level (light quark bound system, large dimensions).

B has a heavy quark, a smaller system, and is easier for interpreting the experimental results.

First B meson studies were carried out in 70s at e⁺e⁻ colliders with cms energies ~20GeV, considerably above threshold (~2x5.3GeV)

B mesons: long lifetime

Isolate samples of high-p_T
leptons (155 muons, 113 electrons)
wrt thrust axis

Measure impact parameter δ

wrt interaction point

Lifetime implies V_{cb} **small**

MAC: $(1.8\pm0.6\pm0.4)$ ps

Mark II: (1.2±0.4±0.3)ps

Integrated luminosity at

29 GeV: 109 (92) pb⁻¹~3,500 bb pairs

MAC, PRL **51**, 1022 (1983) MARK II, PRL **51**, 1316 (1983)

Systematic studies of B mesons: at Y(4s)

Systematic studies of B mesons at Y(4s)

80s-90s: two very successful experiments:

- ARGUS at DORIS (DESY)
- CLEO at CESR (Cornell)

Magnetic spectrometers at e⁺e⁻ colliders (5.3GeV+5.3GeV beams)

Large solid angle, excellent tracking and good particle identification (TOF, dE/dx, EM calorimeter, muon chambers).

Mixing in the B⁰ system

1987: ARGUS discovers BB mixing: B⁰ turns into anti-B⁰

Reconstructed event

$$\chi_d = 0.17 \pm 0.05$$

ARGUS, PL B **192**, 245 (1987) cited >1000 times.

Time-integrated mixing rate: 25 like sign, 270 opposite sign dilepton events Integrated Y(4S) luminosity 1983-87: 103 pb⁻¹ ~110,000 B pairs

Mixing in the B⁰ system

Large mixing rate → high top mass (in the Standard Model)

The top quark has only been discovered seven years later!

Systematic studies of B mesons at Y(4s)

ARGUS and CLEO: In addition to mixing many important discoveries or properties of

- B mesons
- D mesons
- τ⁻ lepton
- and even a measurement of v_{τ} mass.

After ARGUS stopped data taking, and CESR considerably improved the operation, CLEO dominated the field in late 90s (and managed to compete successfully even for some time after the B factories were built).

Studies of B mesons at LEP

90s: study B meson properties at the Z⁰ mass by exploiting

- •Large solid angle, excellent tracking, vertexing, particle identification
- Boost of B mesons → time evolution (lifetimes, mixing)

•Separation of one B from the other \rightarrow inclusive rare b \rightarrow u

Studies of B mesons at LEP and SLC

 $B^0 \rightarrow anti-B^0$ mixing, time evolution

Fraction of events with like sign lepton pairs

Almost measured mixing in the B_s system (bad luck...)

Large number of B mesons (but by far not enough to do the CP violation measurements...)

Mixing → expect sizeable CP Violation (CPV) in the B System

CPV through interference of decay amplitudes

CPV through interference of mixing diagram

 B^0 \overline{B}^0 \overline{A}_D \overline{A}_D \overline{A}_D

CPV through interference between mixing and decay amplitudes

Directly related to CKM parameters in case of a single amplitude

Golden Channel: B \rightarrow J/ ψ K_S

Soon recognized as the best way to study CP violation in the B meson system (I. Bigi and T. Sanda 1987)

Theoretically clean way to one of the parameters $(\sin 2\phi_1)$

Clear experimental signatures (J/ $\psi \rightarrow \mu^{+}\mu^{-}$, e⁺e⁻, K_S $\rightarrow \pi^{+}\pi^{-}$)

Relatively large branching fractions for b->ccs (~10⁻³)

→ A lot of physicists were after this holy grail

Genesis of Worldwide Effort

Time evolution in the B system

An arbitrary linear combination of the neutral B-meson flavor eigenstates

$$a|B^{0}\rangle+b|\overline{B}^{0}\rangle$$

is governed by a time-dependent Schroedinger equation

$$i\frac{d}{dt}\binom{a}{b} = H\binom{a}{b} = (M - \frac{i}{2}\Gamma)\binom{a}{b}$$

M and Γ are 2x2 Hermitian matrices. CPT invariance $\rightarrow H_{11} = H_{22}$

$$M = \begin{pmatrix} M & M_{12} \\ M_{12}^* & M \end{pmatrix}, \Gamma = \begin{pmatrix} \Gamma & \Gamma_{12} \\ \Gamma_{12}^* & \Gamma \end{pmatrix}$$
 diagonalize \rightarrow

Time evolution in the B system

The light B_L and heavy B_H mass eigenstates with eigenvalues m_H , Γ_H , m_L , Γ_L are given by

$$|B_{L}\rangle = p|B^{0}\rangle + q|\overline{B}^{0}\rangle$$
$$|B_{H}\rangle = p|B^{0}\rangle - q|\overline{B}^{0}\rangle$$

with the eigenvalue differences

$$\Delta m_B = m_H - m_L, \Delta \Gamma_B = \Gamma_H - \Gamma_L$$

They are determined from the M and Γ matrix elements

$$(\Delta m_B)^2 - \frac{1}{4} (\Delta \Gamma_B)^2 = 4(|M_{12}|^2 - \frac{1}{4} |\Gamma_{12}|^2)$$

$$\Delta m_B \Delta \Gamma_B = 4 \operatorname{Re}(M_{12} \Gamma_{12}^*)$$

The ratio p/q is

$$\frac{q}{p} = -\frac{\Delta m_B - \frac{i}{2} \Delta \Gamma_B}{2(M_{12} - \frac{i}{2} \Gamma_{12})} = -\frac{2(M_{12}^* - \frac{i}{2} \Gamma_{12}^*)}{\Delta m_B - \frac{i}{2} \Delta \Gamma_B}$$

What do we know about Δm_B and $\Delta \Gamma_B$?

 $\Delta m_B = (0.502 + -0.007) \text{ ps}^{-1} \text{ well measured}$

$$\rightarrow \Delta m_B/\Gamma_B = x_d = 0.771 + -0.012$$

 $\Delta\Gamma_{B}/\Gamma_{B}$ not measured, expected O(0.01), due to decays common to B and anti-B - O(0.001).

$$\rightarrow \Delta\Gamma_{\rm B} << \Delta m_{\rm B}$$

Since
$$\Delta\Gamma_{\rm B} << \Delta m_{\rm B}$$

$$\Delta m_B = 2|M_{12}|$$

$$\Delta \Gamma_B = 2\operatorname{Re}(M_{12}\Gamma_{12}^*)/|M_{12}|$$

and

$$\frac{q}{p} = -\frac{|M_{12}|}{M_{12}} = \text{a phase factor}$$

$$\frac{q}{p} = -\frac{|M_{12}|}{M_{12}} \left[1 - \frac{1}{2} \operatorname{Im} \left(\frac{\Gamma_{12}}{M_{12}} \right) \right]$$

B^0 and \overline{B}^0 can be written as an admixture of the states B_H and B_I

$$\left|B^{0}\right\rangle = \frac{1}{2p} \left(\left|B_{L}\right\rangle + \left|B_{H}\right\rangle\right)$$

$$\left| \overline{B}^{\,0} \right\rangle = \frac{1}{2q} \left(\left| B_L \right\rangle - \left| B_H \right\rangle \right)$$

Time evolution

Any B state can then be written as an admixture of the states B_H and B_L , and the amplitudes of this admixture evolve in time

$$a_H(t) = a_H(0)e^{-iM_H t}e^{-\Gamma_H t/2}$$

$$a_L(t) = a_L(0)e^{-iM_L t}e^{-\Gamma_L t/2}$$

A B^0 state created at t=0 (denoted by B^0_{phys}) has

$$a_H(0) = a_L(0) = 1/(2p);$$

an anti-B at t=0 (anti-B⁰_{phys}) has

$$a_H(0) = -a_L(0) = 1/(2q)$$

At a later time t, the two coefficients are not equal any more because of the difference in phase factors exp(-iMt)

→initial B⁰ becomes a linear combination of B and anti-B

→ mixing

Time evolution of B's

Time evolution can also be written in the B^0 in $\overline{B^0}$ basis:

$$\left| B_{phys}^{0}(t) \right\rangle = g_{+}(t) \left| B^{0} \right\rangle + (q/p) g_{-}(t) \left| \overline{B}^{0} \right\rangle$$
$$\left| \overline{B}_{phys}^{0}(t) \right\rangle = (p/q) g_{-}(t) \left| B^{0} \right\rangle + g_{+}(t) \left| \overline{B}^{0} \right\rangle$$

with
$$g_{+}(t) = e^{-iMt}e^{-\Gamma t/2}\cos(\Delta mt/2)$$

$$g_{-}(t) = e^{-iMt}e^{-\Gamma t/2}i\sin(\Delta mt/2)$$

$$M = (M_{H} + M_{L})/2$$

If B mesons were stable (Γ =0), the time evolution would look like:

$$g_{+}(t) = e^{-iMt} \cos(\Delta mt / 2)$$

$$g_{-}(t) = e^{-iMt} i \sin(\Delta mt / 2)$$

→ Probability that a B turns into its anti-particle

→beat

$$\left| \left\langle \overline{B}^{0} \right| B_{phys}^{0}(t) \right\rangle \right|^{2} = \left| q / p \right|^{2} \left| g_{-}(t) \right|^{2} = \left| q / p \right|^{2} \sin^{2}(\Delta mt / 2)$$

→ Probability that a B remains a B

$$\left| \left\langle B^0 \middle| B^0_{phys}(t) \right\rangle \right|^2 = \left| g_+(t) \right|^2 = \cos^2(\Delta mt / 2)$$

→Expressions familiar from quantum mechanics of a two level system

B mesons of course do decay \rightarrow

 B^0 at t=0

Evolution in time

•Full line: B⁰

•dotted: B⁰

T: in units of $\tau=1/\Gamma$

Decay probability

Decay probability

$$P(B^0 \to f, t) \propto \left| \left\langle f \mid H \mid B_{phys}^0(t) \right\rangle \right|^2$$

Decay amplitudes of B and anti-B to the same final state **f**

$$A_{f} = \langle f | H | B^{0} \rangle$$

$$\overline{A}_{f} = \langle f | H | \overline{B}^{0} \rangle$$

Decay amplitude as a function of time:

$$\langle f | H | B_{phys}^{0}(t) \rangle = g_{+}(t) \langle f | H | B^{0} \rangle + (q/p) g_{-}(t) \langle f | H | \overline{B}^{0} \rangle$$

$$= g_{+}(t) A_{f} + (q/p) g_{-}(t) \overline{A}_{f}$$

... and similarly for the anti-B

CP violation: three types

Decay amplitudes of B and anti-B to the same final state **f**

$$A_f = \langle f | H | B^0 \rangle$$

$$\overline{A}_{f} = \langle f | H | \overline{B}^{0} \rangle$$

Define a parameter λ

$$\lambda = \frac{q}{p} \frac{A_f}{A_f}$$

Three types of CP violation (CPV):

$$\angle P$$
 in decay: $|\overline{A}/A| \neq 1$ $|\lambda| \neq 1$ $|\lambda| \neq 1$ $|\lambda| \neq 1$

 $\not \in \mathbb{N}$ in interference between mixing and decay: even if $|\lambda| = 1$ if only $\operatorname{Im}(\lambda) \neq 0$

CP violation in the interference between decays with and without mixing

CP violation in the interference between mixing and decay to a state accessible in both B⁰ and anti-B⁰ decays

For example: a CP eigenstate f_{CP} like π^+ π^-

$$\lambda = \frac{q}{p} \frac{\overline{A}_f}{A_f}$$

We can get CP violation if $Im(\lambda) \neq 0$, even if $|\lambda| = 1$

CP violation in the interference between decays with and without mixing

Decay rate asymmetry:

$$a_{f_{CP}} = \frac{P(\overline{B}^0 \to f_{CP}, t) - P(B^0 \to f_{CP}, t)}{P(\overline{B}^0 \to f_{CP}, t) + P(B^0 \to f_{CP}, t)}$$

Decay rate:
$$P(B^0 \to f_{CP}, t) \propto \left| \left\langle f_{CP} \left| H \right| B_{phys}^0(t) \right\rangle \right|^2$$

Decay amplitudes vs time:

$$\left\langle f_{CP} \left| H \right| B_{phys}^{0}(t) \right\rangle = g_{+}(t) \left\langle f_{CP} \left| H \right| B^{0} \right\rangle + (q/p) g_{-}(t) \left\langle f_{CP} \left| H \right| \overline{B}^{0} \right\rangle$$

$$= g_{+}(t) A_{f_{CP}} + (q/p) g_{-}(t) \overline{A}_{f_{CP}}$$

$$\left\langle f_{CP} \left| H \right| \overline{B}_{phys}^{0}(t) \right\rangle = (p/q) g_{-}(t) \left\langle f_{CP} \left| H \right| B^{0} \right\rangle + g_{+}(t) \left\langle f_{CP} \left| H \right| \overline{B}^{0} \right\rangle$$

$$= (p/q) g_{-}(t) A_{f_{CP}} + g_{+}(t) \overline{A}_{f_{CP}}$$

$$\left|a_{f_{CP}}\right| = \frac{P(\overline{B}^{0} \to f_{CP}, t) - P(B^{0} \to f_{CP}, t)}{P(\overline{B}^{0} \to f_{CP}, t) + P(B^{0} \to f_{CP}, t)} =$$

$$= \frac{\left| (p/q)g_{-}(t)A_{f_{CP}} + g_{+}(t)\overline{A}_{f_{CP}} \right|^{2} - \left| g_{+}(t)A_{f_{CP}} + (q/p)g_{-}(t)\overline{A}_{f_{CP}} \right|^{2}}{\left| (p/q)g_{-}(t)A_{f_{CP}} + g_{+}(t)\overline{A}_{f_{CP}} \right|^{2} + \left| g_{+}(t)A_{f_{CP}} + (q/p)g_{-}(t)\overline{A}_{f_{CP}} \right|^{2}} = \frac{\left| (p/q)g_{-}(t)A_{f_{CP}} + g_{+}(t)\overline{A}_{f_{CP}} \right|^{2}}{\left| (p/q)g_{-}(t)A_{f_{CP}} + g_{+}(t)\overline{A}_{f_{CP}} \right|^{2}} = \frac{\left| (p/q)g_{-}(t)A_{f_{CP}} + g_{+}(t)\overline{A}_{f_{CP}} \right|^{2}}{\left| (p/q)g_{-}(t)A_{f_{CP}} + g_{+}(t)\overline{A}_{f_{CP}} \right|^{2}} = \frac{\left| (p/q)g_{-}(t)A_{f_{CP}} + g_{+}(t)\overline{A}_{f_{CP}} \right|^{2}}{\left| (p/q)g_{-}(t)A_{f_{CP}} + g_{+}(t)\overline{A}_{f_{CP}} \right|^{2}} = \frac{\left| (p/q)g_{-}(t)A_{f_{CP}} + g_{+}(t)\overline{A}_{f_{CP}} \right|^{2}}{\left| (p/q)g_{-}(t)A_{f_{CP}} + g_{+}(t)\overline{A}_{f_{CP}} \right|^{2}} = \frac{\left| (p/q)g_{-}(t)A_{f_{CP}} + g_{+}(t)\overline{A}_{f_{CP}} \right|^{2}}{\left| (p/q)g_{-}(t)\overline{A}_{f_{CP}} + g_{+}(t)\overline{A}_{f_{CP}} \right|^{2}} = \frac{\left| (p/q)g_{-}(t)A_{f_{CP}} + g_{+}(t)\overline{A}_{f_{CP}} \right|^{2}}{\left| (p/q)g_{-}(t)\overline{A}_{f_{CP}} + g_{+}(t)\overline{A}_{f_{CP}} \right|^{2}} = \frac{\left| (p/q)g_{-}(t)A_{f_{CP}} + g_{+}(t)\overline{A}_{f_{CP}} \right|^{2}}{\left| (p/q)g_{-}(t)\overline{A}_{f_{CP}} + g_{+}(t)\overline{A}_{f_{CP}} \right|^{2}} = \frac{\left| (p/q)g_{-}(t)A_{f_{CP}} + g_{+}(t)\overline{A}_{f_{CP}} \right|^{2}}{\left| (p/q)g_{-}(t)\overline{A}_{f_{CP}} \right|^{2}} = \frac{\left| (p/q)g_{-}(t)A_{f_{CP}} + g_{+}(t)\overline{A}_{f_{CP}} \right|^{2}}{\left| (p/q)g_{-}(t)\overline{A}_{f_{CP}} \right|^{2}} = \frac{\left| (p/q)g_{-}(t)\overline{A}_{f_{CP}} \right|^{2}}{\left| (p/q)g_{-}(t)\overline{A}_{f_{CP}} \right|^{2}}$$

$$= \frac{(1-|\lambda_{f_{CP}}|^2)\cos(\Delta mt) - 2\operatorname{Im}(\lambda_{f_{CP}})\sin(\Delta mt)}{1+|\lambda_{f_{CP}}|^2}$$

 $= C\cos(\Delta mt) + S\sin(\Delta mt)$

$$\lambda = \frac{q}{p} \frac{A_f}{A_f}$$

Non-zero effect if $Im(\lambda) \neq 0$, even if $|\lambda| = 1$

If
$$|\lambda| = 1 \rightarrow$$

$$a_{f_{CP}} = -\operatorname{Im}(\lambda)\sin(\Delta mt)$$

CP violation in the interference between decays with and without mixing

One more form for λ :

$$\lambda_{f_{CP}} = \frac{q}{p} \frac{\overline{A}_{f_{CP}}}{A_{f_{CP}}} = \eta_{f_{CP}} \frac{q}{p} \frac{\overline{A}_{f_{CP}}}{A_{f_{CP}}}$$

 η_{fcp} =+-1 CP parity of f_{CP}

→ we get one more (-1) sign when comparing asymmetries in two states with opposite CP parity

$$a_{f_{CP}} = -\operatorname{Im}(\lambda_{f_{CP}})\sin(\Delta mt)$$

B and anti-B from the Y(4s)

B and anti-B from the Y(4s) decay are in a L=1 state.

They cannot mix independently (either BB or anti-B anti-B states are forbidden with L=1 due to Bose symmetry).

After one of them decays, the other evolves independently ->

-> only time differences between one and the other decay matter (for mixing).

Assume

- •one decays to a CP eigenstate f_{CP} (e.g. $\pi\pi$ or $J/\psi K_S$) at time t_{fCP} and
- •the other at t_{ftag} to a flavor-specific state f_{tag} (=state only accessible to a B⁰ and not to a anti-B⁰ (or vice versa), e.g. B⁰ -> D⁰ π , D⁰ -> K⁻ π ⁺)

also known as 'tag' because it tags the flavour of the B meson it comes from

Decay rate to f_{CP}

Incoherent production (e.g. hadron collider)

coherent production at Y(4s)

At Y(4s): Time integrated asymmetry = 0

CP violation in SM

CP violation: consequence of the Cabibbo-Kobayashi-Maskawa (CKM)

W[±]

V_{ij}

$$V_{ij}$$
 q_i

$$V_{CKM} = \left(egin{array}{ccc} V_{ud} & V_{us} & V_{ub} \ V_{cd} & V_{cs} & V_{cb} \ V_{td} & V_{ts} & V_{tb} \end{array}
ight)$$

CKM matrix

3x3 ortogonal matrix: 3 parameters - angles

3x3 unitary matrix: 18 parameters, 9 conditions = 9 free parameters, 3 angles and 6 phases

6 quarks: 5 relative phases can be transformed away (by redefinig the quark fields)

1 phase left -> the matrix is in general complex

$$V_{CKM} = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{13} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix}$$

 $s_{12} = \sin \theta_{12}, c_{12} = \cos \theta_{12}$ etc.

CKM matrix

Transitions between members of the same family more probable (=thicker lines) than others

-> CKM: almost a diagonal matrix,but not completely ->

CKM matrix

Almost a diagonal matrix, but not completely ->

Wolfenstein parametrisation: expand in the parameter λ (=sin θ_c =0.22)

A, ρ and η : all of order one

$$V = \begin{pmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + O(\lambda^4)$$

Unitary relations

Rows and columns of the V matrix are orthogonal

Three examples: 1st+2nd, 2nd+3rd, 1st+3rd columns

$$egin{aligned} V_{ud}V_{us}^{} + V_{cd}V_{cs}^{} + V_{td}V_{ts}^{} &= 0, \\ V_{us}V_{ub}^{} + V_{cs}V_{cb}^{} + V_{ts}V_{tb}^{} &= 0, \\ V_{ud}V_{ub}^{} + V_{cd}V_{cb}^{} + V_{td}V_{tb}^{} &= 0. \end{aligned}$$

Geometrical representation: triangles in the complex plane.

Unitary triangles

All triangles have the same area J/2 (about 4x10⁻⁵)

$$J = c_{12}c_{23}c_{13}^2s_{12}s_{23}s_{13}\sin\delta$$

Jarlskog invariant

Unitarity triangle

THE unitarity triangle:

$$V_{ud}V_{ub}^{*} + V_{cd}V_{cb}^{*} + V_{td}V_{tb}^{*} = 0$$

(a)

Two notations:

$$\phi_1 = \beta$$

$$\phi_2 = \alpha$$

$$\phi_3 = \gamma$$

$$\phi_2 = \alpha$$

$$\phi_3 = \gamma$$

Angles of the unitarity triangle

$$\alpha \equiv \phi_2 \equiv \arg\left(\frac{V_{td}V_{tb}^*}{V_{ud}V_{ub}^*}\right)$$

$$\beta \equiv \phi_1 \equiv \arg\left(\frac{V_{cd}V_{cb}^*}{V_{td}V_{tb}^*}\right)$$

$$\gamma \equiv \phi_3 \equiv \arg\left(\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*}\right) \equiv \pi - \alpha - \beta$$

b decays

Why penguin?

Example: b→s transition

Decay asymmetry predictions – example $\pi^+ \pi^-$

N.B.: for simplicity we have neglected possible penguin amplitudes (which is wrong as we shall see later, when we will do it properly).

A reminder:

$$\frac{q}{p} = -\frac{\left| M_{12} \right|}{M_{12}}$$

$$\Delta m_B = 2 |M_{12}|$$

$\Delta m \propto$

$$B^{0} \xrightarrow{V^{*}_{\mathsf{tb}}} \overset{\mathsf{V}_{\mathsf{td}}}{\overline{t}} \overset{\bar{d}}{\overline{d}}$$

$$d \xrightarrow{\mathsf{V}_{\mathsf{td}}} \overset{\mathsf{D}^{0}}{\overline{t}} \overset{\bar{d}}{\overline{b}}$$

Decay asymmetry predictions – example $J/\psi K_S$

b → ccs:

Take into account that we measure the $\pi^+\,\pi^-$ component of K_S – also need the (q/p)_K for the K system

$$\lambda_{\psi Ks} = \eta_{\psi Ks} \left(\frac{V_{tb}^* V_{td}}{V_{tb} V_{td}^*} \left(\frac{V_{cs}^* V_{cb}}{V_{cs} V_{cb}^*} \right) \left(\frac{V_{cd}^* V_{cs}}{V_{cd} V_{cs}^*} \right) =$$

$$= \eta_{\psi Ks} \left(\frac{V_{tb}^* V_{td}}{V_{tb} V_{td}^*} \right) \left(\frac{V_{cb}^* V_{cd}^*}{V_{cd}^*} \right)$$

$$\operatorname{Im}(\lambda_{\psi Ks}) = \sin 2\phi_1 \qquad \beta \equiv \phi_1 \equiv \arg \left(\frac{V_{cd} V_{cb}^*}{V_{td} V_{tb}^*} \right)$$

b → c anti-c s CP=+1 and CP=-1 eigenstates

$$a_{f_{CP}} = -\operatorname{Im}(\lambda_{f_{CP}})\sin(\Delta mt)$$

Asymmetry sign depends on the CP parity of the final state f_{CP} , η_{fcp} =+-1

$$\lambda_{f_{CP}} = \eta_{f_{CP}} \frac{q}{p} \frac{\overline{A}_{\overline{f}_{CP}}}{A_{f_{CP}}}$$

$$J/\psi K_S(\pi^+\pi^-)$$
: CP=-1

- •J/ ψ : P=-1, C=-1 (vector particle J^{PC}=1⁻⁻): CP=+1
- •K_S (-> π^+ π^-): CP=+1, orbital ang. momentum of pions=0 -> P (π^+ π^-)=($\pi^ \pi^+$), C($\pi^ \pi^+$) =(π^+ π^-)
- •orbital ang. momentum between J/ ψ and K_S L=1, P=(-1)¹=-1

$$J/\psi K_L(3\pi)$$
: CP=+1

Opposite parity to J/ ψ K_S ($\pi^+ \pi^-$), because K_L(3 π) has CP=-1

B meson production at Y(4s)

Principle of measurement

Transform distance into time: need a moving center-off-mass system → asymmetric collider

Experimental considerations

Detector form: symmetric for symmetric energy beams; slightly extended in the boost direction for an asymmetric collider.

How many events?

```
Rough estimate:
```

```
Need ~1000 reconstructed B-> J/\psi K<sub>S</sub> decays with J/\psi -> ee or \mu\mu, and K<sub>S</sub>-> \pi^+ \pi^-
```

```
1/2 of Y(4s) decays are B<sup>0</sup> anti-B<sup>0</sup> (but 2 per decay) BR(B-> J/ψ K<sup>0</sup>)=8.4 10<sup>-4</sup> BR(J/ψ -> ee or μμ)=11.8% 1/2 of K<sup>0</sup> are K<sub>S</sub>, BR(K<sub>S</sub>-> \pi<sup>+</sup> \pi<sup>-</sup>)=69%
```

Reconstruction effiency ~ 0.2 (signal side: 4 tracks, vertex, tag side pid and vertex)

```
N(Y(4s)) = 1000 / (\frac{1}{2} * \frac{1}{2} * 2 * 8.4 \cdot 10^{-4} * 0.118 * 0.69 * 0.2) = 140 M
```

How to produce 140 M BB pairs?

Want to produce 140 M pairs in two years

Assume effective time available for running is 10^7 s per year.

 \rightarrow need a rate of 140 10⁶ / (2 10⁷ s) = 7 Hz

Observed rate of events = Cross section x Luminosity

$$\frac{dN}{dt} = L\sigma$$

Cross section for Y(4s) production: $1.1 \text{ nb} = 1.1 \text{ } 10^{-33} \text{ cm}^2$

→ Accelerator figure of merit - luminosity - has to be

$$L = 6.5 / \text{nb/s} = 6.5 \cdot 10^{33} \, \text{cm}^{-2} \, \text{s}^{-1}$$

This is much more than any other accelerator achieved before!

Colliders: asymmetric B factories

$$e^+$$
 $\sqrt{s=10.58}$ GeV $e^ Y(4s)$

BaBar
$$p(e^{-})=9 \text{ GeV } p(e^{+})=3.1 \text{ GeV}$$

Belle
$$p(e^{-})=8 \text{ GeV } p(e^{+})=3.5 \text{ GeV}$$
 $\beta \gamma = 0.42$

Accelerator performance

Normal injection

Continuous injection

Belle spectrometer at KEK-B

BaBar spectrometer at PEP-II

Flavour tagging

Was it a B or an anti-B that decayed to the CP eigenstate?

Look at the decay products of the associated B

Charge of high momentum lepton

Flavour tagging

Was it a B or anti-B that decayed to the CP eigenstate?

Look at the decay products of the associated B

- Charge of high momentum lepton
- Charge of kaon
- Charge of 'slow pion' (from $D^{*+} \rightarrow D^0 \pi^+$ and $D^{*-} \rightarrow D^0 \pi^-$ decays)
- •

Charge measured from curvature in magnetic field,

→ need reliable particle identification

How to measure $\sin 2\phi_1$?

To measure $\sin 2\phi_1$, we have to measure the time dependent CP asymmetry in $B^0 \rightarrow J/\Psi$ K_s decays

$$a_{f_{CP}} = -\operatorname{Im}(\lambda_{f_{CP}})\sin(\Delta mt) = \frac{\sin 2\phi_{1}}{\sin(\Delta mt)}$$

$$\lambda_{f_{CP}} = \eta_{f_{CP}} \frac{q}{p} \frac{\overline{A_{f_{CP}}}}{A_{f_{CP}}}$$

In addition to $B^0 \rightarrow J/\Psi K_s$ decays we can also use decays with any other charmonium state instead of J/Ψ . Instead of K_s we can use channels with K_L (opposite CP parity).

Reconstructing chamonium states

Reconstructing final states X which decayed to several particles (x,y,z):

From the measured tracks calculate the invariant mass of the system (i=x,y,z):

$$M = \sqrt{\left(\sum E_i\right)^2 - \left(\sum \vec{p}_i\right)^2}$$

The candidates for the X->xyz decay show up as a peak in the distribution on (mostly combinatorial) background.

The name of the game: have as little background under the peak as possible without loosing the events in the peak (=reduce background and have a small peak width).

A golden channel event

Reconstructing chamonium states

Reconstructing K⁰_S

Continuum suppression

Reconstruction of b-> c anti-c s CP=-1 eigenstates

Reconstructed decay modes for 78/fb, 85M B B pairs, Belle 2002

$B^0 \rightarrow$	events	$\frac{S}{S+N}$
$J/\psi K_S(K_S \to \pi^+\pi^-)$	1285	.976
$J/\psi K_S(K_S \to \pi^0 \pi^0)$	188	.824
$\psi(2S)K_S$		
$(\psi(2S) \to \ell^+\ell^-)K_S$	91	.957
$(\psi(2S) \to J/\psi \pi^+\pi^-)$	112	.911
$\chi_{c1}K_S$	77	.958
$\eta_c(\eta_c \to K_S K \pi) K_S$	72	.646
$\eta_c(\eta_c \to KK\pi^0)K_S$	49	.725
$\eta_c(\eta_c \to p\bar{p})K_S$	21	.936
$J/\psi K^*(K^* \to K_S \pi^0)$	101	.917
total $CP = -1$	1996	.935
$J/\psi K_L$, $CP = +1$	1330	.627
Total	3326	.807

result

2958 events are used in the fit

Reconstruction of b-> c anti-c s CP=+1 eigenstates

- lacktriangle detection of K_L in KLM and ECL
- $lacktriangledown K_L$ direction, no energy

- $p^* \approx 0.35 \text{ GeV/c}$ for signal events
- background shape is determined from MC,
 and its size from the fit to the data

Principle of CPV Measurement

Final result

CP is violated! Red points differ from blue.

Red points: anti-B⁰ -> f_{CP} with CP=-1 (or B⁰ -> f_{CP} with CP=+1)

Blue points: $B^0 \rightarrow f_{CP}$ with CP=-1 (or anti- $B^0 \rightarrow f_{CP}$ with CP=+1)

Belle, 2002 statistics (78/fb, 85M B B pairs)

Fitting the asymmetry

Fitting function:

$$P_{sig}(\Delta t) = \frac{e^{-|\Delta t|/\tau}}{4\tau} \left\{ 1 + q(1 - 2w_l) \operatorname{Im} \lambda \sin \Delta mt \right\} \otimes R(t)$$

Miss-tagging probability

Resolution function: from self-tagged events $B \rightarrow D^*Iv$, $D\pi$, ...

q=+1 or =-1 (B or anti-B on the tag side)

Fitting: unbinned maximum likelihood fit event-by-event

Fitted parameter: $Im(\lambda)$

BaBar vs Belle sin2\$\phi_1\$

 $\sin 2\phi_1 = 0.741 \pm 0.067 \pm 0.034$ (BaBar) $\sin 2\phi_1 = 0.719 \pm 0.074 \pm 0.035$ (Belle)

More data....

Larger sample →

- •smaller statistical error $(1/\sqrt{N})$
- better understanding of the detector, calibration etc
- \rightarrow error improves by better than with $1/\sqrt{N}$

b → c anti-c s CP=+1 and CP=-1 eigenstates

$$a_{f_{CP}} = -\operatorname{Im}(\lambda_{f_{CP}})\sin(\Delta mt)$$

Asymmetry sign depends on the CP parity of the final state f_{CP} , η_{fcp} =+-1

$$\lambda_{f_{CP}} = \eta_{f_{CP}} \frac{q}{p} \frac{\overline{A}_{\overline{f}_{CP}}}{A_{f_{CP}}}$$

$$J/\psi K_S(\pi^+\pi^-)$$
: CP=-1

- •J/ ψ : P=-1, C=-1 (vector particle J^{PC}=1⁻⁻): CP=+1
- •K_S (-> π^+ π^-): CP=+1, orbital ang. momentum of pions=0 -> P (π^+ π^-)=($\pi^ \pi^+$), C($\pi^ \pi^+$) =(π^+ π^-)
- •orbital ang. momentum between J/ ψ and K_S l=1, P=(-1)¹=-1

$$J/\psi K_1(3\pi): CP=+1$$

Opposite parity to J/ ψ K_S ($\pi^+ \pi^-$), because K_L(3 π) has CP=-1

CP violation in the B system

CP violation in B system: from the discovery in $B^0 \rightarrow J/\Psi K_s$ decays (2001) to a precision measurement (2006)

 $\sin 2\phi_1 = \sin 2\beta$ from b $\rightarrow \cos$

535 M BB pairs

 $\sin 2\phi_1 = 0.642 \pm 0.031 \text{ (stat) } \pm 0.017 \text{ (syst)}$

Unitary triangle: one of the sides is determined by V_{ub}

$$\begin{bmatrix} \mathbf{V}_{ud} & \mathbf{V}_{us} & \mathbf{V}_{ub} \\ \mathbf{V}_{cd} & \mathbf{V}_{cs} & \mathbf{V}_{cb} \\ \mathbf{V}_{td} & \mathbf{V}_{ts} & \mathbf{V}_{tb} \end{bmatrix} V = \begin{bmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{bmatrix} + O(\lambda^4)$$

|V_{ub}| measurements

From semileptonic B decays

b→clv background typically an order of magnitude larger.

Traditional inclusive method: fight the background from $b\rightarrow cl\nu$ decays by using only events with electron momentum above the $b\rightarrow cl\nu$ kinematic limit. Problem: extrapolation to the full phase space \rightarrow large theoretical uncertainty.

New method: fully reconstruct one of the B mesons, check the properties of the other (semileptonic decay, low mass of the hadronic system)

- Very good signal to noise
- •Low yield (full reconstruction efficiency is 0.3-0.4%)

Fully reconstructed sample

Fully reconstructed sample

Clean environment but small sample: E_{reco}≈3.10-3

Exclusive method: 180 decay channels

Reconstructed channels:

$$B^0 \to D^{(*)-}\pi^+ / D^{(*)-}\rho^+ / D^{(*)-}a_1^+ / D^{(*)-}D_s^{(*)+}$$

$$B^+\!\to D^{(*)0}\,\pi^+\,/\,\,D^{(*)0}\,\rho^+\,/\,\,D^{(*)0}{a_1}^+/\,\,D^{(*)0}\,D_s^{\,(*)}{}^+$$

$$D^{*0} \rightarrow D^0 \pi^0$$

$$D^* \rightarrow D^0 \pi / D \pi^0$$

$$D_s^* \to D_s \gamma$$

 $D^0 \rightarrow K\pi/K\pi\pi^0/K\pi\pi\pi/K_s\pi^0/K_s\pi\pi/K_s\pi\pi\pi^0/KK$

 $D \rightarrow K\pi\pi/K\pi\pi\pi^0/K_s\pi/K_s\pi\pi^0/K_s\pi\pi\pi/KK\pi$

 $D_s \to K_s K\pi/KK\pi$

M_x analysis

Use the mass of the hadronic system M_x as the discriminating variable against $b \rightarrow clv$

 M_{v} = mass of all hadrons from the B decav.

Expect:

- •M_x for b \rightarrow cl_V to be above 1.8 GeV (b \rightarrow cl_V results in a D meson with >1.8 GeV)
- M_x for $b \rightarrow ulv$ to mainly below 1.8 GeV ($B \rightarrow \pi lv$, ρlv , ωlv ...)

M_x analysis

 $M_x < 1.7 \text{ GeV/c}^2 / q^2 > 8 \text{ GeV}^2/c^2$

Total error on $|V_{ub}|$ 12%

253 fb⁻¹

$$|V_{ub}| = (4.93 \pm 0.25 \pm 0.22 \pm 0.15 \pm 0.13 \pm 0.46^{+0.20}_{-0.22}) \times 10^{-3}$$

stat syst $b\rightarrow u$ $b\rightarrow c$ SF theo model dep.

 $M_x < 1.7 \text{ GeV/c}^2 / \text{ no } q^2 \text{ cut}$: total error on $|V_{ub}| \dots 11\%$

253 fb⁻¹

$$|V_{ub}| = (4.35 \pm 0.20 \pm 0.15 \pm 0.13 \pm 0.05 \pm 0.40 ^{+0.13}_{-0.14}) \times 10^{-3}$$

stat syst $b\rightarrow u$ $b\rightarrow c$ SF theo

model dep.

Peter Križan, Ljubljana

All measurements combined...

Constraints from measurements of angles and sides of the unitarity triangle \rightarrow

→ Remarkable agreement

Diagrams for B $\rightarrow \pi\pi$, K π decays

Kπ

 $\pi\pi$

 $\bar{B}^{0} \qquad \bar{d} \qquad \bar{$

- •Penguin amplitudes (without CKM factors) expected to be equal in both.
- •BR($\pi\pi$) ~ 1/4 BR(K π)
- $K\pi$: penguin dominant \rightarrow penguin in $\pi\pi$ must be important

CP asymmetry in time integrated rates

$$a_{f} = \frac{\Gamma(B \to f) - \Gamma(\overline{B} \to \overline{f})}{\Gamma(B \to f) + \Gamma(\overline{B}^{-} \to \overline{f})} = \frac{1 - |\overline{A}/A|^{2}}{1 + |\overline{A}/A|^{2}}$$

Need $|\overline{A/A}| \neq 1$: how do we get there?

In general, A is a sum of amplitudes with strong phases δ_i and weak phases ϕ_i . The amplitudes for anti-particles have the same strong phases and opposite weak phases ->

$$A_f = \sum_{i} A_i e^{i(\delta_i + \varphi_i)}$$

$$\overline{A}_{\overline{f}} = \sum_{i} A_i e^{i(\delta_i - \varphi_i)}$$

$$\left|A_f\right|^2 - \left|\overline{A}_{\overline{f}}\right|^2 = \sum_{i,j} A_i A_j \sin(\varphi_i - \varphi_j) \sin(\delta_i - \delta_j)$$

→ Need at least two interfering amplitudes with different weak and strong phases.

A difference in the direct violation of CP symmetry in B⁺ and B⁰ decays to $K\pi$

CP asymmetry

$$\mathcal{A}_f = \frac{N(\overline{B} \to \overline{f}) - N(B \to f)}{N(\overline{B} \to \overline{f}) + N(B \to f)}$$

Difference between B⁺ and B⁰ decays

In SM expect $\mathcal{A}_{K^{\pm}\pi^{\mp}} \approx \mathcal{A}_{K^{\pm}\pi^{-0}}$

Measure:

$$\mathcal{A}_{K^{\pm}\pi^{\mp}} = -0.094 \pm 0.018 \pm 0.008$$
$$\mathcal{A}_{K^{\pm}\pi^{0}} = +0.07 \pm 0.03 \pm 0.01$$

$$\Delta A = +0.164 \pm 0.037$$

A problem for a SM explanation (in particular when combined with other measurements)

A hint for new sources of CP violation?

Belle, Nature 452, 332 (2008)

decay mode

Experimental methods in D⁰ mixing searches

The method: investigate D decays in the decay sequence:

$$D^{*+} \rightarrow D^0 \pi^+$$
, $D^0 \rightarrow$ specific final states

Used for tagging the initial flavour and for background reduction

 $p_{cms}(D^*) > 2.5 \text{ GeV/c}$ eliminates D meson production from b \rightarrow c

D⁰ mixing in K+K-, π + π -

$$D^0 \rightarrow K^+K^-/\pi^+\pi^-$$

CP even final state; in the limit of no CPV: CP|D₁> = |D₁> \Rightarrow measure $1/\Gamma_1$

$$y_{CP} = \frac{\tau(K^{-}\pi^{+})}{\tau(K^{-}K^{+})} - 1 = y\cos\varphi - \frac{1}{2}A_{M}x\sin\varphi =$$

$$= y\cos\varphi - \frac{1}{2}A_{M}x\sin\varphi =$$
S. Bergman et al., PLB486, 418 (2000)

A_M, φ: CPV in mixing and interference

Signal: $D^0 \rightarrow K^+K^- / \pi^+\pi^-$ from D^* M, Q, σ_t selection optimized in MC

	K+K-	K-π+	π+π-
N_{sig}	111x10 ³	1.22x10 ⁶	49x10 ³
purity	98%	99%	92%

D⁰ mixing in K+K-, π + π -

Decay time distributions for KK, $\pi\pi$, K π

Difference of lifetimes visually observable in the ratio of the distributions →

$$y_{CP} = (1.31 \pm 0.32 \pm 0.25) \%$$

evidence for D⁰ mixing (regardless of possible CPV)

→y_{CP} is on the high side of SM expectations

10 4

10 ³

(b) $K\pi$

D^o mixing: all results combined

Assuming no CPV

$$x = (0.87 \pm {}^{0.30}_{0.34}) \%$$

 $y = (0.66 \pm {}^{0.21}_{0.20}) \%$
 $\delta = 0.33 \pm {}^{0.26}_{0.29}$

(x,y)=(0,0) excluded by $>5\sigma$

Purely leptonic decay $B \rightarrow \tau \nu$

- Challenge: B decay with at least two neutrinos
- Proceeds via W annihilation in the SM.

Branching fraction

$$\mathcal{B}(B^- \to \ell^- \bar{\nu}) = \frac{G_F^2 m_B m_\ell^2}{8\pi} \left(1 - \frac{m_\ell^2}{m_B^2} \right)^2 f_B^2 |V_{ub}|^2 \tau_B$$

- Provide information of f_B|V_{III}|
 - $|V_{III}|$ from $B \rightarrow X_{II} | v \implies f_B$

cf) Lattice

$$- Br(B \rightarrow \tau \nu)/\Delta m_d \longrightarrow |V_{ub}| / |V_{td}|$$

$$\rightarrow |V_{ub}| / |V_{td}|$$

Limits on charged Higgs

Full Reconstruction Method

Fully reconstruct one of the B's to

- Tag B flavor/charge
- Determine B momentum
- Exclude decay products of one B from further analysis

Offline B meson beam!

Powerful tool for B decays with neutrinos

Event candidate B⁻ $\rightarrow \tau^- \nu_{\tau}$

$B \rightarrow \tau \nu$

τ decay modes

$$\tau^- \to \mu^- \nu \overline{\nu}, e^- \nu \overline{\nu}$$

$$\tau^- \to \pi^- \nu, \pi^- \pi^0 \nu, \pi^- \pi^+ \pi^- \nu$$

- Cover 81% of τ decays
- Efficiency 15.8%

Event selection

 Main discriminant: extra neutral ECL energy

Fit to $E_{residual} \rightarrow 17.2^{+5.3}_{-4.7}$ signal events.

→3.5σ significance including systematics

$B \rightarrow \tau \nu_{\tau}$

BF(
$$B^+ \to \tau^+ \nu_{\tau}$$
) = $(1.79^{+0.56+0.46}_{-0.49-0.51}) \times 10^{-4}$

$$\Gamma^{SM}(B^+ \to \ell^+ \nu) = \frac{G_F^2}{8\pi} |V_{ub}|^2 f_B^2 m_B m_\ell^2 \left(1 - \frac{m_\ell^2}{m_B^2} \right)$$

→ Product of B meson decay constant f_B and CKM matrix element |V_{ub}|

$$f_B \times V_{ub} = (10.1^{+1.6+1.3}_{-1.4-1.4}) \times 10^{-4} GeV$$

Using $|V_{ub}| = (4.39 \pm 0.33) \times 10^{-3}$ from HFAG

$$f_B = 229^{+36+34}_{-31-37} MeV$$
15% 15% = 13%(exp.) + 8%(V_{ub})

First measurement of f_B!

 $f_B = (216 \pm 22)$ MeV from unquenched lattice calculation

[HPQCD, Phys. Rev. Lett. 95, 212001 (2005)]

Charged Higgs contribution to $B \rightarrow \tau \nu$

$$\mathcal{B}(B \to \tau \nu) = \mathcal{B}(B \to \tau \nu)_{\text{SM}} \times r_H,$$
$$r_H = \left(1 - \frac{m_B^2}{m_H^2} \tan^2 \beta\right)^2$$

The interference is destructive in 2HDM (type II). $B > B_{SM}$ implies that H^+ contribution dominates

Phys. Rev. D 48, 2342 (1993)

Charged Higgs limits from $B^- \rightarrow \tau^- \nu_{\tau}$

If the theoretical prediction is taken for $\mathbf{f_B}$ \rightarrow limit on charged Higgs mass vs. tan β

$$r_{H} = \frac{BF(B \to \tau \nu)}{BF(B \to \tau \nu)_{SM}} = \left(1 - \frac{m_{B}^{2}}{m_{H}^{2}} \tan^{2} \beta\right)^{2}$$

$$B \rightarrow K^{(*)} \nu \nu$$

- Proceed through electroweak penguin + box diagram.
- Sensitive to New Physics in the loop diagram.
- Theoretically clean: no long distance contributions.
- May be sensitive to light dark matter (C. Bird, PRL 93, 201803 (2004))

 $b \rightarrow s$ + Missing *E* may be enhanced by this extra diagram.

No sensitivity to light dark matter (M<10 GeV) in direct searches

$B \rightarrow K^{(*)}vv$: present limits

Limit on light dark matter based on the **K**⁺νν limits (using theory predictions, C. Bird, PRL 93, 201803 (2004)

■ Limit depends on P*(K) momentum cut

$B \rightarrow K^{(*)} vv$: prospects for 10/ab

■ Assuming no changes in the analysis & detector:

with the same $P^*(K)$ threshold (1.6 GeV)

with a lower $P^*(K)$ threshold (0.7 GeV)

Why FCNC decays?

Flavour changing neutral current (FCNC) processes (like $b \rightarrow s$, $b \rightarrow d$) are fobidden at the tree level in the Standard Model. Proceed only at low rate via higher-order loop diagrams. Ideal place to search for new physics.

How can New Physics contribute to $b \rightarrow s$?

For example in the process:

$$B^0 \rightarrow \eta' K^0$$

Diagram with supersymmetric particles

Ordinary penguin diagram with a t quark in the loop

Searching for new physics phases in CP violation measurements in b→s decays

Prediction in SM:

$$a_f = -\operatorname{Im}(\lambda_f) \sin(\Delta mt)$$

$$\operatorname{Im}(\lambda_f) = \xi_f \sin 2\phi_1$$

The same value as in the decay $B^0 \rightarrow J/\psi K_S!$

This is only true if there are no other particles in the loop! In general the parameter can assume a different value $\sin 2\phi_1^{\text{eff}}$

-2

-1

0

Search for NP: b→sqq

Another FCNC decay: $B \rightarrow K^* I^+ I^-$

b \rightarrow s l⁺l⁻ was first measured in B \rightarrow K l⁺l⁻ by Belle (2001).

Important for further searches for the physics beyond SM

Particularly sensitive: backward-forward asymmetry in K* I+I

$$A_{FB} \propto \Re \left[C_{10}^* (sC_9^{eff}(s) + r(s)C_7) \right]$$

 C_i : Wilson coefficients, abs. value of C_7 from $b \rightarrow s\gamma$ s=lepton pair mass squared

Backward-forward asymmetry in K* I+I

[γ* and Z* contributions in B \rightarrow K* I I interfere and give rise to forward-backward asymmetries c.f. e⁺e⁻ \rightarrow μ⁺ μ⁻]

657 M BB

$$A_{FB} \propto \Re \left[C_{10}^* (sC_9^{eff}(s) + r(s)C_7) \right]$$

$A_{FB}(B \rightarrow K^* I^+ I^-)[q^2]$ at a Super B Factory

▶ Zero-crossing q^2 for A_{FB} will be determined with a 5% error with 50ab⁻¹.

Strong competition from LHCb and ATLAS/CMS

LFV and New Physics

- SUSY + Seasaw $(m_{\tilde{l}}^2)_{23(13)}$
- Large LFV $Br(\tau \rightarrow \mu \gamma) = O(10^{-7})$

$$Br(\tau \to \mu \gamma) \Box 10^{-6} \times \left(\frac{\left(m_{\tilde{L}}^{2}\right)_{32}}{\overline{m}_{\tilde{L}}^{2}}\right) \left(\frac{1 \, TeV}{m_{SUSY}}\right)^{4} \tan^{2} \beta \qquad 4 \times 10^{-7} \times \left(\frac{\left(m_{\tilde{L}}^{2}\right)_{32}}{\overline{m}_{\tilde{L}}^{2}}\right) \left(\frac{\tan \beta}{60}\right)^{6} \left(\frac{100 \, GeV}{m_{A}}\right)^{4}$$

- Neutral Higgs mediated decay.
- Important when Msusy >> EW scale. $Br(\tau \rightarrow 3\mu) =$

$$4 \times 10^{-7} \times \left(\frac{\left(m_{\tilde{L}}^2\right)_{32}}{\overline{m}_{\tilde{L}}^2}\right) \left(\frac{\tan \beta}{60}\right)^6 \left(\frac{100 GeV}{m_A}\right)^2$$

model	Br($\tau \rightarrow \mu \gamma$)	$Br(\tau \rightarrow III)$	
mSUGRA+seesaw	10 ⁻⁷	10 ⁻⁹	
SUSY+SO(10)	10 ⁻⁸	10 ⁻¹⁰	
SM+seesaw	10 ⁻⁹	10 ⁻¹⁰	
Non-Universal Z'	10 -9	10-8	
SUSY+Higgs	10-10	10 ⁻⁷	

Precision measurements of τ decays

LF violating τ decay?

Theoretical predictions compared to present experimental limits

B factories: a success story

- Measurements of CKM matrix elements and angles of the unitarity triangle
- Observation of direct CP violation in B decays
- Measurements of rare decay modes (e.g., $B \rightarrow \tau \nu$, $D \tau \nu$) by fully reconstructing the other B meson
- Observation of D mixing
- CP violation in b→s transitions: probe for new sources if CPV
- Forward-backward asymmetry (A_{FB}) in b→sl⁺l⁻ has become a powerfull tool to search for physics beyond SM.
- Observation of new hadrons

New hadrons at B-factories

Discoveries of many new hadrons at B-factories have shed light on new class of hadrons beyond the ordinary mesons.

Physics at a Super B Factory

- There is a good chance to see new phenomena:
 - CPV in B decays from the new physics (non KM)
 - Lepton flavor violations in τ decays.
- They will help to diagnose (if found) or constraint (if not found) new physics models.
- Even in the worst case scenario (such as MFV), $B \rightarrow \tau \nu$, $D\tau \nu$ can probe the charged Higgs in large tan β region.
- Physics motivation is independent of LHC.
 - If LHC finds NP, precision flavour physics is compulsory.
 - If LHC finds no NP, high statistics B/τ decays would be an unique way to search for the TeV scale physics.

Super B Factory Motivation 2

A lesson from history: the top quark

Physics of top quark

First estimate of mass: BB mixing → ARGUS

Direct production, Mass, width etc. → CDF/D0

Off-diagonal couplings, phase → BaBar/Belle

• There are many more topics: CPV in charm, new hadrons, ...

KEKB Upgrade Plan

: Super-B Factory at KEK

- Asymmetric energy e⁺e⁻ collider at E_{CM}=m(Y(4S)) to be realized by upgrading the existing KEKB collider.
- Initial target: 10×higher luminosity $\cong 2 \times 10^{35}$ /cm²/sec after 3 year shutdown $\rightarrow 2 \times 10^9 \ \overline{B}B$ and $\tau^+\tau^-$ per yr.
- Final goal: $L=8\times10^{35}$ /cm²/sec and $\int L dt = 50 \text{ ab}^{-1}$

Belle Upgrade for Super-B

Aerogel RICH

 Proximity focusing RICH with multilayer aerogel radiator with different indices.

Multi-pixel photodetector to measure single photon positions in B=1.5T → HAPD/MCP-PMT/G-APD

Highly transparent aerogel : $\Lambda_{\rm t}$ > 40mm (λ =400nm)

Aerogel RICH – test results

SiPM

SiPMs for Aerogel RICH

hthc1tdc

30

20

Main challenge: R+D of a photon detector for operation in high magnetic fields (1.5T). Candidates:

•MCP PMT: excellent timing, could be also used as a TOF counter

•HAPD: development with HPK

•SiPMs: easy to handle, but never before used for single photon detection (high dark count rate with single photon pulse height) → use a <u>narrow time window</u> and <u>light concentrators</u>

or combine a lens and mirror walls

First Cherenkov photons

Gaus

0.249

 $\textbf{42.82} \pm \textbf{2.40}$

Background 51.49 ± 1.80

observed with SiPMs!

Detector module for beam tests at KEK

Cherenkov ring with SiPMs

Summary

- B factories have proven to be an excellent tool for flavour physics, with reliable long term operation, constant improvement of the performance.
- Major upgrade in 2009-12 \rightarrow Super B factory, L x10 \rightarrow x40
- Strong competetion from LHCb
- Expect a new, exciting era of discoveries, complementary to LHC

Back-up slides

Initial condition of the universe $N_B - N_{\overline{B}} = 0$

Today our vicinity (at least up to ~ 10 Mpc) is made of matter and not of anti-matter

nb. baryons
$$\leftarrow$$
 $\frac{N_B-N_{\overline{B}}}{N_{\gamma}}=10^{-10}-10^{-9}$ Nb of photons (microvawe backg)

In the early universe B + \overline{B} \rightarrow γ \leftrightarrow N_{γ} = N_{B} + N_{B}

How did we get from

$$\frac{N_B - N_{\overline{B}}}{N_B + N_{\overline{B}}} = 0 \quad \text{to} \quad \frac{N_B - N_{\overline{B}}}{N_B + N_{\overline{B}}} = 10^{-10} - 10^{-9} \stackrel{\text{10}^{10}}{?} \stackrel{\text{baryons did}}{\text{not}} \stackrel{\text{not}}{\text{anihillate}}$$

(one out of

Three conditions (A.Saharov, 1967):

- baryon number violation
- violation of CP and C symmetries
- non-equillibrium state

$$X \rightarrow f_a$$
 (N_B^a, r) $X \rightarrow f_b$ $(N_B^b, 1-r)$ number f_b $X \rightarrow f_a$ $(-N_B^a, r)$ $\overline{X} \rightarrow \overline{f}_b$ $(-N_B^b, 1-\overline{r})$ probability

Change in baryon number in the decay of X:

$$\Delta B = rN_B^a + (1-r)N_B^b + \bar{r}(-N_B^a) + (1-\bar{r})(-N_B^b) =$$

$$= (r-\bar{r})(N_B^a - N_B^b)$$

In the thermal equilibrium reverse processes would cause $\Delta B=0$ -> need an out-of-equilibrium state

For example: X lives long enough -> Universe cools down -> no X production possible

C: charge conjugation $C|B^0\rangle = |\overline{B}^0\rangle$

P: space inversion $P|B^0> = -|B^0>$

CP: combined operation $CP|B^0\rangle = -|\overline{B}^0\rangle$

C or P transformed processes: forbidden.

CP transformed process: allowed

CP violation in decay

∠ in decay: $|\overline{A}/A| ≠ 1$ (and of course also |λ| ≠ 1)

$$a_{f} = \frac{\Gamma(B^{+} \to f, t) - \Gamma(B^{-} \to \overline{f}, t)}{\Gamma(B^{+} \to f, t) + \Gamma(B^{-} \to \overline{f}, t)} = \frac{1 - |\overline{A}/A|^{2}}{1 + |\overline{A}/A|^{2}}$$

Also possible for the neutral B.

CP violation in decay

CPV in decay: $|\overline{A}/A| \neq 1$: how do we get there?

In general, A is a sum of amplitudes with strong phases δ_i and weak phases ϕ_i . The amplitudes for anti-particles have same strong phases and opposite weak phases ->

$$A_f = \sum_i A_i e^{i(\delta_i + \varphi_i)}$$
 $\overline{A}_{\overline{f}} = \sum_i A_i e^{i(\delta_i - \varphi_i)}$

$$\left| \frac{\overline{A_f}}{A_f} \right| = \left| \frac{\sum_i A_i e^{i(\delta_i - \varphi_i)}}{\sum_i A_i e^{i(\delta_i + \varphi_i)}} \right|$$

$$\left|A_f\right|^2 - \left|\overline{A}_{\overline{f}}\right|^2 = \sum_{i,j} A_i A_j \sin(\varphi_i - \varphi_j) \sin(\delta_i - \delta_j)$$

CPV in decay: need at least two interfering amplitudes with different weak and strong phases.

CP violation in mixing

 \mathcal{L}^{p} in mixing: $|q/p| \neq 1$

(again $|\lambda| \neq 1$)

In general: probability for a B to turn into an anti-B can differ from the probability for an anti-B to turn into a B.

$$\left| B_{phys}^{0}(t) \right\rangle = g_{+}(t) \left| B^{0} \right\rangle + (q/p) g_{-}(t) \left| \overline{B}^{0} \right\rangle$$

$$\left| \overline{B}_{phys}^{0}(t) \right\rangle = (p/q) g_{-}(t) \left| B^{0} \right\rangle + g_{+}(t) \left| \overline{B}^{0} \right\rangle$$

Example: semileptonic decays:

$$\left\langle l^{-}\nu X \left| H \right| B_{phys}^{0}(t) \right\rangle = (q/p)g_{-}(t)A^{*}$$

$$\left\langle l^{+}\nu X \left| H \right| \overline{B}_{phys}^{0}(t) \right\rangle = (p/q)g_{-}(t)A$$

CP violation in mixing

$$a_{sl} = \frac{\Gamma(\overline{B}_{phys}^{0}(t) \to l^{+}vX) - \Gamma(B_{phys}^{0}(t) \to l^{-}vX)}{\Gamma(\overline{B}_{phys}^{0}(t) \to l^{+}vX) + \Gamma(B_{phys}^{0}(t) \to l^{-}vX)} = \frac{|p/q|^{2} - |q/p|^{2}}{|p/q|^{2} + |q/p|^{2}} = \frac{1 - |q/p|^{4}}{1 + |q/p|^{4}}$$

-> Small, since to first order |q/p|~1. Next order:

$$\frac{q}{p} = -\frac{|M_{12}|}{M_{12}} \left[1 - \frac{1}{2} \operatorname{Im} \left(\frac{\Gamma_{12}}{M_{12}} \right) \right]$$

Expect O(0.01) effect in semileptonic decays

CP violation in the interference between decays with and without mixing

$$a_{f_{CP}} = \frac{P(\overline{B}^{0} \to f_{CP}, t) - P(B^{0} \to f_{CP}, t)}{P(\overline{B}^{0} \to f_{CP}, t) + P(B^{0} \to f_{CP}, t)} = \lambda = \frac{q}{p} \frac{\overline{A}_{f}}{A_{f}}$$

$$= \frac{\left| (p/q)g_{-}(t)A_{f_{CP}} + g_{+}(t)\overline{A}_{f_{CP}} \right|^{2} - \left| g_{+}(t)A_{f_{CP}} + (q/p)g_{-}(t)\overline{A}_{f_{CP}} \right|^{2}}{\left| (p/q)g_{-}(t)A_{f_{CP}} + g_{+}(t)\overline{A}_{f_{CP}} \right|^{2} + \left| g_{+}(t)A_{f_{CP}} + (q/p)g_{-}(t)\overline{A}_{f_{CP}} \right|^{2}} = \frac{\left| (p/q)i\sin(\Delta mt/2)A_{f_{CP}} + \cos(\Delta mt/2)\overline{A}_{f_{CP}} \right|^{2} - \left| \cos(\Delta mt/2)A_{f_{CP}} + (q/p)i\sin(\Delta mt/2)\overline{A}_{f_{CP}} \right|^{2}}{\left| (p/q)i\sin(\Delta mt/2)A_{f_{CP}} + \cos(\Delta mt/2)\overline{A}_{f_{CP}} \right|^{2} + \left| \cos(\Delta mt/2)A_{f_{CP}} + (q/p)i\sin(\Delta mt/2)\overline{A}_{f_{CP}} \right|^{2}} = \frac{\left| (p/q)^{2}\lambda_{f_{CP}}i\sin(\Delta mt/2) + \cos(\Delta mt/2) \right|^{2} - \left| \cos(\Delta mt/2) + \lambda_{f_{CP}}i\sin(\Delta mt/2) \right|^{2}}{\left| (p/q)^{2}\lambda_{f_{CP}}i\sin(\Delta mt/2) + \cos(\Delta mt/2) \right|^{2} + \left| \cos(\Delta mt/2) + \lambda_{f_{CP}}i\sin(\Delta mt/2) \right|^{2}} = \frac{\left| (-|\lambda_{f_{CP}}|^{2})\cos(\Delta mt/2) + \cos(\Delta mt/2) \right|^{2} + \left| \cos(\Delta mt/2) + \lambda_{f_{CP}}i\sin(\Delta mt/2) \right|^{2}}{1 + \left| \lambda_{f_{CP}} \right|^{2}} = \frac{\left| (-|\lambda_{f_{CP}}|^{2})\cos(\Delta mt) - 2\operatorname{Im}(\lambda_{f_{CP}})\sin(\Delta mt)}{1 + |\lambda_{f_{CP}}} \right|^{2}}{1 + \left| \cos(\Delta mt/2) + \cos(\Delta mt/2) + \cos(\Delta mt/2) \right|^{2}} = \frac{\left| (-|\lambda_{f_{CP}}|^{2})\cos(\Delta mt) - 2\operatorname{Im}(\lambda_{f_{CP}})\sin(\Delta mt)}{1 + |\lambda_{f_{CP}}|^{2}} \right|^{2}}{1 + \left| \cos(\Delta mt/2) + \cos(\Delta mt/2) + \cos(\Delta mt/2) \right|^{2}} = \frac{\left| \cos(\Delta mt/2) + \cos(\Delta mt/2) + \cos(\Delta mt/2) \right|^{2}}{1 + \left| \cos(\Delta mt/2) + \cos(\Delta mt/2) \right|^{2}} = \frac{\left| \cos(\Delta mt/2) + \cos(\Delta mt/2) + \cos(\Delta mt/2) \right|^{2}}{1 + \left| \cos(\Delta mt/2) + \cos(\Delta mt/2) \right|^{2}} = \frac{\left| \cos(\Delta mt/2) + \cos(\Delta mt/2) \right|^{2}}{1 + \left| \cos(\Delta mt/2) + \cos(\Delta mt/2) \right|^{2}} = \frac{\left| \cos(\Delta mt/2) + \cos(\Delta mt/2) \right|^{2}}{1 + \left| \cos(\Delta mt/2) + \cos(\Delta mt/2) \right|^{2}} = \frac{\left| \cos(\Delta mt/2) + \cos(\Delta mt/2) \right|^{2}}{1 + \left| \cos(\Delta mt/2) + \cos(\Delta mt/2) \right|^{2}} = \frac{\left| \cos(\Delta mt/2) + \cos(\Delta mt/2) \right|^{2}}{1 + \left| \cos(\Delta mt/2) + \cos(\Delta mt/2) \right|^{2}} = \frac{\left| \cos(\Delta mt/2) + \cos(\Delta mt/2) \right|^{2}}{1 + \left| \cos(\Delta mt/2) + \cos(\Delta mt/2) \right|^{2}} = \frac{\left| \cos(\Delta mt/2) + \cos(\Delta mt/2) \right|^{2}}{1 + \left| \cos(\Delta mt/2) + \cos(\Delta mt/2) \right|^{2}} = \frac{\left| \cos(\Delta mt/2) + \cos(\Delta mt/2) \right|^{2}}{1 + \left| \cos(\Delta mt/2) + \cos(\Delta mt/2) \right|^{2}} = \frac{\left| \cos(\Delta mt/2) + \cos(\Delta mt/2) \right|^{2}}{1 + \left| \cos(\Delta mt/2) + \cos(\Delta mt/2) \right|^{2}} = \frac{\left| \cos(\Delta mt/2) + \cos(\Delta mt/2) \right|^$$

Time evolution for B and anti-B from the Y(4s)

The time evolution for the B anti-B pair from Y(4s) decay

$$R(t_{tag}, t_{f_{CP}}) = e^{-\Gamma(t_{tag} + t_{f_{CP}})} |\overline{A_{tag}}|^{2} |A_{f_{CP}}|^{2}$$

$$[1 + |\lambda_{f_{CP}}|^{2} + \cos[\Delta m(t_{tag} - t_{f_{CP}})](1 - |\lambda_{f_{CP}}|^{2})$$

$$-2\sin(\Delta m(t_{tag} - t_{f_{CP}})) \operatorname{Im}(\lambda_{f_{CP}})]$$

with
$$\lambda_{f_{CP}} = \frac{q}{p} \frac{A_{f_{CP}}}{A_{f_{CP}}}$$

 \rightarrow in asymmetry measurements at Y(4s) we have to use t_{frag} - t_{fCP} instead of absolute time t.

CP violation in SM

$$\mathcal{L} = V_{ij} \overline{U}_{i} \gamma^{\mu} (1 - \gamma_{5}) D_{j} W_{\mu}^{+} + V_{ij}^{*} \overline{D}_{i} \gamma^{\mu} (1 - \gamma_{5}) U_{j} W_{\mu}$$

$$\updownarrow CP$$

$$\mathcal{L}_{CP} = V_{ij} \overline{D}_{i} \gamma^{\mu} (1 - \gamma_{5}) U_{j} W_{\mu} + V_{ij}^{*} \overline{U}_{i} \gamma^{\mu} (1 - \gamma_{5}) D_{j} W_{\mu}$$

If
$$V_{ij} = V_{ij}^* \rightarrow \mathcal{L} = \mathcal{L}_{CP} \rightarrow CP$$
 is conserved

CKM matrix

define

$$S_{12} \equiv \lambda, S_{23} \equiv A\lambda^2, S_{13}e^{-i\delta} \equiv A\lambda^3(\rho - i\eta)$$

Then to $O(\lambda^6)$

$$V_{us} = \lambda, V_{cb} = A\lambda^{2},$$

$$V_{ub} = A\lambda^{3}(\overline{\rho} - i\overline{\eta}),$$

$$V_{td} = A\lambda^{3}(1 - \overline{\rho} - i\overline{\eta}),$$

$$Im V_{cd} = -A\lambda^{5}\eta,$$

$$Im V_{ts} = -A\lambda^{4}\eta,$$

$$\overline{\rho} = \rho(1 - \frac{\lambda^{2}}{2}), \overline{\eta} = \eta(1 - \frac{\lambda^{2}}{2})$$