Example 5: astro-particle physics experiments

Motivation

High energy gamma detection

High energy cosmic ray detection

Detectors for cosmic neutrinos

Peter Križan, Advanced particle detectors and data analysis

The Cosmic Ray Spectrum

Open questions after >90 years

Production in Cosmic Accelerators

р

e[±]

protons/nuclei electrons/positrons

radiation fields and matter

verse Compton

(+Bremsstr.)

р

MAGNETIC FIELD DEFLECTION

Gammas and neutrinos are not deflected.

Distance (Mpc)

Detect particles from distant

sources

Charged particles
High energy gamma rays (photons)
Neutrinos

- Measure their:
- Direction
- Energy

Detection of high energy particles from distant sources

Challenge: - Very low fluxes

 \rightarrow need huge detectors

Atmosphere as a calorimeter

Need:

- Detect high energy cosmic rays
- Measure their energy
- Determine the identity (gamma or hadron, which hadron)

Idea: use atmosphere as a detector + calorimeter

Virtues:

- A lot of material
- Transparent
- Use Cherenkov light or fluorescence emitted by charged particles to determine the energy of the incoming cosmic ray.

Atmosphere as a calorimeter: gamma rays

Detect high energy cosmic gamma rays

- Measure their energy
- Measure their direction

Use Cherenkov light emitted by electrons and positrons from a electromagnetic shower to determine the energy of the incoming cosmic gamma ray.

Detection of high-energy gamma rays

using Cherenkov telescopes

Shower mainly E-M. Thousands of relativistic particles give Čerenkov light in upper atmosphere

HESS 1 UHE Gamma Ray Telescope Stereoscopic Quartet

Khomas Highland, Namibia, (23°16'S, 16°30'E, elev. 1800m) Four \emptyset = 12 m Telescopes (since 12/2003) E_{th} ~ 100 GeV

108 m² /mirror [382 x Ø=60cm individually steerable (2-motor) facets] aluminized glass + quartz overcoating R > 80% ($300 < \lambda < 600$ nm)

Focal plane: 960 * 29 mm Photonis XP-2920 PMTs (8 stage, 2 x 10^5 gain) Bi-alkali photocathode: $\lambda_{peak} = 420$ nm + Winston Cones

HESS Cherenkov telescopes

Segmented mirror 382 round mirror facets of 60 cm diameter

Discrimination of gamma rays vs hadronic showers (from a highenergy cosmic proton or nucleus)

Reconstruction of the gamma ray direction

Single telescope: on the focal plane a 2D image of the source of light – not enough information to reconstruct the direction in 3D \rightarrow Need more than one

telescope

More than one telescope: combine 2 or more 2D images \rightarrow \rightarrow 3D reconstruction of the shower is possible \rightarrow \rightarrow determine the direction of the gamma ray

HESS gamma ray sources

Map of H.E.S.S.-discovered gamma ray sources. The colors indicates the likely nature of sources: Supernova remnants (green), pulsar wind nebulae (violet), binaries (yellow), star cluster/star forming regions (blue), unidentified (grey), starburst galaxy (orange), active galactic nucleus (red).

HESS gamma ray sources: Galactic plane

Next step: CTA – Cherenkov Telescope Array

60 Cherenkov telescopes on a high plain in Chile

- Small telescopes: for showers generated by the highest energy gamma rays: rare events that produce a large amount of Cherenkov light, many telescopes spread over a large area to improve the detecting probability.
- Large telescopes: only a few, massive reflectors to capture the more faint but frequent lower-energy flashes.
- Medium-size: to capture the range in between.

45 m

40 m

35 m

30 m

25 m

20 m

10 m

0 m

Charged particle detection Measurement of extensive air showers

Calorimetry

- Calorimeter
 - \sim 50.000 km³ of atmosphere
- Read out
- Fluorescence detectors
- Particle detector array

PIERRE AUGER OBSERVATORY

HYBRID DETECTOR

Surface Detector

- ~ 1.600 surface detectors with 1.5 km spacing
- Fluorescence Detector
- 4 fluorescence buildings with 6 telescopes each
- World largest array
 3.000 km² area

SURFACE DETECTOR ARRAY

SURFACE DETECTOR ARRAY

Event timing and direction determination

Shower timing

Particle density

Muon number

Pulse rise time

Muon Xmax

Shower energy

Shower angle

Measure of > primary mass or interaction

WATER ČERENKOV DETECTOR

FLUORESCENCE DETECTOR

- Shower ~ 90% electromagnetic
 - Ionization of nitrogen measured directly
 - Fast UV camera (~100 MHz)
 - Calorimetric energy measurement
 Measurement of shower development

FLUORESCENCE DETECTOR

Fluorescence telescopes: *Number of telescopes:* 24 *Mirrors:* 3.6 m x 3.6 m with field of view 30° x 30°, each telescope is equipped with 440 photomultipliers.

Short flight small area detectors (Balloons) Examples of Balloon-flown RICH detectors

Fig. 1. Schematic cross-section of the instrument

Peter Križan, Ljubljana

Number of Chrenkov photons: proportional to Z²

Heavy nucleus rings from 1991 flight – Note that carbon here has total energy ~ 12*390 GeV = 4.6TeV

Cosmic ray detector at the ISS

Measure:

Antimatter fluxes (antiprotons, antideuterons) – searches for new sources (e.g., dark matter annihilation)

Isotope composition

AMS: A TeV precision, multi-purpose spectrometer

Separates hadrons from leptons, matter from antimatter and able to do CRs chemical and isotopic composition in GeV to TeV range

AMS: studies of antimatter in cosmic rays

Intriguing result: surplus of positrons at high energies up to $1T \rightarrow$ Source still to be understood. Dark matter annihilation?

Neutrino detection

Use inverse beta decay $v_{e} + n \rightarrow p + e^{-}$ \overline{v}_{e} + p \rightarrow n + e⁺ $v_{\mu} + n \rightarrow p + \mu^{-}$ \overline{v}_{μ} + p \rightarrow n + μ^{+} $v_{\tau} + n \rightarrow p + \tau^{-}$ \overline{v}_{τ} + p \rightarrow n + τ^{+}

However: cross section is very small! $6.4 \ 10^{-44} \ \text{cm}^2 \ \text{at 1MeV}$ Probability for interaction in 100m of water = $4 \ 10^{-16}$

Electron neutrino detected in a bubble chamber

Electron neutrino produces an electron, which then starts a shower. Tracks of the shower are curved in the magnetic field.

Peter Krizan, Neutron and neutrino detection

Which type of neutrino?

Identify the reaction product, e,μ,τ, and its charge.
Water detectors (e.g. Superkamiokande)
muon: a sharp Cherenkov ring
electron: Cherenkov ring is blurred (e.m. shower development)

tau: decays almost immediately – after a few hundred microns to one or three charged particles

High energy neutrinos

- Interaction cross section:
- Neutrinos:
- 0.67 10⁻³⁸ E/1GeV cm² per nucleon
- Antineutrinos:
- 0.34 10⁻³⁸ E/1GeV cm² per nucleon

At 100 GeV, still 11 orders below the proton-proton cross section

Peter Krizan, Neutron and neutrino detection

Superkamiokande: an example of a neutrino detector

Peter Krizan, Neutron and neutrino detection

Superkamiokande: detection of electrons and muons

How to detect muons or electrons? Again through Cherenkov radiation, this time in the water container. Neutrino turns into an electron or muon.

Muons and electrons emit Cherekov photons
→ ring at the container wals
•Muon ring: sharp edges
•Electron ring: blurred image (bremstrahlung)

Muon event: photon detector, cillinder walls

Electron event: blurred ring

Detection of very high energy neutrinos (from galactic sources)

The expected fluxes are very low:

Need really huge volumes of detector medium!

What is huge? From (100m)³ to (1km)³

Also needed: directional information.

Again use: $v_{\mu} + n \rightarrow p + \mu^{-}$; μ direction coincides with the direction of the high energy neutrino.

Peter Krizan, Neutron and neutrino detection

Reconstruction of neutrino direction and energy

MION Reconstruction of direction and energy of an incident high energy muon neutrino: Measure time of arrival on each of the tubes Cherenkov angle is known: $\cos\theta = 1/n$ Reconstruct muon track Track direction -> neutrino direction Track length -> neutrino energy

Neutrino detection arrays in water

Similar geometry can be used in a water based detector deep below the sea surface (say around 4000m)

- ANTARES (Marseille)
- Lake Baikal
- KM3Net (Sicily)
- TRIDENT (South China Sea)

Problems: bioluminescence, currents, waves (during repair works) Lake Baikal: deployment, repair works: in winter, from the ice cover

Peter Krizan, Neutron and neutrino detection

2400m

ANTARES Detector (0.1km²)

12 lines of 75 PMTs25 storeys/line

Use the Antarctic ice instead of water

Normal ice is not transparent due to Rayleigh scattering on inhomogenuities (air bubbles)

At high pressures (large depth) there is a phase transition, bubbles get partly filled with water → transparent!

. . .

:

.

Peter Krizan, Neutron and neutrino detection

Example of a detected event, a muon entering the PMT array from below

Ice Cube Neutrino Observatory

Deployment

99% of DOMs survive deployment and freeze-in

A very-high energy neutrino detected in the Ice Cube

Follow up observations with gamma ray detectors, optical and radi-telescopes

Source: Blazar TXS 0506+056, a powerfull cosmic accelerator

 \rightarrow

High-energy neutrino detected by IceCube on Sept. 22, 2017, shows a muon, created by the interaction of a neutrino with the ice very close to IceCube, which leaves a track of light while crossing the detector. In this display, the light collected by each sensor is shown with a colored sphere. The color gradient, from red to green/blue, show the time

Follow-up Observations of IceCube Alert IC170922

Region of sky observable by Neutrino Telescopes

Ice Cube (South Pole)

ANTARES (43° North)

Backup slides

-4