
1

June 5-8, 2006 Course at University of Tokyo Peter Križan, Ljubljana

Peter Križan
University of Ljubljana and J. Stefan Institute

Flavour Physics at B-factories and 
Hadron Colliders

Part 2: CP violation primer

June 5-8, 2006 Course at University of Tokyo Peter Križan, Ljubljana

Contents

CP violation in the B system 

Standard Model predictions

CP violation in the K system



2

June 5-8, 2006 Course at University of Tokyo Peter Križan, Ljubljana

Time evolution in the B system

An arbitrary linear combination of the neutral B-meson flavor
eigenstates

00 BbBa +

M and Γ are 2x2 Hermitian matrices. CPT invariance H11=H22

diagonalize 

is governed by a time-dependent Schroedinger equation









Γ−=








=








b
aiM

b
a

H
b
a

dt
di )

2
(









ΓΓ

ΓΓ
=Γ








= *

12

12
*
12

12 ,
MM
MM

M

June 5-8, 2006 Course at University of Tokyo Peter Križan, Ljubljana

Time evolution in the B system

The light BL and heavy BH mass eigenstates with 
eigenvalues                        are given by
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Which are related to the M and Γ matrix elements
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The ratio p/q is 

What do we know about ∆mB and ∆ΓB?

∆mB=(0.502+-0.007) ps-1 well measured

∆mB/ΓB = xd =0.771+-0.012

∆ΓB/ΓB not measured, expected O(0.01),  due to decays
common to B and anti-B - O(0.001).

∆ΓB << ∆mB
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Since ∆ΓB << ∆mB
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B0 and B0 can be written as an admixture of the states 
BH and BL
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Time evolution

Any B state can then be written as an admixture of the states BH and BL, 
and the amplitudes of this admixture evolve in time
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A B0 state created at t=0 (denoted by B0
phys) has aH(0)= aL(0)=1/(2p);

an anti-B at t=0 (anti-B0
phys)  has aH(0)= aL(0)=1/(2q)

At a later time t, the two coefficients are not equal any more because 
of the difference in phase factors exp(-iMt) 

initial B0 becomes a linear combination of B and anti-B
mixing
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Time evolution of B’s
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Time evolution can also be written in the B0 in B0 basis:

M = (MH+ML)/2

_

June 5-8, 2006 Course at University of Tokyo Peter Križan, Ljubljana

)2/(sin/)(/)( 2222200 mtpqtgpqtBB phys ∆== −

)2/sin()(
)2/cos()(

mtietg

mtetg
iMt

iMt

∆=

∆=
−

−

−
+

If B mesons were stable (Γ=0), the 
time evolution would look like: 

Probability that a B turns into its anti-particle beat

Probability that a B remains a B
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blackboard exercise on the two level system
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B0 at t=0

Evolution in time

•Full line: B0

•dotted: B0

T: in units of τ=1/Γ

B0

B0

Discovery of mixing: ARGUS (1987)       
>1000 citations Phys.Lett. B192 (1987) 245.

B mesons of course do decay 
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Razpadna verjetnost

Decay amplitudes of B and anti-
B to the same final state f
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Decay amplitude as a function of time:

... and similarly for the anti-B
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CP in decay: |A/A| ≠ 1

CP in mixing: |q/p| ≠ 1

CP in interference between mixing and decay: even if
|λ| = 1 if only Im(λ) ≠ 0

|λ| ≠ 1

CP violation: three types

Decay amplitudes of B and anti-B 
to the same final state f

Define a parameter λ

Three types of CP violation (CPV):
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CP in decay: |A/A| ≠ 1

CP violation in decay

(and of course also |λ| ≠ 1)
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Also possible for the neutral B.
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CPV in decay: |A/A| ≠ 1: how do we get there?

In general, A is a sum of amplitudes with 
strong phases δi and  weak phases φi. The 
amplitudes for anti-particles have same 
strong phases and opposite weak phases ->    

CP violation in decay
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with different weak and strong phases.
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CP violation in mixing

CP in mixing: |q/p| ≠ 1

In general: probability for a B to turn into an anti-B can 
differ from the probability for an anti-B to turn into a B.

(again |λ| ≠ 1)
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Example: semileptonic decays:
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CP violation in mixing
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Expect O(0.01) effect in semileptonic decays

-> Small, since to first order |q/p|~1. Next order:
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CP violation in the interference between decays
with and without mixing

CP violation in the interference between mixing and decay 
to a state accessible in both B0  and anti-B0 decays

For example: a CP eigenstate fCP like π+ π−

We can get CP violation if Im(λ) ≠ 0, even if |λ| = 1
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CP violation in the interference between decays
with and without mixing

CPCP
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Decay rate asymmetry:

200 )(),( tBHftfBP physCPCP ∝→Decay rate:

Decay amplitudes vs time:
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CP violation in the interference between decays
with and without mixing

Non-zero effect if Im(λ) ≠ 0, 
even if |λ| = 1 
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CP violation in the interference between decays
with and without mixing

One more form for λ:

ηfcp=+-1 CP parity of fCP 
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-> we get one more (–1) sign when comparing 
asymmetries in two states with opposite CP parity 

)sin()Im( mta
CPCP ff ∆−= λ
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B and anti-B from the Υ(4s)

B and anti-B from the Υ(4s) decay are in a l=1 state.

They cannot mix independently (either BB or anti-B anti-B states are 
forbidden with l=1 due to Bose symmetry).

After one of them decays, the other evolves independently ->

-> only time differences between one and the other decay matter 
(for mixing).

Assume

•one decays to a CP eigenstate fCP (e.g. ππ or J/ψKS) at time tfCP and

•the other at tftag to a flavor-specific state ftag (=state only accessible
to a B0 and not to a anti-B0 (or vice versa), e.g. B0 -> D0π, D0 ->K-π+)

also known as ‘tag’ because it tags the flavour of the B meson it 
comes from
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Time evolution for B and anti-B from the Y(4s)
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The time evolution for the B anti-B pair from Y(4s) decay
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-> in asymmetry measurements at Y(4s) we have to use 
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Decay rate to fCP

Incoherent production coherent production 
(e.g. hadron collider) at Y(4s)



13

June 5-8, 2006 Course at University of Tokyo Peter Križan, Ljubljana

CP violation in SM

CP violation: consequence of the
Cabibbo-Kobayashi-Maskawa (CKM) 
quark mixing matrix

W± qi

qjVij
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CP violation in SM
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If Vij=Vij* ► L=LCP ► CP is conserved
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CKM matrix
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s12=sinθ12, c12=cosθ12   etc.

3x3 ortogonal matrix: 3 parameters - angles

3x3 unitary matrix: 18 parameters, 9 conditions = 9 free 
parameters, 3 angles and 6 phases

6 quarks: 5 relative phases can be transformed away (by 
redefinig the quark fields)

1 phase left -> the matrix is in general complex  
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CKM matrix
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Transitions between members of 
the same family more probable 
(=thicker lines) than others

-> CKM: almost a diagonal matrix, 
but not completely                  ->
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CKM matrix
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Almost a diagonal matrix, but not completely ->                

Wolfenstein parametrisation: expand in the 
parameter λ (=sinθc=0.22)

A, ρ and η: all of order one
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CKM matrix
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Unitary relations 
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Rows and columns of the V matrix are orthogonal

Three examples: 1st+2nd, 2nd+3rd, 1st+3rd columns

Geometrical representation: triangles in the 
complex plane.
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Unitary triangles 
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All triangles have the same area J/2 (about 4x10-5)

δsin132312
2
132312 ssscccJ = Jarlskog invariant
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Unitarity triangle 

THE unitarity triangle:

0*** =++ tbtdcbcdubud VVVVVV

Two notations:

φ1=β

φ2=α

φ3=γ
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Angles of the unitarity triangle 
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Tree
QCD penguin

EW penguin

b decays
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Why penguin?

b s

tt

d
_ _
d
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Example: b s transition
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Decay amplitude structure
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Quark diagrams: classified in tree (T), penguin and 
electroweak penguin contributions (P).

Describe the weak-phase structure of B-decay amplitude
for the trasition b qqq’: sum of three terms with definite 
CKM coefficients:

_
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Decay amplitude structure: qqs and qqd 
decays
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Use the unitarity condition to simplify the expressions for individual 
amplitudes:

Nice feature: penguin amplitudes only come as differences.
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Decay asymmetry predictions - overview

Five classes of B decays. 

Classes 1 and 2 are expected to have relatively small direct CP 
violations -> particularly interesting for extracting CKM parameters
from interference of decays with and without mixing. 

In the remaining three classes, direct CP violations could be 
significant, decay asymmetries cannot be cleanly interpreted in terms 
of CKM phases.

1. Decays dominated by a single term: b->ccs and b-> sss. SM cleanly
predicts zero (or very small) direct CP violations because the second 
term is Cabibbo suppressed. Any observation of large direct CP-
violating effects in these cases would be a clue to beyond Standard 
Model physics. The modes B+ ->J/ψK+ and B+->φK+ are examples of 
this class. The corresponding neutral modes have cleanly predicted 
relationships between CKM parameters and the measured asymmetry 
from interference between decays with and without mixing.
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Decay asymmetry predictions - overview

2. Decays with a small second term: b->ccd and b->uud. The 
expectation that penguin-only contributions are suppressed compared 
to tree contributions suggests that these modes will have small direct 
CP violation effects, and an approximate prediction for the relationship
between measured asymmetries in neutral decays and CKM phases can 
be made.

3. Decays with a suppressed tree contribution: b->uus. The tree 
amplitude is suppressed by small mixing angles, VubVus . The no-tree 
term may be comparable or even dominate and give large interference 
effects. An example is B->ρK.
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Decay asymmetry predictions - overview

4. Decays with no tree contribution: b->ssd. Here the interference 
comes from penguin contributions with different charge 2/3 quarks in 
the loop. An example is B->KK.

5. Radiative decays: b->sγ . The mechanism here is the same as in 
case 4 except that the leading contributions come from 
electromagnetic penguins. An example is B->K*γ .
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Decay asymmetry predictions – overview 
b->qqs



22

June 5-8, 2006 Course at University of Tokyo Peter Križan, Ljubljana

Decay asymmetry predictions – overview 
b->qqd
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Decay asymmetry predictions – example π+ π−
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N.B.: for simplicity we have neglected possible penguin amplitudes 
(which is wrong as we shall see later, and will do it properly).
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122MmB =∆

12

12

M
M

p
q

−=A reminder:

June 5-8, 2006 Course at University of Tokyo Peter Križan, Ljubljana

Decay asymmetry predictions – example J/ψKS

b → ccs: tree + penguin contribution ~ VcbVcs*=Aλ2
penguin only contribution ~ VubVus*=Aλ4(ρ-iη)

Take into account that we measure the π+ π−

component of KS – also need the (q/p)K for the K
system
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b-> c anti-c s
CP=+1 and CP=-1 eigenstates

CP

CP

CPCP
f

f
ff A

A

p
qηλ =

)sin()Im( mta
CPCP ff ∆−= λ

Asymmetry sign depends on the CP parity of 
the final state  fCP, ηfcp=+-1

J/ψ KS (π+ π−): CP=-1

•J/ψ: P=-1, C=-1 (vector particle JPC=1--): CP=+1

•KS (->π+ π−): CP=+1, orbital ang. momentum of pions=0 -> 
P (π+ π−)=(π− π+), C(π− π+) =(π+ π−)

•orbital ang. momentum between J/ψ and KS l=1, P=(-1)1=-1

J/ψ KL(3π): CP=+1

Opposite parity to J/ψ KS (π+ π−), because KL(3π) has CP=-1
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The kaon case

The two K states have very different lifetimes

With the mass difference

GeVmmm SLK
1510)009.0491.3( −×±=−=∆

s

s

S

L
10

8

10)009.08927.0(

10)04.017.5(
−

−

×±=

×±=

τ

τ

The eigenstates are in this case defined by lifetimes

00

00

KqKpK

KqKpK

L

S

−=

+=
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The kaon case

KK m∆−≈∆Γ 2
In this case

K0 at t=0, evolution in time

Full line: K0, dotted: K0

T: in units of τs

After a few τs: left ony KL, 
roughly equal mixture of K0 

and K0

June 5-8, 2006 Course at University of Tokyo Peter Križan, Ljubljana

The kaon case

It turns out that for the K system  φ12<<1 

From 
(see above)

)Re(4

)
4
1(4)(

4
1)(

*
1212

2
12

2
12
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Γ=∆Γ∆

Γ−=∆Γ−∆

Mm

Mm

BB

BB

Define φ12 with

12

12

12

12

12 φie
MM
Γ

−=
Γ

12

12

2

2

MmK

K

=∆

Γ−=∆ΓTo the leading order 
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Define 

Use same 
expression for q/p 
as for the B case: 

BB

BB

im

iM

iM

im

p
q

∆Γ−∆

Γ−
−=

Γ−

∆Γ−∆
−=

2

)
2

(2

)
2

(2
2

*
12

*
12
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The kaon case

The ratio p/q is almost a pure phase (similar as in the B case)
-> CPV in mixing small in both cases (but for different 

reasons: small lifetime diff in B, small phase in K system)

CPV in interference between mixing and decay:               
λ=1 to O(0.001) -> small
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-> can be used to extract φ12

But: it is not easy to transform from φ12 to electroweak 
parameters because of long distance (strong 
interaction) contribution M12. 

To next 
order ->
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Backup slides
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Direct and indirect CP violation

Indirect: CP violating phases appear in ∆B=2 (mixing) 
amplitudes 

Direct: CP violating phases appear in ∆B=1 (decay) 
amplitudes

CPV in decay = direct
CPV in mixing = indirect
CPV in interference of decays with and without mixing = 

indirect

However: if we have two final states with different Im(λ), we do not 
have the freedom in choosing the phase, there must also be direct 
CP (see Y. Nir in Heavy flavour physics). 
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Backup slides
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Parity of B0

P: space inversion P|B0> = -|B0>

Why is the parity of B0 (pseudoscalar meson) -1?

B0 is composed of two quarks with spin ½, 
with total spin J=0.
The two quark spins are combined to ½ + ½ = 0,
the relative angular momentum is l=0 (ground
bound state of b in d).
Parity of the spatial part of the wave function 
is (-1)l=+1.
Quark and antiquark have opposite parities
=> additional factor -1

P = -(-1)l = -1
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Transformation 
of bispinor
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Low-energy effective Hamiltonians

Low-energy effective Hamiltonians: constructed using the operator 
product expansion (OPE):

µ is an appropriate renormalization scale O(mb). The OPE allows one to 
separate the “long-distance” contributions to that decay amplitude from 
the “short-distance” parts.                                                          
“long-distance” contributions not calculable -> nonperturbative hadronic 
matrix elements 
“short-distance” described by perturbatively calculable Wilson coefficient 
functions Ck(µ).

For B decays:


