

	Time evolution				
Any B state can then and the amplitude	be written as an admixture o es of this admixture evolve in	of the states B_H and B_L , time			
$a_{H}(t)$	$a_{H}(t) = a_{H}(0)e^{-iM_{H}t}e^{-\Gamma_{H}t/2}$				
$a_L(t$	$a_L(t) = a_L(0)e^{-iM_L t}e^{-\Gamma_L t/2}$				
A B ⁰ state created at t=0 (denoted by B_{phys}^{0}) has $a_{H}(0)=a_{L}(0)=1/(2p)$; an anti-B at t=0 (anti- B_{phys}^{0}) has $a_{H}(0)=a_{L}(0)=1/(2q)$					
At a later time t, the two coefficients are not equal any more because of the difference in phase factors exp(-iMt) →initial B ⁰ becomes a linear combination of B and anti-B					
		→mixing			
June 5-8, 2006	Course at University of Tokyo	Peter Križan, Ljubljana			

	Razpadna verjetnost			
Decay probability	$P(B^0 \to f$	$(t,t) \propto \left \langle f \rangle \right $	$\left H\left B_{phys}^{0}(t)\right\rangle\right ^{2}$	
Decay amplitudes of B to the same final s	f B and anti- state f	$A_f = \langle f \\ \overline{A}_f = \langle f \rangle$	$\left H \right B^{0} ight angle \\ \left H \right \overline{B}^{0} ight angle$	
Decay amplitude a	s a function of	f time:		
$\left\langle f \left H \right B_{phys}^{0}(t) \right\rangle = g_{+}(t) \left\langle f \left H \right B^{0} \right\rangle + (q / p) g_{-}(t) \left\langle f \left H \right \overline{B}^{0} \right\rangle$				
$=g_+(t)A_f+(q/t)$	$(p)g_{-}(t)\overline{A}_{f}$			
and similarly for	r the anti-B			
June 5-8, 2006	Course at University	of Tokyo	Peter Križan, Ljubljana	

	CP violation in mixing				
∠P in mixi	ng: q/p ≠ 1	(again $ \lambda \neq 1$)			
In general: probability for a B to turn into an anti-B can differ from the probability for an anti-B to turn into a B. $\left B_{phys}^{0}(t) \right\rangle = g_{+}(t) \left B^{0} \right\rangle + (q/p)g_{-}(t) \left \overline{B}^{0} \right\rangle$ $\left \overline{B}_{phys}^{0}(t) \right\rangle = (p/q)g_{-}(t) \left B^{0} \right\rangle + g_{-}(t) \left \overline{B}^{0} \right\rangle$					
Example: semileptonic decays: $ \left< l^{-}vX \left H \right B^{0}_{phys}(t) \right> = (q / p)g_{-}(t)A^{*} \\ \left< l^{+}vX \left H \right \overline{B}^{0}_{phys}(t) \right> = (p / q)g_{-}(t)A $					
June 5-8, 2006	Course at University of Tokyo	Peter Križan, Ljubljana			

	CKM matrix
define	$s_{12} \equiv \lambda, s_{23} \equiv A\lambda^2, s_{13}e^{-i\delta} \equiv A\lambda^3(\rho - i\eta)$
Then to O(λ ⁶) $V_{us} = \lambda, V_{cb} = A\lambda^{2},$ $V_{ub} = A\lambda^{3}(\overline{\rho} - i\overline{\eta}),$ $V_{td} = A\lambda^{3}(1 - \overline{\rho} - i\overline{\eta}),$ $\operatorname{Im} V_{cd} = -A\lambda^{5}\eta,$ $\operatorname{Im} V_{ts} = -A\lambda^{4}\eta,$ $\overline{\rho} = \rho(1 - \frac{\lambda^{2}}{2}), \overline{\eta} = \eta(1 - \frac{\lambda^{2}}{2})$
June 5-8, 2006	Course at University of Tokyo Peter Križan, Ljubljana

	Decay asymmetry predictions – overview b->qqs					
		$B ightarrow q \overline{q} s$ D	ecay Modes			
Quark Process	Leading Term	Secondary Term	Sample B_d Modes	B_d Angle	Sample B_s Modes	B_s Angle
$b \rightarrow c \overline{c} s$	$V_{cb}V_{cs}^* = A\lambda^2$ tree + penguin (c - t)	$V_{ub}V_{us}^* = A\lambda^4(\rho - i\eta)$ penguin only $(u - t)$	$J/\psi K_S$	β	$\psi \eta'$ $D_s \overline{D}_s$	β_S
$b\to s\overline{s}s$	$V_{cb}V_{cs}^* = A\lambda^2$ penguin only $(c - t)$	$V_{ub}V_{us}^* = A\lambda^4(\rho - i\eta)$ penguin only $(u - t)$	ϕK_S	β	$\phi \eta'$	0
$b \rightarrow u \overline{u} s$	$V_{cb}V_{cs}^* = A\lambda^2$	$V_{ub}V_{us}^* = A\lambda^4(\rho - i\eta)$	$\pi^0 K_S$	competing	$\phi \pi^0$	competing
$b \rightarrow d\overline{d}s$	penguin only $(c - t)$	${\rm tree} + {\rm penguin}\; (u-t)$	ρK_S	terms	K_SK_S	terms
$b \rightarrow c \overline{u} s$ $b \rightarrow u \overline{c} s$	$V_{cb}V_{us}^* = A\lambda^3$ $V_{ub}V_{cs}^* = A\lambda^3(\rho - i\eta)$	0	$D^0K \searrow \text{common}$ $\overline{D}^0K \nearrow \text{modes}$	γ	$D^0 \phi \searrow \text{common}$ $\overline{D}^0 \phi \nearrow \text{modes}$	γ
June 5	June 5-8, 2006 Course at University of Tokyo Peter Križan, Ljubljana			ana		

	Decay asymmetry predictions – overview b->qqd					
		$b ightarrow q \overline{q} d$ D	ecay Modes			
Quark Process	Leading Term	Secondary Term	Sample B_d Modes	B_d Angle * (leading terms only)	Sample B_s Modes	B_s Angle * (leading term)
$b\to c\overline{c}d$	$V_{cb}V_{cd}^* = -A\lambda^3$ tree + penguin $(c - u)$	$V_{tb}V_{td}^* = A\lambda^3(1 - \rho + i\eta)$ penguin only $(t - u)$	D^+D^-	*β	ψK_S	β_S
$b \rightarrow s \overline{s} d$	$V_{tb}V_{td}^* = A\lambda^3(1 - \rho + i\eta)$ penguin only $(t - u)$	$V_{cd}V_{cd}^* = A\lambda^3$ penguin only $(c - u)$	$\phi \pi$ $K_S \overline{K}_S$	competing terms	ϕK_S	competing terms
$b \rightarrow u \overline{u} d$ $b \rightarrow d \overline{d} d$	$V_{ub}V_{ud}^* = A\lambda^3(\rho - i\eta)$ tree + penguin (uc)	$V_{tb}V_{td}^* = A\lambda^3(1 - \rho + i\eta)$ penguin only $(t - c)$	$\pi \pi; \pi \rho$ πa_1	*α	$\pi^0 K_S$ $\rho^0 K_S$	competing terms
$b \rightarrow c \overline{u} d$ $b \rightarrow u \overline{c} d$	$V_{cb}V^*_{ad} = A\lambda^2$ $V_{ab}V^*_{cd} = -A\lambda^4(\rho - i\eta)$	0	$D^0\pi^0 \searrow \text{common}$ $\overline{D}^0\pi^0 \nearrow \text{modes}$	γ	$D^0K_S \searrow_{\text{common}}$ $\overline{D}^0K_S \nearrow \text{modes}$	γ
June	June 5-8, 2006 Course at University of Tokyo Peter Križan, Ljubljana					ljana

	Backup slides		
June 5-8, 2006	Course at University of Tokyo	Peter Križan, Ljubljana	

