Part 2: CP violation primer

Peter Križan
University of Ljubljana and J. Stefan Institute

Contents

CP violation in the B system
Standard Model predictions
CP violation in the K system

 Time evolution in the B system

An arbitrary linear combination of the neutral B-meson flavor eigenstates

$$
a\left|B^{0}\right\rangle+b\left|\bar{B}^{0}\right\rangle
$$

is governed by a time-dependent Schroedinger equation

$$
i \frac{d}{d t}\binom{a}{b}=H\binom{a}{b}=\left(M-\frac{i}{2} \Gamma\right)\binom{a}{b}
$$

M and Γ are 2×2 Hermitian matrices. CPTinvariance $\rightarrow \mathrm{H}_{11}=\mathrm{H}_{22}$

$$
\begin{array}{cc}
M=\left(\begin{array}{cc}
M & M_{12} \\
M_{12}^{*} & M
\end{array}\right), \Gamma=\left(\begin{array}{cc}
\Gamma & \Gamma_{12} \\
\Gamma_{12}^{*} & \Gamma
\end{array}\right) & \text { diagonalize } \rightarrow \\
\text { June } 5-8,2006 & \text { Pourse at Univerity of Tokyo }
\end{array}
$$

Time evolution in the B system

The light B_{L} and heavy B_{H} mass eigenstates with eigenvalues $m_{H}, \Gamma_{H}, m_{L}, \Gamma_{L}$ are given by

$$
\begin{aligned}
& \left|B_{L}\right\rangle=p\left|B^{0}\right\rangle+q\left|\bar{B}^{0}\right\rangle \\
& \left|B_{H}\right\rangle=p\left|B^{0}\right\rangle-q\left|\bar{B}^{0}\right\rangle
\end{aligned}
$$

With the eigenvalue differences

$$
\Delta m_{B}=m_{H}-m_{L}, \Delta \Gamma_{B}=\Gamma_{H}-\Gamma_{L}
$$

Which are related to the M and Γ matrix elements

$$
\begin{aligned}
& \left(\Delta m_{B}\right)^{2}-\frac{1}{4}\left(\Delta \Gamma_{B}\right)^{2}=4\left(\left|M_{12}\right|^{2}-\frac{1}{4}\left|\Gamma_{12}\right|^{2}\right) \\
& \Delta m_{B} \Delta \Gamma_{B}=4 \operatorname{Re}\left(M_{12} \Gamma_{12}^{*}\right)
\end{aligned}
$$

The ratio p / q is

$$
\frac{q}{p}=-\frac{\Delta m_{B}-\frac{i}{2} \Delta \Gamma_{B}}{2\left(M_{12}-\frac{i}{2} \Gamma_{12}\right)}=-\frac{2\left(M_{12}^{*}-\frac{i}{2} \Gamma_{12}^{*}\right)}{\Delta m_{B}-\frac{i}{2} \Delta \Gamma_{B}}
$$

What do we know about $\Delta \mathrm{m}_{\mathrm{B}}$ and $\Delta \Gamma_{\mathrm{B}}$?
$\Delta m_{B}=(0.502+-0.007)$ ps $^{-1}$ well measured

$$
\rightarrow \Delta \mathrm{m}_{\mathrm{B}} / \Gamma_{\mathrm{B}}=\mathrm{x}_{\mathrm{d}}=0.771+-0.012
$$

$\Delta \Gamma_{\mathrm{B}} / \Gamma_{\mathrm{B}}$ not measured, expected $\mathrm{O}(0.01)$, due to decays common to B and anti-B-O(0.001).
$\rightarrow \Delta \Gamma_{\mathrm{B}} \ll \Delta \mathrm{m}_{\mathrm{B}}$

Since $\Delta \Gamma_{B} \ll \Delta m_{B}$

$$
\begin{aligned}
& \Delta m_{B}=2\left|M_{12}\right| \\
& \Delta \Gamma_{B}=2 \operatorname{Re}\left(M_{12} \Gamma_{12}^{*}\right) /\left|M_{12}\right|
\end{aligned}
$$

and

$$
\frac{q}{p}=-\frac{\left|M_{12}\right|}{M_{12}}
$$

or to next order

$$
\frac{q}{p}=-\frac{\left|M_{12}\right|}{M_{12}}\left[1-\frac{1}{2} \operatorname{Im}\left(\frac{\Gamma_{12}}{M_{12}}\right)\right]
$$

B^{0} and $\overline{\mathrm{B}}^{0}$ can be written as an admixture of the states B_{H} and B_{L}

$$
\begin{aligned}
& \left|B^{0}\right\rangle=\frac{1}{2 p}\left(\left|B_{L}\right\rangle+\left|B_{H}\right\rangle\right) \\
& \left|\bar{B}^{0}\right\rangle=\frac{1}{2 q}\left(\left|B_{L}\right\rangle-\left|B_{H}\right\rangle\right)
\end{aligned}
$$

Time evolution

Any B state can then be written as an admixture of the states B_{H} and $B_{L \prime}$ and the amplitudes of this admixture evolve in time

$$
\begin{aligned}
& a_{H}(t)=a_{H}(0) e^{-i M_{H} t} e^{-\Gamma_{H} t / 2} \\
& a_{L}(t)=a_{L}(0) e^{-i M_{L^{L}} t} e^{-\Gamma_{L} t / 2}
\end{aligned}
$$

$A B^{0}$ state created at $t=0$ (denoted by $\left.B^{0}{ }_{\text {phys }}\right)$ has $a_{H}(0)=a_{L}(0)=1 /(2 p)$; an anti-B at $\mathrm{t}=0\left(\right.$ anti- $\left.^{0}{ }_{\text {phys }}\right)$ has $\mathrm{a}_{\mathrm{H}}(0)=\mathrm{a}_{\mathrm{L}}(0)=1 /(2 \mathrm{q})$

At a later time t , the two coefficients are not equal any more because of the difference in phase factors $\exp (-\mathrm{iMt})$
\rightarrow initial B^{0} becomes a linear combination of B and anti- B
\rightarrow mixing

品品品
 Time evolution of B＇s

Time evolution can also be written in the B^{0} in $\overline{\mathrm{B}}^{0}$ basis：

$$
\begin{aligned}
& \left|B_{p h y s}^{0}(t)\right\rangle=g_{+}(t)\left|B^{0}\right\rangle+(q / p) g_{-}(t)\left|\bar{B}^{0}\right\rangle \\
& \left|\bar{B}_{p h y s}^{0}(t)\right\rangle=(p / q) g_{-}(t)\left|B^{0}\right\rangle+g_{+}(t)\left|\bar{B}^{0}\right\rangle
\end{aligned}
$$

with

$$
\begin{gathered}
g_{+}(t)=e^{-i M t} e^{-\Gamma t / 2} \cos (\Delta m t / 2) \\
g_{-}(t)=e^{-i M t} e^{-\Gamma t / 2} i \sin (\Delta m t / 2) \\
M=\left(M_{H}+M_{L}\right) / 2
\end{gathered}
$$

If B mesons were stable（ $\Gamma=0$ ），the time evolution would look like：

$$
\begin{aligned}
& g_{+}(t)=e^{-i M t} \cos (\Delta m t / 2) \\
& g_{-}(t)=e^{-i M t} i \sin (\Delta m t / 2)
\end{aligned}
$$

\rightarrow Probability that a B turns into its anti－particle \rightarrow beat

$$
\left|\left\langle\bar{B}^{0} \mid B_{p h y s}^{0}(t)\right\rangle\right|^{2}=|q / p|^{2}\left|g_{-}(t)\right|^{2}=|q / p|^{2} \sin ^{2}(\Delta m t / 2)
$$

\rightarrow Probability that a B remains a B

$$
\left|\left\langle B^{0} \mid B_{p h y s}^{0}(t)\right\rangle\right|^{2}=\left|g_{+}(t)\right|^{2}=\cos ^{2}(\Delta m t / 2)
$$

Razpadna verjetnost

$$
\text { Decay probability } \left.\quad P\left(B^{0} \rightarrow f, t\right) \propto|\langle f| H| B_{p h y s}^{0}(t)\right\rangle\left.\right|^{2}
$$

Decay amplitudes of B and antiB to the same final state \boldsymbol{f}

$$
\begin{aligned}
& A_{f}=\langle f| H\left|B^{0}\right\rangle \\
& \bar{A}_{f}=\langle f| H\left|\bar{B}^{0}\right\rangle
\end{aligned}
$$

Decay amplitude as a function of time:

$$
\begin{aligned}
& \langle f| H\left|B_{\text {phys }}^{0}(t)\right\rangle=g_{+}(t)\langle f| H\left|B^{0}\right\rangle+(q / p) g_{-}(t)\langle f| H\left|\bar{B}^{0}\right\rangle \\
& =g_{+}(t) A_{f}+(q / p) g_{-}(t) \bar{A}_{f}
\end{aligned}
$$

... and similarly for the anti-B

 CP violation: three types

Decay amplitudes of B and anti- B to the same final state \boldsymbol{f}

$$
\begin{aligned}
& A_{f}=\langle f| H\left|B^{0}\right\rangle \\
& \bar{A}_{f}=\langle f| H\left|\bar{B}^{0}\right\rangle
\end{aligned}
$$

Define a parameter $\lambda \quad \lambda=\frac{q}{p} \frac{\bar{A}_{f}}{A_{f}}$

Three types of CP violation (CPV):

ep in interference between mixing and decay: even if $|\lambda|=1$ if only $\operatorname{Im}(\lambda) \neq 0$

CP violation in decay

> (and of course also $|\lambda| \neq 1$) $\quad \begin{aligned} & \text { in decay: }|\bar{A} / \mathrm{A}| \neq 1 \\ & a_{f}=\frac{\Gamma\left(B^{+} \rightarrow f, t\right)-\Gamma\left(B^{-} \rightarrow \bar{f}, t\right)}{\Gamma\left(B^{+} \rightarrow f, t\right)+\Gamma\left(B^{-} \rightarrow \bar{f}, t\right)}= \\ & =\frac{1-|\bar{A} / A|^{2}}{1+|\bar{A} / A|^{2}}\end{aligned}$.

Also possible for the neutral B.

CP violation in decay

CPV in decay: $|\bar{A} / A| \neq 1$: how do we get there?
In general, A is a sum of amplitudes with strong phases δ_{i} and weak phases ϕ_{i}. The amplitudes for anti-particles have same strong phases and opposite weak phases ->

$$
\begin{aligned}
& A_{f}=\sum_{i} A_{i} e^{i\left(\delta_{i}+\varphi_{i}\right)} \\
& \bar{A}_{\bar{f}}=\sum_{i} A_{i} e^{i\left(\delta_{i}-\varphi_{i}\right)}
\end{aligned}
$$

$$
\begin{array}{r}
\left|\frac{\bar{A}_{\bar{f}}}{A_{f}}\right|=\left|\frac{\sum_{i} A_{i} e^{i\left(\delta_{i}-\varphi_{i}\right)}}{\sum_{i} A_{i} e^{i\left(\delta_{i}+\varphi_{i}\right)}}\right| \\
\left|A_{f}\right|^{2}-\left|\bar{A}_{\bar{f}}\right|^{2}=\sum_{i, j} A_{i} A_{j} \sin \left(\varphi_{i}-\varphi_{j}\right) \sin \left(\delta_{i}-\delta_{j}\right)
\end{array}
$$

CPV in decay: need at least two interfering amplitudes with different weak and strong phases.
June 5-8, $2006 \quad$ Course at University of Tokyo \quad Peter Križan, Ljubljana

CP violation in mixing

IIIT)

```
&P in mixing: |q/p| = 1

In general: probability for a \(B\) to turn into an anti- \(B\) can differ from the probability for an anti- \(B\) to turn into a \(B\).
\[
\begin{aligned}
& \left|B_{p h y s}^{0}(t)\right\rangle=g_{+}(t)\left|B^{0}\right\rangle+(q / p) g_{-}(t)\left|\bar{B}^{0}\right\rangle \\
& \left|\bar{B}_{p h y s}^{0}(t)\right\rangle=(p / q) g_{-}(t)\left|B^{0}\right\rangle+g_{+}(t)\left|\bar{B}^{0}\right\rangle
\end{aligned}
\]

Example: semileptonic decays:
\[
\begin{aligned}
& \left\langle l^{-} v X\right| H\left|B_{p h y s}^{0}(t)\right\rangle=(q / p) g_{-}(t) A^{*} \\
& \left\langle l^{+} v X\right| H\left|\bar{B}_{p h y s}^{0}(t)\right\rangle=(p / q) g_{-}(t) A
\end{aligned}
\]

\section*{CP violation in mixing}
\[
\begin{aligned}
& a_{s l}=\frac{\Gamma\left(\bar{B}_{\text {phys }}^{0}(t) \rightarrow l^{+} v X\right)-\Gamma\left(B_{\text {phys }}^{0}(t) \rightarrow l^{-} v X\right)}{\Gamma\left(\bar{B}_{\text {phys }}^{0}(t) \rightarrow l^{+} v X\right)+\Gamma\left(B_{\text {phys }}^{0}(t) \rightarrow l^{-} v X\right)}= \\
& =\frac{|p / q|^{2}-|q / p|^{2}}{|p / q|^{2}+|q / p|^{2}}=\frac{1-|q / p|^{4}}{1+|q / p|^{4}}
\end{aligned}
\]
-> Small, since to first order \(|q / p| \sim 1\). Next order:
\[
\frac{q}{p}=-\frac{\left|M_{12}\right|}{M_{12}}\left[1-\frac{1}{2} \operatorname{Im}\left(\frac{\Gamma_{12}}{M_{12}}\right)\right]
\]

Expect \(\mathrm{O}(0.01)\) effect in semileptonic decays

\section*{CP violation in the interference between decays with and without mixing}

CP violation in the interference between mixing and decay to a state accessible in both \(B^{0}\) and anti- \(B^{0}\) decays

For example: a CP eigenstate \(\mathrm{f}_{\mathrm{CP}}\) like \(\pi^{+} \pi^{-}\)

\[
\lambda=\frac{q}{p} \frac{\bar{A}_{f}}{A_{f}}
\]

We can get \(C P\) violation if \(\operatorname{Im}(\lambda) \neq 0\), even if \(|\lambda|=1\)

CP violation in the interference between decays with and without mixing

Decay rate asymmetry:
\[
a_{f_{C P}}=\frac{P\left(\bar{B}^{0} \rightarrow f_{C P}, t\right)-P\left(B^{0} \rightarrow f_{C P}, t\right)}{P\left(\bar{B}^{0} \rightarrow f_{C P}, t\right)+P\left(B^{0} \rightarrow f_{C P}, t\right)}
\]

Decay rate: \(\left.\quad P\left(B^{0} \rightarrow f_{C P}, t\right) \propto\left|\left\langle f_{C P}\right| H\right| B_{p h y s}^{0}(t)\right\rangle\left.\right|^{2}\)
Decay amplitudes vs time:
\[
\begin{aligned}
& \left\langle f_{C P}\right| H\left|B_{p h y s}^{0}(t)\right\rangle=g_{+}(t)\left\langle f_{C P}\right| H\left|B^{0}\right\rangle+(q / p) g_{-}(t)\left\langle f_{C P}\right| H\left|\bar{B}^{0}\right\rangle \\
& =g_{+}(t) A_{f_{C P}}+(q / p) g_{-}(t) \bar{A}_{f_{C P}} \\
& \left\langle f_{C P}\right| H\left|\bar{B}_{p h y s}^{0}(t)\right\rangle=(p / q) g_{-}(t)\left\langle f_{C P}\right| H\left|B^{0}\right\rangle+g_{+}(t)\left\langle f_{C P}\right| H\left|\bar{B}^{0}\right\rangle \\
& =(p / q) g_{-}(t) A_{f_{C P}}+g_{+}(t) \bar{A}_{f_{C P}} \\
& \begin{array}{c}
\text { Cune } 5-8,2006
\end{array} \\
& \hline \text { Course a t University of Tokyo } \quad \text { Peter Krizan, Lijubliana }
\end{aligned}
\]


\section*{CP violation in the interference between decays with and without mixing}

One more form for \(\lambda\) : \(\quad \lambda_{f_{c P}}=\frac{q}{p} \frac{\bar{A}_{f_{c P}}}{A_{f_{c P}}}=\eta_{f_{c c p}} \frac{q}{p} \frac{\bar{A}_{\bar{f}_{c P}}}{A_{f_{c P}}}\)
\(\eta_{\text {fcp }}=+-1 \mathrm{CP}\) parity of \(\mathrm{f}_{\mathrm{CP}}\)
-> we get one more ( -1 ) sign when comparing asymmetries in two states with opposite CP parity
\[
a_{f_{C P}}=-\operatorname{Im}\left(\lambda_{f_{C P}}^{\prime}\right) \sin (\Delta m t)
\]

\section*{\(B\) and anti-B from the \(Y(4 s)\)}
\(B\) and anti- B from the \(\mathrm{Y}(4 \mathrm{~s})\) decay are in \(\mathrm{I}=1\) state.
They cannot mix independently (either BB or anti-B anti-B states are forbidden with \(\mathrm{I}=1\) due to Bose symmetry).
After one of them decays, the other evolves independently ->
-> only time differences between one and the other decay matter (for mixing).

Assume
-one decays to a CP eigenstate \(\mathrm{f}_{\mathrm{CP}}\left(\mathrm{e} . \mathrm{g} . \pi \pi\right.\) or \(\left.\mathrm{J} / \psi \mathrm{K}_{\mathrm{s}}\right)\) at time \(\mathrm{t}_{\mathrm{fP}}\) and -the other at \(\mathrm{t}_{\text {trag }}\) to a flavor-specific state \(\mathrm{f}_{\text {tag }}\) (=state only accessible to a \(\mathrm{B}^{0}\) and not to a anti- \(\mathrm{B}^{0}\) (or vice versa), e.g. \(\mathrm{B}^{0}->\mathrm{D}^{0} \pi\), \(\mathrm{D}^{0}->\mathrm{K}^{-} \pi^{+}\)) also known as 'tag' because it tags the flavour of the \(B\) meson it comes from

\section*{Time evolution for \(B\) and anti- \(B\) from the \(Y(4 s)\)}

The time evolution for the \(B\) anti- \(B\) pair from \(Y(4 s)\) decay
\[
\begin{aligned}
& R\left(t_{t a g}, t_{f_{C P}}\right)=e^{-\Gamma\left(t_{\text {tag }}+t_{f C P}\right)}\left|\overline{A_{t a g}}\right|^{2}\left|A_{f_{C P}}\right|^{2} \\
& {\left[1+\left|\lambda_{f_{C P}}\right|^{2}+\cos \left[\Delta m\left(t_{t a g}-t_{f_{C P}}\right)\right]\left(1-\left|\lambda_{f_{C P}}\right|^{2}\right)\right.} \\
& \left.-2 \sin \left(\Delta m\left(t_{t a g}-t_{f_{C P}}\right)\right) \operatorname{Im}\left(\lambda_{f_{C P}}\right)\right] \\
& \text { with } \quad \lambda_{f_{C P}}=\frac{q}{p} \frac{\bar{A}_{f_{C P}}}{A_{f_{C P}}}
\end{aligned}
\]
-> in asymmetry measurements at \(\mathrm{Y}(4 \mathrm{~s})\) we have to use \(\mathrm{t}_{\text {fag }}-\mathrm{t}_{\text {fCP }}\) instead of absolute time t .


\section*{CP violation in SM}
CP violation: consequence of the Cabibbo-Kobayashi-Maskawa (CKM) quark mixing matrix

\[
V_{C K M}=\left(\begin{array}{ccc}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right)
\]


\section*{\(\xrightarrow{4}\) \\ … \\ CKM matrix}
\(3 \times 3\) ortogonal matrix: 3 parameters - angles
\(3 \times 3\) unitary matrix: 18 parameters, 9 conditions \(=9\) free parameters, 3 angles and 6 phases
6 quarks: 5 relative phases can be transformed away (by redefinig the quark fields)

1 phase left -> the matrix is in general complex
\[
\begin{aligned}
& V_{C K M}=\left(\begin{array}{ccc}
c_{12} c_{13} & s_{12} c_{13} & s_{13} e^{-i \delta} \\
-s_{12} c_{13}-c_{12} s_{23} s_{13} e^{i \delta} & c_{12} c_{23}-s_{12} s_{23} s_{13} e^{i \delta} & s_{23} c_{13} \\
s_{12} s_{23}-c_{12} c_{23} s_{13} e^{i \delta} & -c_{12} s_{23}-s_{12} c_{23} s_{13} e^{i \delta} & c_{23} c_{13}
\end{array}\right) \\
& \mathrm{s}_{12}=\sin \theta_{12}, \mathrm{c}_{12}=\cos \theta_{12} \text { etc. }
\end{aligned}
\]


Transitions between members of the same family more probable (=thicker lines) than others
-> CKM: almost a diagonal matrix, but not completely



Almost a diagonal matrix, but not completely ->
Wolfenstein parametrisation: expand in the parameter \(\lambda\left(=\sin \theta_{c}=0.22\right)\)
\(A, \rho\) and \(\eta\) : all of order one
\[
V=\left(\begin{array}{ccc}
1-\frac{\lambda^{2}}{2} & \lambda & A \lambda^{3}(\rho-i \eta) \\
-\lambda & 1-\frac{\lambda^{2}}{2} & A \lambda^{2} \\
A \lambda^{3}(1-\rho-i \eta) & -A \lambda^{2} & 1
\end{array}\right)+O\left(\lambda^{4}\right)
\]

\section*{CKM matrix}
define
\[
s_{12} \equiv \lambda, s_{23} \equiv A \lambda^{2}, s_{13} e^{-i \delta} \equiv A \lambda^{3}(\rho-i \eta)
\]

Then to \(O\left(\lambda^{6}\right)\)
\[
\begin{aligned}
& V_{u s}=\lambda, V_{c b}=A \lambda^{2}, \\
& V_{u b}=A \lambda^{3}(\bar{\rho}-i \bar{\eta}), \\
& V_{t d}=A \lambda^{3}(1-\bar{\rho}-i \bar{\eta}), \\
& \operatorname{Im} V_{c d}=-A \lambda^{5} \eta, \\
& \operatorname{Im} V_{t s}=-A \lambda^{4} \eta, \\
& \bar{\rho}=\rho\left(1-\frac{\lambda^{2}}{2}\right), \bar{\eta}=\eta\left(1-\frac{\lambda^{2}}{2}\right)
\end{aligned}
\]


Rows and columns of the V matrix are orthogonal
Three examples: \(1^{\text {st }}+2^{\text {nd }}, 2^{\text {nd }}+3^{\text {rd }}, 1^{\text {st }}+3^{\text {rd }}\) columns
\[
\begin{aligned}
& V_{u d} V_{u s}^{*}+V_{c d} V_{c s}^{*}+V_{t d} V_{t s}^{*}=0, \\
& V_{u s} V_{u b}^{*}+V_{c s} V_{c b}^{*}+V_{t s} V_{t b}^{*}=0, \\
& V_{u d} V_{u b}^{*}+V_{c d} V_{c b}^{*}+V_{t d} V_{t b}^{*}=0
\end{aligned}
\]

Geometrical representation: triangles in the complex plane.

\[
V_{u d} V_{u b}^{*}+V_{c d} V_{c b}^{*}+V_{t d} V_{t b}^{*}=0
\]

(a)
Two notations:
\(\phi_{1}=\beta\)
\(\phi_{2}=\alpha\)
\(\phi_{3}=\gamma\)





Quark diagrams: classified in tree \((T)\), penguin and electroweak penguin contributions (P).

Describe the weak-phase structure of B-decay amplitude for the trasition \(b \rightarrow q \bar{q} q\) ': sum of three terms with definite CKM coefficients:
\(A\left(q \bar{q} q^{\prime}\right)=V_{t b} V_{t q^{\prime}}{ }^{*} P_{q^{\prime}}^{t}+V_{c b} V_{c q^{\prime}}{ }^{*}\left(T_{c \bar{c} q^{\prime}}, \delta_{q c}+P_{q^{\prime}}^{c}\right)+V_{u b} V_{u q^{\prime}}{ }^{*}\left(T_{u \bar{u} q^{\prime}} \delta_{q u}+P_{q^{\prime}}^{u}\right)\)

\section*{decays}

Use the unitarity condition to simplify the expressions for individual amplitudes:
\[
\begin{aligned}
& A(c \bar{c} s)=V_{c b} V_{c s}^{*}\left(T_{c \bar{c} s}+P_{s}^{c}-P_{s}^{t}\right)+V_{u b} V_{u s}^{*}\left(P_{s}^{u}-P_{s}^{t}\right), \\
& A(u \bar{u} s)=V_{c b} V_{c s}^{*}\left(P_{s}^{c}-P_{s}^{t}\right)+V_{u b} V_{u s}^{*}\left(T_{u \bar{u} s}+P_{s}^{u}-P_{s}^{t}\right), \\
& A(s \bar{s} s)=V_{c b} V_{c s}^{*}\left(P_{s}^{c}-P_{s}^{t}\right)+V_{u b} V_{u s}^{*}\left(P_{s}^{u}-P_{s}^{t}\right)
\end{aligned}
\]

Nice feature: penguin amplitudes only come as differences.
\[
\begin{aligned}
& A(c \bar{c} d)=V_{t b} V_{t d}^{*}\left(P_{d}^{t}-P_{d}^{u}\right)+V_{c b} V_{c d}^{*}\left(T_{c \bar{c} d}+P_{d}^{c}-P_{d}^{u}\right), \\
& A(u \bar{u} d)=V_{t b} V_{t d}^{*}\left(P_{d}^{t}-P_{d}^{c}\right)+V_{u b} V_{u d}^{*}\left(T_{u \bar{d} d}+P_{d}^{u}-P_{d}^{t}\right), \\
& A(s \bar{s} d)=V_{t b} V_{t d}^{*}\left(P_{d}^{t}-P_{d}^{u}\right)+V_{c b} V_{c d}^{*}\left(P_{d}^{c}-P_{d}^{u}\right) .
\end{aligned}
\]

\section*{Decay asymmetry predictions - overview}

Five classes of B decays.
Classes 1 and 2 are expected to have relatively small direct CP violations -> particularly interesting for extracting CKM parameters from interference of decays with and without mixing.

In the remaining three classes, direct CP violations could be significant, decay asymmetries cannot be cleanly interpreted in terms of CKM phases.
1. Decays dominated by a single term: b->ccs and b-> sss. SM cleanly predicts zero (or very small) direct CP violations because the second term is Cabibbo suppressed. Any observation of large direct CPviolating effects in these cases would be a clue to beyond Standard Model physics. The modes \(\mathrm{B}^{+}->\mathrm{J} / \psi \mathrm{K}^{+}\)and \(\mathrm{B}^{+}->\phi \mathrm{K}^{+}\)are examples of this class. The corresponding neutral modes have cleanly predicted relationships between CKM parameters and the measured asymmetry from interference between decays with and without mixing.

Decay asymmetry predictions - overview
\(\qquad\)
2. Decays with a small second term: b->ccd and b->uud. The expectation that penguin-only contributions are suppressed compared to tree contributions suggests that these modes will have small direct CP violation effects, and an approximate prediction for the relationship between measured asymmetries in neutral decays and CKM phases can be made.
3. Decays with a suppressed tree contribution: b->uus. The tree amplitude is suppressed by small mixing angles, \(\mathrm{V}_{\mathrm{ub}} \mathrm{V}_{\mathrm{us}}\). The no-tree term may be comparable or even dominate and give large interference effects. An example is \(B->\rho K\).


IIITITII
4. Decays with no tree contribution: b->ssd. Here the interference comes from penguin contributions with different charge 2/3 quarks in the loop. An example is \(\mathrm{B}->\mathrm{KK}\).
5. Radiative decays: \(b->s \gamma\). The mechanism here is the same as in case 4 except that the leading contributions come from electromagnetic penguins. An example is \(\mathrm{B}->\mathrm{K}^{*} \gamma\).
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{Decay asymmetry predictions - o
b->qqs} \\
\hline \multicolumn{7}{|c|}{\(B \rightarrow q \bar{q} s\) Decay Modes} \\
\hline Quark Process & Leading 'erm & Secoudary Term & Sample \(B_{d}\) Modes & \(B_{d}\) Augle & Sample \(B_{s}\) Modes & \(B_{s}\) Angle \\
\hline \(b \rightarrow c \bar{c} s\) & \[
\begin{gathered}
V_{c b} V_{c s}^{*}=A \lambda^{2} \\
\text { tree }- \text { penguin }(c-t)
\end{gathered}
\] & \begin{tabular}{l}
\[
V_{u b} V_{u s}^{*}=A \lambda^{4}(\rho-i \eta)
\] \\
penguin only \((u-t)\)
\end{tabular} & \(J / \psi K_{S}\) & \(\beta\) & \[
\begin{gathered}
\psi \psi^{\prime} \\
D_{s} \bar{D}_{s}
\end{gathered}
\] & \(\beta_{S}\) \\
\hline \(b \rightarrow s \bar{s} s\) & \[
\begin{gathered}
V_{c b} V_{c s}^{*}=A \lambda^{2} \\
\text { penguin only }(c-t)
\end{gathered}
\] & \[
\begin{aligned}
& V_{u b} V_{u s}^{*}=A \lambda^{4}(\rho-i \eta) \\
& \text { penguin ouly }(u-t)
\end{aligned}
\] & \(\phi K_{S}\) & \(\beta\) & \(\phi / 1\) & 0 \\
\hline \[
\begin{aligned}
& b \rightarrow u \bar{u} s \\
& b \rightarrow d \bar{d} s
\end{aligned}
\] & \[
\begin{gathered}
V_{d} V_{c s}^{*}=A \lambda^{2} \\
\text { penguin only }(c-t)
\end{gathered}
\] & \[
\begin{aligned}
& V_{u b} V_{u s}^{*}=A \lambda^{4}(\rho-i \eta) \\
& \text { tree }- \text { penguin }(u-t)
\end{aligned}
\] & \[
\begin{gathered}
\pi^{0} K_{S} \\
\rho K_{S}
\end{gathered}
\] & competing terms & \[
\begin{gathered}
\phi \pi^{0} \\
K_{S} K_{S}
\end{gathered}
\] & competing terms \\
\hline  & \[
\begin{gathered}
V_{c b} V_{u s}^{*}=A \lambda^{3} \\
V_{u b} V_{c s}^{*}=A \lambda^{3}(\rho-i \eta)
\end{gathered}
\] & 0 & \[
\begin{gathered}
D^{0} K \searrow \text { common } \\
\bar{D}^{0} K \nearrow \text { modes } \\
\hline \hline
\end{gathered}
\] & \(\gamma\) & \[
\begin{gathered}
D^{0} \phi \searrow \text { common } \\
\bar{D}^{0} \phi>\text { modes }
\end{gathered}
\] & \(\gamma\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline  & Decay asymmetry predictions - overview b->qqd \\
\hline
\end{tabular}
\(b \rightarrow q \bar{q} d\) Decay Modes
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Quark Procens & Leading Timm & Sexoudary Timu & Suaple \(B_{d}\) Modes & \begin{tabular}{l}
\(B_{d}\) Angle \\
* (keading terus only)
\end{tabular} & Sample \(B_{s}\) Modes & \(B_{s}\) Angle
(leading term) \\
\hline \(b \rightarrow \bar{c} d\) & \[
\begin{gathered}
V_{c b} V_{c d}^{\prime}=-A \lambda^{3} \\
\text { tree }- \text { perguin }(c-u)
\end{gathered}
\] & \[
\begin{gathered}
V_{t d} V_{t d}^{*}=A \lambda^{3}(1-p-i \eta) \\
\text { petyguin only }(t-v)
\end{gathered}
\] & \(D^{+} D^{-}\) & * \(\beta\) & \(\psi K_{S}\) & \(\beta_{S}\) \\
\hline \(b \rightarrow s \bar{s} d\) & \[
\begin{gathered}
V_{t b} V_{t d}^{*}=A \lambda^{3}(1-\rho-i \eta) \\
\text { penguin only }(t-v)
\end{gathered}
\] & \[
\begin{gathered}
V_{c d} V_{c d}^{*}=A \lambda^{3} \\
\text { penguin only }(c-u)
\end{gathered}
\] & \[
\begin{gathered}
\phi \pi \\
K_{S} \bar{K}_{S}
\end{gathered}
\] & competing tetios & \(\phi K_{S}\) & ounpeting ternss \\
\hline \[
\begin{aligned}
& b \rightarrow u \bar{u} d \\
& b \rightarrow d \bar{d} d
\end{aligned}
\] & \[
V_{w b} V_{w d}^{*}=A \lambda^{3}(p-i \eta)
\]
\[
\text { tree - peayuin ( } u c \text { ) }
\] & \[
\begin{gathered}
V_{t b} V_{t d}^{*}=A \lambda^{3}(1-\rho-i \eta) \\
\text { pexguin only }(t-c)
\end{gathered}
\] & \(\pi \pi ; \pi \rho\) \(\pi a_{1}\) & \({ }^{*} \alpha\) & \[
\begin{aligned}
& \pi^{0} K_{S} \\
& \rho^{0} K_{S}
\end{aligned}
\] & \begin{tabular}{l}
conmeting \\
tems
\end{tabular} \\
\hline \[
\begin{aligned}
& b \rightarrow c \bar{u} d \\
& b \rightarrow u \bar{c} \bar{d}
\end{aligned}
\] & \[
\begin{gathered}
V_{d b} V_{u d}^{*}=A \lambda^{2} \\
V_{u b} V_{c d}^{*}=-A \lambda^{4}(\rho-i \eta)
\end{gathered}
\] & 0 & \[
\begin{gathered}
D^{0} \pi^{0} \searrow \text { common } \\
\bar{D}^{0} \pi^{0} \nearrow \text { modes }
\end{gathered}
\] & \(\gamma\) & \(D^{0} K_{S} \geq\) conmana \(\bar{D}^{0} K_{S} \nearrow\) modes & \(\gamma\) \\
\hline
\end{tabular}

N.B.: for simplicity we have neglected possible penguin amplitudes (which is wrong as we shall see later, and will do it properly).

A reminder: \(\quad \frac{q}{p}=-\frac{\left|M_{12}\right|}{M_{12}}\)
\[
\Delta m_{B}=2\left|M_{12}\right|
\]

\(\left|V_{t b}^{*} V_{t d}\right|^{2} m_{t}^{2} \propto \lambda^{6} m_{t}^{2}\)
\[
\left|V_{c b}^{*} V_{c d}\right|^{2} m_{c}^{2} \propto \lambda^{6} m_{c}^{2}
\]


\[
a_{f_{C P}}=-\operatorname{Im}\left(\lambda_{f_{C P}}\right) \sin (\Delta m t)
\]

Asymmetry sign depends on the CP parity of the final state \(f_{\text {CP }}, \eta_{\text {fcp }}=+-1\)
\[
\lambda_{f_{C P}}=\eta_{f_{C P}} \frac{q}{p} \frac{\bar{A}_{\bar{f}_{C P}}}{A_{f_{C P}}}
\]
\(\mathrm{J} / \psi \mathrm{K}_{\mathrm{S}}\left(\pi^{+} \pi^{-}\right): \mathrm{CP}=-1\)
\(\bullet \mathrm{J} / \psi: \mathrm{P}=-1, \mathrm{C}=-1\) (vector particle \(\mathrm{JPC}^{\mathrm{P}}=1^{-}\)): \(\mathrm{CP}=+1\)
\(\bullet K_{S}\left(->\pi^{+} \pi^{-}\right)\): \(\mathrm{CP}=+1\), orbital ang. momentum of pions=0 ->
\(\mathrm{P}\left(\pi^{+} \pi^{-}\right)=\left(\pi^{-} \pi^{+}\right), \mathrm{C}\left(\pi^{-} \pi^{+}\right)=\left(\pi^{+} \pi^{-}\right)\)
\(\bullet\)-rbital ang. momentum between \(J / \psi\) and \(K_{S} \mathrm{I}=1, \mathrm{P}=(-1)^{1}=-1\)
\(\mathrm{J} / \psi \mathrm{K}_{\mathrm{L}}(3 \pi): \mathrm{CP}=+1\)
Opposite parity to \(\mathrm{J} / \psi \mathrm{K}_{\mathrm{S}}\left(\pi^{+} \pi^{-}\right)\), because \(\mathrm{K}_{\mathrm{L}}(3 \pi)\) has \(\mathrm{CP}=-1\)

\section*{The kaon case}

The two K states have very different lifetimes
\[
\begin{aligned}
& \tau_{L}=(5.17 \pm 0.04) \times 10^{-8} S \\
& \tau_{S}=(0.8927 \pm 0.009) \times 10^{-10}{ }_{S}
\end{aligned}
\]

The eigenstates are in this case defined by lifetimes
\[
\begin{aligned}
& \left|K_{S}\right\rangle=p\left|K^{0}\right\rangle+q\left|\bar{K}^{0}\right\rangle \\
& \left|K_{L}\right\rangle=p\left|K^{0}\right\rangle-q\left|\bar{K}^{0}\right\rangle
\end{aligned}
\]

With the mass difference
\[
\Delta m_{K}=m_{L}-m_{S}=(3.491 \pm 0.009) \times 10^{-15} \mathrm{GeV}
\]

\section*{The kaon case}

In this case
\[
\Delta \Gamma_{K} \approx-2 \Delta m_{K}
\]

\(\mathrm{K}^{0}\) at \(\mathrm{t}=0\), evolution in time Full line: \(K^{0}\), dotted: \(\overline{K^{0}}\)

T : in units of \(\tau_{\mathrm{s}}\)
After a few \(\tau_{s}\) : left ony \(K_{L}\) roughly equal mixture of \(K^{0}\) and \(\mathrm{K}^{0}\)

\section*{The kaon case}

Define \(\phi_{12}\) with
\[
\frac{M_{12}}{\Gamma_{12}}=-\frac{\left|M_{12}\right|}{\left|\Gamma_{12}\right|} e^{i \phi_{12}}
\]

It turns out that for the K system \(\phi_{12} \ll 1\)
From
(see above)
\[
\left(\Delta m_{B}\right)^{2}-\frac{1}{4}\left(\Delta \Gamma_{B}\right)^{2}=4\left(\left|M_{12}\right|^{2}-\frac{1}{4}\left|\Gamma_{12}\right|^{2}\right)
\]
\[
\Delta m_{B} \Delta \Gamma_{B}=4 \operatorname{Re}\left(M_{12} \Gamma_{12}^{*}\right)
\]

To the leading order
\[
\Delta \Gamma_{K}=-2\left|\Gamma_{12}\right|
\]
\[
\Delta m_{K}=2\left|M_{12}\right|
\]

Define
\[
\Gamma_{12}=\left|\Gamma_{12}\right| e^{-2 i \xi_{K}}
\]

Use same
expression for \(\mathrm{q} / \mathrm{p}\)
as for the \(B\) case:
\[
\frac{q}{p}=-\frac{\Delta m_{B}-\frac{i}{2} \Delta \Gamma_{B}}{2\left(M_{12}-\frac{i}{2} \Gamma_{12}\right)}=-\frac{2\left(M_{12}^{*}-\frac{i}{2} \Gamma_{12}^{*}\right)}{\Delta m_{B}-\frac{i}{2} \Delta \Gamma_{B}}
\]

\section*{The kaon case}

IIIITIIII
\[
\left(\frac{q}{p}\right)_{K}=e^{2 i \xi_{K}}\left[1-i \phi_{12} \frac{1+i \frac{\Delta \mathrm{\Gamma}_{K}}{2 \Delta m_{K}}}{1+\left(\frac{\Delta \Gamma_{K}}{2 \Delta m_{K}}\right)^{2}}\right]
\]

The ratio \(\mathrm{p} / \mathrm{q}\) is almost a pure phase (similar as in the \(B\) case) -> CPV in mixing small in both cases (but for different reasons: small lifetime diff in \(B\), small phase in \(K\) system)

CPV in interference between mixing and decay:
\(\lambda=1\) to \(O(0.001)\)-> small
\[
\begin{aligned}
& \text { To next } \\
& \text { order -> }
\end{aligned} \quad \frac{q}{p} \frac{\bar{A}_{\pi \pi}}{A_{\pi \pi}}=1-i \phi_{12} \frac{1+i \frac{\Delta \Gamma_{K}}{2 \Delta m_{K}}}{1+\left(\frac{\Delta \mathrm{I}_{K}}{2 \Delta m_{K}}\right)^{2}}
\]
-> can be used to extract \(\phi_{12}\)

But: it is not easy to transform from \(\phi_{12}\) to electroweak parameters because of long distance (strong interaction) contribution \(\mathrm{M}_{12}\).

\section*{Direct and indirect CP violation}

Indirect: \(C P\) violating phases appear in \(\Delta B=2\) (mixing) amplitudes
Direct: CP violating phases appear in \(\Delta \mathrm{B}=1\) (decay) amplitudes

CPV in decay \(=\) direct
CPV in mixing = indirect
CPV in interference of decays with and without mixing = indirect

However: if we have two final states with different \(\operatorname{Im}(\lambda)\), we do not have the freedom in choosing the phase, there must also be direct CP (see Y. Nir in Heavy flavour physics).

\section*{Backup slides}

\section*{Parity of \(B^{0}\)}
\(P:\) space inversion \(P\left|B^{0}\right\rangle=-\left|B^{0}\right\rangle\)
Why is the parity of \(\mathrm{B}^{0}\) (pseudoscalar meson) -1 ?
\(B^{0}\) is composed of two quarks with \(\operatorname{spin} 1 / 2\), with total spin \(J=0\).
The two quark spins are combined to \(1 \frac{1}{2} \oplus \frac{1}{2}=0\), the relative angular momentum is \(1=0\) (ground bound state of \(\bar{b}\) in \(d\) ). Parity of the spatial part of the wave function is \((-1)^{1}=+1\).
Quark and antiquark have opposite parities
=> additional factor -1

\[
\begin{aligned}
& \text { Low-energy effective Hamiltonians } \\
& \text { Low-energy effective Hamiltonians: constructed using the operator } \\
& \text { product expansion (OPE): } \\
& \qquad\langle f| \mathcal{H}_{\text {eff }}|i\rangle \propto \sum_{k}\langle f| Q_{k}(\mu)|i\rangle C_{k}(\mu)
\end{aligned}
\]
\(\mu\) is an appropriate renormalization scale \(\mathrm{O}\left(\mathrm{m}_{\mathrm{b}}\right)\). The OPE allows one to separate the "long-distance" contributions to that decay amplitude from the "short-distance" parts.
"long-distance" contributions not calculable -> nonperturbative hadronic matrix elements
"short-distance" described by perturbatively calculable Wilson coefficient functions \(\mathrm{C}_{\mathrm{k}}(\mu)\).

For B decays:
\(\mathcal{H}_{\mathrm{eff}}(\Delta B=-1)=\frac{G_{\mathrm{F}}}{\sqrt{2}}\left[\sum_{j=u, c} V_{j q}^{*} V_{j b}\left\{\sum_{k=1}^{2} Q_{k}^{j q} C_{k}(\mu)+\sum_{k=3}^{10} Q_{k}^{q} C_{k}(\mu)\right\}\right]\)```

