

	Why hadron machines?						
Production	$e^+e^- \to \Upsilon(4s) \to B\bar{B}$	$e^+e^- \rightarrow Z^0 \rightarrow b\bar{b}$	$pA \rightarrow b\bar{b}X$	$p\bar{p} \rightarrow b\bar{b}X$	$p\bar{p}(p) \rightarrow b\bar{b}X$ forward		
Accelerator	CESR, DORIS	LEP, SLD	HERA p	Tevatron	Tevatron, LHC		
Spectrometer	PEPII, KEKB CLEO, ARGUS BaBar, BELLE	ALEPH, DELPHI, L3, OPAL, SLD	HERA-B	CDF, D0	BTeV, LHCb		
$\sigma(b\bar{b})$	$\approx 1~{\rm nb}$	$\approx 6~{\rm nb}$	$\approx 12~{\rm nb}$	$\approx 50~\mu{\rm b}$	$\approx 100~\mu {\rm b}~(\approx 500~\mu {\rm b})$		
$\sigma(b\bar{b})$: $\sigma(had)$	0.26	0.22	10^{-6}	10^{-3}	$2\cdot 10^{-3}~(6\cdot 10^{-3})$		
$egin{array}{c} B^0,B^+\ B^0_s,B^+_c,\Lambda^0_b \end{array}$	yes no	yes yes	yes yes	yes yes	yes yes		
boost < $\beta\gamma$ >	0.06 (0.5)	6	≈ 20	$\approx 2-4$	$\approx 4 - 20$		
$b\bar{b}$ production	B's at rest (in c.m.s)	$b\bar{b}$ back-to-back	$b\bar{b}$ not back-to-back	$b\bar{b}$ not back-to-back	$b\bar{b}$ not back-to-back		
multiple events	no	no	yes, 4	yes	yes, 2		
trigger	inclusive	inclusive	lepton pairs (high p_t hadrons)	leptons only (high p_t hadrons)	displaced vertex		
	5.0.2000						
June	5-8, 2006	Course at Ur	niversity of Tokyo	Peter Križa	an, Ljubljana		

	Tagger Performance				
	εD ² Hadronic (%)	εD ² Semileptonic (%)			
Muon	0.48 +- 0.06 (stat)	0.62 +- 0.03 (stat)			
Electron	0.09 +- 0.03 (stat)	0.10 +- 0.01 (stat)			
JQ/Vertex	0.30 +- 0.04 (stat)	0.27 +- 0.02 (stat)			
JQ/Prob.	0.46 +- 0.05 (stat)	0.34 +- 0.02 (stat)			
JQ/High p _T	0.14 +- 0.03 (stat)	0.11 +- 0.01 (stat)			
Total OST	1.47 +- 0.10 (stat)	1.44 +- 0.04 (stat)			
SSKT	3.42 +- 0.98 (syst)	4.00 +- 1.02 (syst)			
 use exclusive con same side – oppc information 	nbination of tags on opposite site side combination assum	e side nes independent tagging			
June 5-8, 2006	Course at University of Tol	kyo Peter Križan, Ljubljana			

HERA-B Summary
•First LHC like experiment before the LHC
 Designed with a very ambitious goal
•Many components behaved extremly well (e.g. SVD, RICH)
•Several critical components were less successful (tracking)
•Trigger efficiency (which heavily relied on the tracking system efficiency) was >10x lower than expected
\rightarrow No precision tests in B physics were possible
•Still: a solid physics program could be carried out (i.e. bb and cc production cross sections, a limit on $D \rightarrow \mu\mu$, pentaquark searches)
•HERA-B experience: An important input for LHC experiments
June 5-8, 2006 Course at University of Tokyo Peter Križan, Ljubljana

	Level 0	
 Fast search from the muon syst mu	for 'high' p_T particles frons: HCAL (~ 3 GeV) otons, π^0 : ECAL (~ 3 GeV) n system (~ 1 GeV)	(calorimeters,
 Cut on globa – Require minir Reduces ba 	al variables: mum total E _τ in HCAL <mark>(calorin</mark> ackground from halo-muons	neters)
 Rejection of r (Pileup syster fake B sign 	multiple primary vertices and m, SPD) : atures (IP)	busy events
• Busy event like – Better	s spend trigger resources withou throw them early and use bandwidth	ut being more signal- n to relax other cuts
June 5-8, 2006	Course at University of Tokyo	Peter Križan, Ljubljana

HLT rate Event type Use for Use for Use for physics	s
200 Hz Exclusive B Control channels (tagging,) B (core program	1)
600 Hz High mass dimuon Tracking b→J/ψX (unbiase	ed)
300 Hz D* Hadron PID Charm (mixing+0	CPV)
900 Hz Inclusive b (eg b \rightarrow µ) Trigger B (data mining)	

Performance of Flavour Tagging								
After passing	trigger	and off	line cut	ts				
Channel	$\varepsilon_{\text{tag}}(\%)$	w(%)	$\varepsilon_{\rm eff}$ (%)	-	Effective tagging			
$\begin{array}{c} B^{0} \rightarrow \pi^{+}\pi\\ B^{0} \rightarrow K^{+}\pi^{-}\end{array}$	41.8 ± 0.7 43.9 ± 1.4	34.9 ± 1.1 33.3 ± 2.1	3.8 ± 0.5 4.8 ± 1.0		efficiencies vary between 3			
$B^0 \rightarrow J_{\psi}^{W}(\mu\mu)K_{c}^0$	45.2 ± 1.4 45.1 ± 1.3	36.7 ± 1.9	3.2 ± 0.8		final state			
$B^{0} \rightarrow J/\psi \ (\mu\mu) K^{*0}$	41.9 ± 0.5	34.3 ± 0.7	4.1 ± 0.3		Indi state.			
$B_s^0 \rightarrow K^+ K^-$	49.8 ± 0.5	$33.0 {\pm} 0.8$	5.8 ± 0.5	_	In real physics analysis, the			
$B_s^0 \rightarrow \pi^+ K^-$	49.5±1.8	$30.4{\pm}2.6$	7.6 ± 1.7		wrong tag fraction will be			
$B_s^0 \rightarrow D_s^- \pi^+$	54.6 ± 1.2	$30.0 {\pm} 1.6$	8.7 ± 1.2		measured using control			
$B_s^0 \rightarrow D_s^+ K^\pm$	54.2 ± 0.6	33.4 ± 0.8	6.0 ± 0.5		channels with similar			
$B_{s}^{o} \rightarrow J\psi(\mu\mu)\phi$	50.4 ± 0.3	33.4 ± 0.4	5.5 ± 0.3		topology e.g.			
			B _d	\rightarrow	$J/\psi K^{*0}$ for $B_d \rightarrow J/\psi K_s$			
June 5-8, 2006		Course a	t University	of T	okyo Peter Križan, Ljubljana			

Events yield for rare decays								
 For 2 ⁻ fbafter trigger and offline selection: 								
Channel	B.R.	Yield	B/S (90%CL)					
$\mathbf{B}_{d} \rightarrow \mathbf{K}^{*0} \left(\mathbf{K}^{+} \pi^{-} \right) \mathbf{y}$	2.9×10 ⁻⁵	3.5×10^4	< 0.7					
$B_s \rightarrow \varphi(K^+K^-)\gamma$	2.1×10^{-5}	9.3×10 ³	< 2.4					
$\mathbf{B}_{\mathrm{d}} \rightarrow \omega \left(\pi^{+} \pi^{-} \pi^{0} \right) \mathbf{y}$		40	< 3.5					
$\mathbf{B}_{\mathrm{d}} \to \mathbf{K}^{*0} \big(\mathbf{K}^{*} \pi^{-} \big) \mu^{+} \mu^{-}$	- 8×10 ⁻⁷	4.4×10 ³	< 2.0					
$B_d \rightarrow \varphi (K^+ K^-) K_s (\pi^+)$	(π^{-}) 1.4×10 ⁻⁶	0.8×10 ³	< 0.2					
$\mathbf{B}_{\mathrm{s}} \rightarrow \varphi (\mathbf{K}^{+}\mathbf{K}^{-}) \varphi (\mathbf{K}^{+}\mathbf{K}^{-})$	(x^{-}) 1.3×10 ⁻⁶	1.2×10^{3}	<1.1					
$B_s \rightarrow \mu^+ \mu^-$	3.5×10 ⁻⁹	17	< 5.7					
 Promising physi induced rare de Still room to adj for channels of 	cs potent cays. just trigge topical int	ial to s er in or terest	study numerous loop- rder to increase the rate					

LHCb CP reach							
	Channel	Yield	Precision*				
β	$B_d \rightarrow J/\psi K_s$	119 k	$\sigma(\beta) \approx 0.6^{\circ}$				
γ	$B_{s} \rightarrow D_{s}K$ $B_{d} \rightarrow \pi\pi, B_{s} \rightarrow KK$	8 k 27 k, 35 k	$\sigma(\gamma) \approx 10^{\circ}$ $\sigma(\gamma) \approx 3^{\circ}$				
α	$B_d \rightarrow \pi^+ \pi^-$	27 k	$\sigma(\alpha) \approx 5^{\circ} - 10^{\circ}$				
2δγ	$B_s \rightarrow J/\psi \phi$	128 k	σ(2δγ) ≈ 2°				
V _{td} /V _{ts}	$B_s \rightarrow D_s \pi$	72 k	Δm_s up to 58 ps ⁻¹				
rare decays	$B_d \rightarrow K^* \gamma$	20 k					
2003 status							
June 5-8, 2006	5 Course at l	Jniversity of Tokyo	Peter Križan, Ljubljana				

	Beau	ty at LHC - expe	rimental conditio	าร
	LHC pp	σ total σ inela σ bb	= 100 mb stic = 80 mb = 500 μb	
		ATLAS/CMS Central detectors	LHCb Forward detector	
	$\eta - p_T$ one B-hadron `in'	$ \eta < 2.5$ $p_T > 10 \text{ GeV}$ $\sigma = 100 \ \mu b$	$1.9 < \eta < 4.9$ $p_T > 2 \text{ GeV}$ $\sigma = 230 \ \mu b$	
	Luminosity for B physics	L = 2 × 10 ³³ cm ⁻² s ⁻¹ rare B 10 ³⁴ cm ⁻² s ⁻¹	$L = 2 \times 10^{32} \text{ cm}^{-2} \text{ s}^{-1}$	
	Statistics exclusive B	$\begin{array}{c} 1 \ y \ @ \ 10^{33} \ cm^2 \ s^1 \\ 2.6 \times 10^6 \\ \text{dominated by } B \ {\rightarrow} J/\psi(\mu\mu) \end{array}$	$ \begin{array}{c} 1 \ y @ 2 \times 10^{32} \ cm^2 \ s^{-1} \\ 1.7 \times 10^6 \ B \rightarrow J/\psi \\ 1.7 \times 10^6 \ hadronic \end{array} $	
lun	e 5-8, 2006	Course at University of	Tokvo Peter Križan Liu	hliana

AT	LAS sen chan	sitivity in nels with	B _s tree-level (possible signa	dominated decay tures BSM
Proper-tin	ne resolu	tion for B _s	→ D _s π: 89 fs	
		Number o trigger + o reconstruc 3y@10 ³³ co	f events after offline ction m ⁻² s ⁻¹ Backgr	Models <u>used in MC</u> or to confront experimental sensitivities.
Β _s →J/ψ φ Β _s →J/ψ η	$\phi_{s}\Delta\Gamma_{s'}$	300k 9000	30% <100%	<u>SM: Fleisher CERN-</u> <u>TH-2000-101</u> NP: Ball,Khalil, Phys.Rev.D69:115011 ,2004
$\begin{array}{c} B_{s} \rightarrow D_{s} \ \pi\\ B_{s} \rightarrow D_{s} a_{1} \end{array}$	ΔM _s	6750 3620	<100% <100%	NP: Ball,Khalil, Phys.Rev.D69:115011 ,2004
June 5-8, 2	006	Course at	University of Tokyo	Peter Križan, Ljubljana

	Sem	ii-muonio	c exclu AT	sive rare E TLAS	B-decays in
BR used in the MC			Signature after trigger +offline reconstruction 3y@10 ³³ cm ⁻² s ⁻¹		Models used <u>in MC</u> or to confront experimental sensitivities.
			Signal	Backgr	
1.3 10 ⁻⁶ 1.0 10 ⁻⁷ 1.0 10 ⁻⁶ 2.0 10 ⁻⁶	$\begin{array}{l} \textbf{B}_{d} \rightarrow K^{0*} \mu \mu \\ \textbf{B}_{d} \rightarrow \rho \ \mu \mu \\ \textbf{B}_{s} \rightarrow \phi \ \mu \mu \end{array}$	Br.frac. μμ-mass A _{FB}	3000 300 900	<3000 1000 <3000	Melikhov, Nikitin, Simula, PRD57,98; <u>Melikhov, Stech,</u> <u>PRD62, 2000</u> WC: SM Buras, Munz, PRD52, 95; MSSM Cho, Misiak,Wyller, PRD54,96.
	$\Lambda_b \rightarrow \Lambda \mu \mu$		1500		NP: Chen, Geng, PRD64,2001 <u>Aliev NPB649,2003</u>
Jur	ne 5-8, 2006	Cou	Irse at Univer	sity of Tokyo	Peter Križan, Ljubljana

Integral LHC Luminosity	Expected Signal events after cuts	Expected BG events after cuts	ATLAS upper limit at 90% CL	CDF best uppe limit at 95% CL		
100 pb ⁻¹	~ 0	~ 0.2	6.4×10 ⁻⁸			
10 fb ⁻¹	~ 7	~ 20	7.0×10 ⁻⁹	1.×10 ⁻⁷		
30 fb ⁻¹	~ 21	~ 60	6.6×10 ⁻⁹	780 pb- :		
10 Hb $^{-1}$ \sim 21 \sim 20 7.0×10^{-9} $1.\times 10^{-9}$ 30 fb $^{-1}$ \sim 21 \sim 60 6.6×10^{-9} 780 pb $^{-1}$ all trigger and detector TDR study was made also for luminosity 10^{34} cm $^{-2}$ s $^{-1}$ It proved that						
the P						

