Flavor physics at B factories and hadron machines

Part 12: advances in hadron spectroscopy

Peter Križan
University of Ljubljana and J. Stefan Institute

Motivation
X, Y, Z
$D_{s j}$ mesons
Pentaquark searches

Discovery of $\eta_{c}(2 S)$

First: $B \rightarrow K K_{S} K \pi \quad$ (because $\eta_{c}(1 \mathrm{~S}) \rightarrow K_{S} K_{\pi}$)

$X(3872)$ quantum numbers

- New decay modes $\Rightarrow C=+1$,

Quantum numbers are fixed $\mathrm{JPC}^{\mathrm{PC}}=1^{++}$corresponds to $\chi_{\mathrm{c} 1}{ }^{\prime}$, but - $\chi_{\mathrm{c} 1}{ }^{\prime} \rightarrow \mathbf{J} / \psi \gamma$ should be much stronger than $\chi_{\mathrm{c} 1}{ }^{\prime} \rightarrow \mathbf{J} / \psi \pi \pi$ (measured ratio ~0.15, expected ~30)

- $\sim 100 \mathrm{MeV} / \mathrm{c}^{2}$ lighter than expected.

Possible interpretion: $\mathrm{D}^{0} \mathrm{D}^{* 0}$ molecule:

- Large isospin violation expected
- JPC=1++ predicted

$\chi_{\mathrm{c} 2}{ }^{\prime}$ in $\gamma \gamma$ production

Peak at $\mathrm{M}_{\mathrm{DD}} \sim 3.930 \mathrm{GeV} / \mathrm{c}^{2}$ in selected $\gamma \gamma$ events
p_{t} distribution consistent with $\gamma \gamma$ production
Helicity distribution favors spin $=2$
$\mathrm{J}=0$ disfavored $\chi^{2} / \mathrm{dof}=23.4 / 9$

$$
2005, L=395 f b^{-1}
$$

The observed state is $\chi_{c 2}{ }^{\prime}$
$(2 J+1) \Gamma \gamma \gamma \mathrm{B}(Z \rightarrow \mathrm{DD})=(1.13 \pm 0.30) \mathrm{keV}$

- Reconstruct J/ $\psi+\mathrm{D}$
- Refit $\mathrm{M}_{\text {recoil }}(\mathrm{J} / \psi) \rightarrow \mathrm{M}_{\mathrm{D}\left({ }^{*}\right)}$

From $X(3940) \rightarrow D^{*} D:$
$M=(3943 \pm 6 \pm 6) M e V$
$\Gamma<52 \mathrm{MeV}$ at $90 \% \mathrm{CL}$

Possible interpretation: $\eta_{c}(3 S)$?
Reconstruct J/ $\psi \rightarrow$ II Form $\mathrm{M}_{\text {recoil }}(\mathrm{J} / \psi) \equiv \mathrm{M}_{\mathrm{x}}$

	New charmonia, summary			
State	Mass (MeV)	Width (MeV)	Decay mode(s)	JPC
X(3872)	3871.2 ± 0.6	<2.3 @ 90\% CL	$\begin{array}{\|l} \hline \pi^{+} \pi^{-} \mathrm{J} / \psi \\ \gamma \mathrm{J} / \psi \\ \mathrm{D}^{0} \mathrm{D}^{0} \pi^{0} \end{array}$	$\begin{aligned} & 1^{++} \\ & \mathrm{I}=0 \end{aligned}$
X(3940)	3943 ± 9	$\begin{aligned} & \hline<52 \\ & @ 90 \% \mathrm{CL} \end{aligned}$	$\begin{array}{\|l\|} \hline \text { D* D } \\ \text { Not DD or } \omega \mathrm{J} / \psi \\ \hline \end{array}$	0^{++}?
Y(3940)	3943 ± 17	87 ± 34	$\omega \mathrm{J} / \psi$	$\begin{aligned} & \mathrm{C}=+ \\ & 1 \\ & \mathrm{I}=0 \end{aligned}$
Z(3930)	3929 ± 6	29 ± 10	DD	2^{++}
Y(4260)	$4259{ }^{+8}{ }_{-10}$	$88^{+24}-23$	$\begin{aligned} & \pi^{+} \pi^{-J} J / \psi, \pi^{0} \pi^{0} \mathrm{~J} / \psi \\ & \text { Not } \pi^{+} \pi^{-} \phi, \text { DD, pp } \end{aligned}$	$\begin{aligned} & 1- \\ & \mathrm{I}=0 \end{aligned}$
June 5-8, 200	Cour	se at University of	Okyo Peter Krizan	Ljubljana

Properties in accordance with lowest level P states $\mathrm{JP}^{\mathrm{P}}=\mathrm{O}^{+}, 1^{+}$ Masses lower than expected from models!

Pentaquarks

Pentaquark discovery in 2003 of a state θ^{+}at 1.520 GeV which decays into
nK^{+}, uudds, was immediately confirmed by 10 experiments statistical significance of individual expts is not high $\sim 5-6 \sigma$

Discovery by LEPS ->

HERA-B: no evidence for θ^{+}

```
-
```


However many experiments DO NOT see pentaquarks
\Rightarrow Situation IS NOT clear yet
\Rightarrow Experiments which do not see θ^{+}pentaquark are mainly at HIGH energy
->While pentaquarks are seen mainly at LOW energies
\Rightarrow Need for a high statistics experiment at LOW energy
June 5-8, 2006 Course at University of Tokyo Peter Križan, Ljubljana

Peter Križan, Ljubljana

\Rightarrow Selected pK vertices originate from nuclear interactions.

June 5-8, 2006	Course at University of Tokyo	Peter Križan, Ljubljana

Fit $\mathrm{M}\left(\mathrm{pK}^{-}\right)$to D -wave $\mathrm{BW} \oplus$ resolution function + threshold function. $\Rightarrow \Lambda(1520)$ yield is 15519 ± 412 events
$\mathrm{M}=1518.5 \pm .2 \mathrm{MeV}$ in agreement with PDG'02 value $1519.5 \pm 1.0 \mathrm{MeV}$

Summary

－New states renewed the interest in low energy QCD：
－Great interest：～800 references to＂New charmonium＂papers
－Still a lot of work to be done：
－Study more carefully their properties experimentally
－More theoretical ideas
－And hope for new discoveries in the nearest future

