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m=mixed, u=unmixed

B oscillations

l“qe_rqt [1 + cos(Am qt)]

(neglecting CP, CPT violation, AT/T'=0)

Motivation: proceeds through loop diagrams, could be a
tool to discover new physical phenomena.
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Mixing: estimates
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B, ¢ oscillations:
refined theoretical predictions

B decay constant

ren. group NLO QCD corr.
193+29 Mev .
(83203 e inv. param. 0.55:0.01
208:27 Mev a2
(QCD sum rules) 1.10+0.15

\\\\‘ (Qcp sum rules)
2
Bd\ EBd

Am, =0.50ps ™| = [ i Tz[ Vs ﬂ ’73}
‘ 230MeV | [ 167GeV | |7.8:107 ] | 0.55

2 1.52 2
NN - P A
: 260MeV | | 167GeV 0.040 | | 0.55
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- B oscillations
L T,

Experimental methods: [ )
time dependent Bon= > Le [1 + COS(Amqt)]
(neglecting CP, CPT violation,

< AT/T=0), m=mixed, w=unmixed
need proper time measurement

time integrated 6./15=0,/L ® (t/%) (5,/p)

\ flavor tagging @decay and
@production

Iilz'f;li!_F]QjK€

Tots of taggi
ots of tagging high energy Y(4s)

and reconstruction
methods
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(et B4 oscillations

Examples of analyses:
(BaBar,hep-ex/0212017(02))

exclusive method, BaBar;

B%-D*1v, reconstruct D¥;

flavor tagging other side NN;
asymmetry=(P,-P,) /(P +P,) —

(20fb1)

semi inclusive, Belle;
two fast leptons;
flavor tagging - lepton charge;

(29fb1)

large amplitude & good tagging e 03 S 700 7800,

large statistics (eelle,rro67,052004(03)) —
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R B, oscillations

| T

oscillation probability including AT
AT,
2

no assumption of CPT invariance:

P = ll“ er"t[cosh(

u,m 2 q

H+ cos(AMqt)}
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|B, >=p|B’>+q|B" >
|B, >=p'|B*>—q'|B° >

10 12
At (ps)

g .
= tan(=)e"
(2)6

0. ., CP violated if m(p)=0 /
=cot(—)e dileptons: difference in .
2 1+1+ and 1-1- rates; Belle, dileptons:

ST SRR SIS

CPT violated if 6=n/2;

expressions for P, , changed
by dependence on 6,
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How to measure B, mixing?

Measure: probability that a B, (at t=0) turns into an anti-B, at time t.
Need:

¢ a well defined final state with precisely measured vertex, momentum
* a tag to determine the initial B flavour (B, or anti-B, at t=0)

Final states:

e uDs nu Ds > ¢ =n*, K'K;, KTK*

o JyK*¥*>pupKn

e D(*¥) w(mnw)

Tagging:

e charge of kaon and lepton from the associated B decay (opposite side
tagging)

e charge of kaon from the same side
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A
A B, oscillations

Cannot be measured at a B factory: no B mesons!

First measurements were done at LEP (at E_ of Z°).

tagging

opposite side:

Neural net (NN) to separate tracks from primary and
secondary vertex;

NN to compute charge estimators (jet charge, lepton charge,
K charge, etc.) ;

same side:
wide b-jet (all B, decay products + fragmentation products
close in phase space) using large y., (JADE);
NN to compute charge estimator (from K, jet charge,...)
(Aleph,CERN-EP-2002-16)
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B, oscillations

1. -
P = El“qe tot [1 + cos(Amqt)]

u,m
m=mixed, u=unmixed

Fit the data in a different way: fix Am, and fit the
oscillation amplitude A
|
P = El“qe ot [1 -4 cos(Amqt)]

If A consistent with 0 -> no mixing.
Mixing established if A=1, and A=0 excluded with high
significance.
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s B, oscillations
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i D=1 08 Dilution:
O'; Y.V -0 5
¢ ‘[, D=0.19 :
8 08 Dilution:
Dilution: ' o(t/7)=0.04
I Tagging,
Tagging, o« 04
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i ixing: dilution effects for x.=25
il B. mixing: dilution effects for x.=
‘ ﬁﬁ o Dilution:
§E 2 D=019 !
Dilution: sl o(t/7)=0.04 o2 Dilution:
Tagging, " ) Tagging,
Vertex 0z £ Vertex

o(t/t)=0.04 ¢
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Ty B, mixing: dilution effects due to

vertexing

_ Full curve: dilution tagging only

/\ < Dilution due to finite vertex resolution:

' \/ events move in the region +- ~o, off
the node

Simple estimate: linear approx around
the node, fraction of events that move
from the up part of the wave to the

down part: ~(Am, ,)%/2

Amplitude reduced by a factor
(1-(Am;0,)%/2)

rare

time (t/x.T )

Full calculation: convolution, exp(-(Am, c,)?/2)

Simple estimate: the first term in expansion. H. G. Moser, A. Roussarie,
NIM A384 (1997)
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i B, mixing: dllutlon_ effects due to
== vertexing

No dilution
1—cos(Amt) . Dilution, tagging only
1—Dcos(Am,t)
7(Am50'1)
2 Dilution due to finite proper

1-D'cos(Am t),D'= De
time resolution o, (vertex

and momentum resolution
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B, mixing: sensitivity in Am,

time (4T )

Simple estimate of the statistics required for a significant
measurement: fix Am,, and divide the events in two classes, those
from the 'up' part of the wave, and those from the 'down' part.

The measured oscillation amplitude for a given Am, differs from
zero if the two classes are found to be differently populated (and
the difference is statistically significant).

The distribution over the two classes is binomial, with probability for
the 'up' part equal to p=1/2+cD', where c is a constant of order 1.
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iy B, mixing: sensitivity in Am,
L T,

Error on p for a measurement with N reconstructed and tagged events:
o(p) = V(p(1-p)/N).

For p ~1/2: o(p) ~ V2 1/+/N

Error on the amplitude D”: (D) ~ 1/(2c v/ (N))

and the significance of the measurement equals to

D'/o(D") ~ 2c YN D exp(-(Am, 6,)?%/2)

For a given required significance, the number of events needed is
proportional to exp(+(Am, c,)?).

-> a very steep function of the proper time resolution and the mixing
parameter above Am, o,=1

-> If Ams=20/ps, need o, < 50 fs to stay below this limit.
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B, mixing: sensitivity in Am,

=)
8
gzs.
Increase in the number
Of events needed for a Ez@. Increase of Nevents for a fixed
given Signiﬁcance VS 2 significance vs o for Ams=20/ps
resolution. i
10!
sl
010205040 50 60 70 80 %
O, time resolution in fs
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FERAEREE DO mixing
e ] [

Completely different: Am very small, (Am t)<<1 ->
Time evolution, mixed decays:

1

_ 1 ., (Am t 2
P, ZEqu g [l—cos(Amqt)]—> Equ e u

2

Almost nothing happens before the D meson decays.

The method: search for D mixing in the decay sequence:
D*+— Dz+, DO9—flavour specific final state.

D** —» DO mt —> D° or D° at production time

b K- etv
4

D° or D° at decay time
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DO mixing in D%—Kr and Klv decays

M
LI L bt

The method: search for D mixing in the decay
sequence: D**— Dx*, D%—flavour specific final state.

Semileptonic decay:

eK- e* v:no mixing (RS, Right Sign)

oK+ e v:mixing (WS, Wrong Sign)
= measure WS rate

Hadronic decay:

*K- 7*: no mixing

oK+ 1~: mixing or doubly Cabbibo suppressed (DCSD)

— measure WS time evolution
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@ﬁ@ mixXing In —Kn decays

Do—Kr time evolution

dN/dt o {Rp + Rp!2y"t + (x? +y?) t?/4} e

interference mixing

X'=xcosd +ysind DCS, interf., mix

1, =0.5, 0.5

y'=ycosd -xsind
X = AM/T 'y =AI'/2
&= strong phase difference

SM: x <1073, y<10-3 (long
dist. effects);

\\\'\.

new physics: x>>y, CPV

o 1 2z 3 4 5 .6
[ Hine
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DY mixing in D°—Kn decays

DO—Kr time evolution measurement

D° or D° at decay time o
r K- ¢t K
D*+ — DO TC+ DUJ
T !

D° or D° at
‘production time

e T e
*
e D Beamspot e
June 5-8, 2/
w2
Ay

ik DY mixing in D°—Kn decays

Signal extraction
M=MKnx) Q= MKt 7 mgw) — MK+, 77 — M,

Evenmis 0005 Gel
g
2
ventyt. 1 2iMel
-
S

Right-Sign

ittt ol [
L85 185 1875 19 o i FL ) 20
Mass (GEV) 0 (MEV)

B mbvioric
[ LEE]
0% iy
O, 0 dbody
Ofignal

“
g

200F

Wrong-Sign

¥

Events' 0,005 Gel’
g
EventsAh125MWeV

foar

B

¢ LEXS 1L&5 1&TF L9 i i 10 15 20
Mass (GeV) @ (Mel)
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Free fit

R,=(0.287 £ 0.037)%,
Y’:(2-54+1'“-1.02)%a
X"2=-(0.15370-08 ' Y%

Physical region
R=(0.343+0:027 ) . )%,
y’=(0.60 %+ 0.33)%,
x"2=0%

June 5-8, 2006

100

Events

D0 & D3body
4 Combinatoric
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2000 4000
Proper time (fs)
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0.02

]

-0.02

o cpv (stat. onfy
o oy

cpv (vtat. only) 7
R Fit case  Parameter  95% C.L. interval
{21079
Ap =250 < Ap < 110
E CPV Ay =091 = Ay = 1000
\\ .r'Q .f"r2 < (J.89
i 7 =30 = y' = 27
no CPV x? 2 = (.81
i 7 —82 <y <16
in 27 < Rp < 4.0

fl a2 o404 006 008 0.1

»2
X
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DY mixing in D°—Kn decays
Results: 95% contour in x2 and y’ plane (with 57.1 fb1)
BaBar
[T
0.04_— -
0.02F .
[ =
[ Li
-c_ -
002f G =
D04 oo ¢ womaz ]
[ e % CL CPY g, staf cofy
B T - — 5% CL CP comsaved i
0060, L, T ST
o5 0 05 1 15 2 15
x?110°
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:::nrm:m mixXing In —Kn decays
0 CLEO,
0.0 D K 95% CL regions PRL 84, 5038 (2000),
i CP conserved 9.0 fb~!
0.
; BABAR,
y PRL 91, 171801 (2003),
-0 57.1 fb—!
-0
-0.
BELLE BELLE,
=0 2005 PRL 94, 071801 (2005)
-0.05 920 fb~?
BELLE
Al 2006 BELLE,
B e T T PRL 96, 151801 (2006)
%2 x 107 400 fb—!
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1

B DO mixing in D°—Kev decays

Again tag with D** charge: D**— D'z*, D%— Ke*v
Selection criteria:

ec.m.s. momentum of the Ke system > 2 GeV (bb,
combinatorial background)

eInvariant mass of ee* (e*—n*) > 0.15GeV (y conversions)
*Cut on decay time (backgrounds 8(t) + e, signal t2 et)

Neutrino reconstruction: hermiticity of the spectrometer,
kinematic constraints.

Main observable: Am = m(n,Kev) - m(Kev)
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0 o N0
T D mixing in D°—Kev decays
"™ RS . o WS
4000 RS DATA 350

FIT
BKG

300
250
200
150
100

50

WS DATA
FIT
BKG

H

0.18 0-5.14 0.16 ,
Am [GeV/cT]

0.16 ,
Am [GeV/cT)
m(n,Kev) - m(Kev

Ny = 401984329 Ny = 1967

rp= (x> +y?)/2
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DY mixing in D%—Kev decays

BaBar: employs neural net techniques to
reconstruct the D® momentum vector (including
again the neutrino), and to reject background
events.

Yield: fit to Am, t distributions.

Nps = 496204265 Ny = 114261
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o .
bl DO mixing in D°—Kev decays
= D'-D” Mixing Limits
7 T [ | CLEO K.
Comparison to e y[ %] S BAEAR

other methods

-6 2 /

_g 95% CLregions
| CP conserved, 5, =0 x[ %]
M0g 642 0 2 4 6 & 10 12
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BaBar: ry < 4.2 103 (90% conf. level)
Belle: ry < 1.4 103 (90% conf. level)

10
-6
10
-16
10 10
-19
-10 10
10

0 2(_) 40 6(,'! .
Theoretical predictions for ry (right scale)
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ut assumptions on CP,
;'on, AT/T=07?
Belle, dilepton analysis:

BaBar:

fully reconstructed B 1in
flavor or CP eigenstate;
different tagging
categories;

multiparameter fit
including |q/pl, ATT, A, :

oM —Lor
_ 2
zZ= 1 i z=0 & CPT
~(Am—"LAD)
2 2

cer By oscillations

CP violated if Im(¢$)=0

0 20 q 6. .| CPT violated if 6= n/2;
|By >=p|B" >+q|B"> ;:tan(g)e CP violation and AT
' p small:
|B,>=p'|B*>-¢'|B"> L =coyl)e?| Re(cos6)=0.00+0.12
p 2 Im(cos6)=0.030.03

M‘I.Ccml\dmlmfau
| = I < P A
Izl E | errceriiolated CPTTCPLViolated
dad ! ' i
= g /
IR & S i
= E- 9 /
0.08— WY N SO T
o o BABAR
- o
;- e | i 5.
e % Hadronic
00 </l i i f
o.02E—i N S O S
c_: CP.T s, ( f']
al o Standard Model -
conserved 20, |. i-1= -6.5) x 10
T.CPT violated &0, Ia/p1=1 R IIpELTERe :
| - L I PRI S |
-0.04 0.02 0 0.02 0.04 0.06
la/pl-1

(BaBar, hep-ex/0303043(03))
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gl 4 0scillations
[ =]
i
oM ——or
BaBar: = 2 W:Mu_Mzz él—*:rll_rzz
general time dependent l(Am—iAF) 2 2
decay rates of B°B?; 2 2
CPT violation in mixing: z=0 © CPT
. 68% Confidence Levels
fully reconstructed B 1in PP SN . [ S I
flavor or CP eigenstate; [zl ™ E | crr.ceryiolated § ~CPT.CPLyiolated |
different tagging categories; "t |5 % / T !
multiparameter fit including 0.1 §g/ o b
la/pl, AT, A, z.. oosf 8y (EEE S
e o | | BABAR
(BaBar, hep-ex/0303043(03)) B g Hadronic
0.02 { .......... )
|z|=0 © CP,CPT —» o cPFviolted :
Standard Model P
; All E%npsi_e{rlmd ORI‘I'U.IIQJ"DJ"U :‘z:-ﬂ, Jqu:-r-rlzu.su ] }I
-0.04 -0.02 x 0.02 0.04 0.06
la/pl-1
la/pl=1l & <P ¥
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