Part 5+6: angle $\phi_{1}(\beta)$

Peter Križan
University of Ljubljana and J. Stefan Institute

Contents

Reconstruction of $b->c c s$ decays
Tagging, calibration
Vertex resolution
Asymmetry parameters, $\sin 2 \phi_{1}$ and $|\lambda|$
$\sin 2 \phi_{1}$ from b->ccd

CP asymmetry:

$$
\begin{aligned}
& a_{f_{C P}}=\frac{P\left(\bar{B}^{0} \rightarrow f_{C P}, t\right)-P\left(B^{0} \rightarrow f_{C P}, t\right)}{P\left(\bar{B}^{0} \rightarrow f_{C P}, t\right)+P\left(B^{0} \rightarrow f_{C P}, t\right)}= \\
& =\frac{\left(1-\left|\lambda_{f_{C P}}\right|^{2}\right) \cos (\Delta m t)-2 \operatorname{Im}\left(\lambda_{f_{C P}}\right) \sin (\Delta m t)}{1+\left|\lambda_{f_{C P}}\right|^{2}}
\end{aligned} \quad \lambda=\frac{q}{p} \frac{\bar{A}_{f}}{A_{f}}
$$

$\left.\begin{array}{l}\text { es in decay: }|\bar{A} / A| \neq 1 \\ \text { \&s in mixing: }|q / p| \neq 1\end{array}\right\}|\lambda| \neq 1$
ep in interference between mixing and decay: $|\lambda|=1, \operatorname{Im}(\lambda) \neq 1$

Decay asymmetry predictions $-\mathrm{J} / \psi \mathrm{K}_{\mathrm{S}}$

$\mathrm{b} \rightarrow \mathrm{c} \overline{\mathrm{c}} \mathrm{s}:$ Take into account that we measure the $\pi^{+} \pi$ component of K_{s} - also need the $(\mathrm{q} / \mathrm{p})_{\mathrm{K}}$ for the K system

Tree contribution:

$$
\begin{aligned}
& \lambda_{\psi K s}=\eta_{\psi K \cdot} \cdot\left(\frac{V_{t b}^{*} V_{t d}}{V_{t b} V_{t d}^{*}}\right)\left(\frac{V_{c s}^{*} V_{c b}}{V_{c s} V_{c b}^{*}}\right)\left(\frac{V_{c d}{ }^{*} V_{c s}}{V_{c d} V_{c s}{ }^{*}}\right)= \\
& =\eta_{\psi K s}\left(\frac{\overline{\mathrm{~A}} / \mathrm{A}}{V_{t b}^{*} V_{t d}} V_{t b}{ }^{*}{ }^{*}\right)\left(\frac{V_{c b}}{V_{c b}^{*}} \frac{V_{c d}^{*}}{V_{c d}}\right) \quad \beta \equiv \phi_{1} \equiv \arg \left(\frac{\mathrm{~V} / \mathrm{p})_{\mathrm{k}}}{V_{t d} V_{t b}^{*}}\right) \\
& \operatorname{Im}\left(\lambda_{\psi K s}\right)=\sin 2 \beta
\end{aligned}
$$

$$
A(c \bar{c} s)=V_{c b} V_{c s}^{*}\left(T_{c \bar{c} s}^{\mathrm{s}}+P_{s}^{c}-P_{s}^{t}\right)+V_{u b} V_{u s}^{*}\left(P_{s}^{u}-P_{s}^{t}\right)
$$

How much does P contribute?
-Few percent to the first term
$\mathrm{V}_{\mathrm{cb}} \mathrm{V}_{\mathrm{cs}}{ }^{*}=\mathrm{A} \lambda^{2}$
-The second (P only) term contributes $\sim 0.1 \%$

$$
r_{\text {penguin }}=\frac{P^{t}-P^{u}}{T} \approx \frac{\alpha_{s}}{12 \pi} \ln \frac{m_{t}^{2}}{m_{b}^{2}} \approx O(0.03)
$$

Reconstructing chamonium states

Reconstructing final states X which decayed to several particles (x, y, z):
From the measured tracks calculate the invariant mass of the system $(i=x, y, z)$:

$$
M=\sqrt{\left(\sum E_{i}\right)^{2}-\left(\sum \vec{p}_{i}\right)^{2}}
$$

The candidates for the X->xyz decay show up as a peak in the distribution on (mostly combinatorial) background.
The name of the game: have as little background under the peak as possible without loosing the events in the peak (=reduce background and have a small peak width).

Reconstruction B meson decays

Reconstructing B meson decay at $Y(4 s)$:
Improve the resolution by taking into account that only two B mesons are produced in an $Y(4 s)$ decay.
In the expression for the invariant mass use the energy of the beam in cms ($1 / 2$ total energy in cms) instead of the reconstructed energy (which involves information on particle identification)
-> beam constrained mass $\mathbf{M}_{\text {bc }}$

$$
M_{b c}=\sqrt{\left(E_{C M} / 2\right)^{2}-\left(\sum \vec{p}_{i}\right)^{2}}
$$

 IIIT
 $C P=-1$ eigenstates

舞综检（1）Reconstruction of b－＞c anti－c s III） $C P=-1$ eigenstates


```
from 88(85)x106 B\overline{B}



\section*{ \\ IIITITII}


Determine \(\Delta t\) from \(\Delta z=\beta \gamma c \Delta t\) :
- clock start: resolution on tag side \(140 \mu \mathrm{~m}(\epsilon=91 \%)\) - charm decays
- clock stop: resolution on CP side \(75 \mu \mathrm{~m}(\epsilon=92 \%)\)
N.B. typically \(\Delta z=\beta \gamma c \tau_{B}=200 \mu \mathrm{~m}\)


\section*{ \\ IIIT) 111 lifetime measurement}

Use \(B^{0} \rightarrow D^{-} \pi^{+}, D^{*-} \pi^{+}, D^{(*)-} \rho^{+}, B^{0} \rightarrow J / \psi K_{S}\) and \(B^{0} \rightarrow J / \psi K^{* 0}\) decays


\section*{Flavour tagging 1}

Identify \(B^{0} / \bar{B}^{0}\) by the charges of the decay products of the associated \(B\)

\section*{Inclusive leptons}
- high momentum \(\ell^{-}\)
- intermediate momentum \(\ell^{+}\)

Inclusive hadrons
- high momentum \(\pi^{+}\)
- intermediate momentum \(K^{+}\)
- low momentum \(\pi^{-}\)
\[
\begin{aligned}
B^{0} \rightarrow & D^{(*)-} \pi^{+}, D^{(*)-} \rho^{+}\left(\rho^{+} \rightarrow \pi^{+} \pi^{0}\right), . . \\
& \rightarrow K^{+} X \\
& D^{(*)-} \rightarrow \bar{D}^{0} \pi^{-}
\end{aligned}
\]

Efficiency \(>99.5 \%, \epsilon_{\text {effective }}=28.8 \pm 0.5 \%\)
June 5-8, 2006
Course at University of Tokyo
Peter Križan, Ljubljana

\section*{Flavour tagging 2}

Tagging is not perfect: there is always a chance \(w\) that the tag is fake (less for leptons more for kaons).
\(\rightarrow\) The asymmetry oscillation is reduced, \(\sin \Delta m_{d} t \rightarrow(1-2 w) \sin \Delta m_{d} t\).
\(\rightarrow\) Needed: \(w\) for each event.
Classify events into six cathegories in a tag quality variable \(r\).
Calibrate the relation \((1-2 w)\) vs. \(r\) with data: measure the \(B^{0} \bar{B}^{0}\) mixing amplitude (using \(\bar{B}^{0} \rightarrow D^{*+} \ell^{-} \nu, D^{(*)+} \pi^{-}\)and \(D^{(*)+} \rho^{-}\)decays) in 6 intervals in \(r\)



Flavour tagging 3
Relation \(r\) vs. (1-2w) calibrated with mixing data, ratio of oppositely flavoured (OF) to the same flavoured (SF) B pairs
\[
\frac{O F(t)-S F(t)}{O F(t)+S F(t)}=(1-2 w) \cos (\Delta m t)
\]

Table: tagging efficiency, wrong tag probability and effective tagging efficiency \(\varepsilon(1-2 w)^{2}\) for six intervals in the tagging variable \(r\).
\begin{tabular}{lcclc}
\hline \hline\(l\) & \(r\) interval & \(\epsilon_{l}\) & \multicolumn{1}{c}{\(w_{l}\)} & \(\epsilon_{\text {eff }}^{l}\) \\
\hline 1 & \(0.000-0.250\) & 0.398 & \(0.458 \pm 0.006\) & \(0.003 \pm 0.001\) \\
2 & \(0.250-0.500\) & 0.146 & \(0.336 \pm 0.009\) & \(0.016 \pm 0.002\) \\
3 & \(0.500-0.625\) & 0.104 & \(0.228 \pm 0.010\) & \(0.031 \pm 0.002\) \\
4 & \(0.625-0.750\) & 0.122 & \(0.160{ }_{-0.008}^{+0.009}\) & \(0.056 \pm 0.003\) \\
5 & \(0.750-0.875\) & 0.094 & \(0.112 \pm 0.009\) & \(0.056 \pm 0.003\) \\
6 & \(0.875-1.000\) & 0.136 & \(0.020 \pm 0.006\) & \(0.126_{-0.004}^{+0.003}\) \\
\hline \hline & & & \\
\hline
\end{tabular}


\section*{Fitting the asymmetry}

Fitting function:
\[
\begin{aligned}
& \quad P_{\text {sig }}(\Delta t)=\frac{e^{-|\Delta t| / \tau}}{4 \tau}\left\{1+q\left(1-2 w_{l}\right) \operatorname{Im} \lambda \sin \Delta m t\right\} \otimes R(t) \\
& \text { Miss-tagging probability } \quad \begin{array}{l}
\text { Resolution function: } \\
\text { from self-tagged events } \\
\mathrm{B} \rightarrow \mathrm{D} * \mid \mathrm{l}, \mathrm{D} \pi, \ldots
\end{array} \\
& \mathrm{q}=+1 \text { or }=-1 \text { (B or anti-B on the tag side) }
\end{aligned}
\]

Fitting: unbinned maximum 1ikelihood fit event-by-event Fitted parameter: Im ( \(\lambda\) )

\[
a_{f_{C P}}=-\operatorname{Im}\left(\lambda_{f_{C P}}\right) \sin (\Delta m t)
\]

Asymmetry sign depends on the CP parity of the final state \(f_{C P}, \eta_{\mathrm{fcp}}=+-1\)
\[
\lambda_{f_{C P}}=\eta_{f_{C P}} \frac{q}{p} \frac{\bar{A}_{\bar{f}_{C P}}}{A_{f_{C P}}}
\]
\(\mathrm{J} / \psi \mathrm{K}_{\mathrm{S}}\left(\pi^{+} \pi^{-}\right): \mathrm{CP}=-1\)
\(\bullet \mathrm{J} / \psi: \mathrm{P}=-1, \mathrm{C}=-1\) (vector particle \(\mathrm{J}^{\mathrm{PC}}=1^{--}\)): \(\mathrm{CP}=+1\)
\(\bullet \mathrm{K}_{\mathrm{S}}\left(->\pi^{+} \pi^{-}\right): \mathrm{CP}=+1\), orbital ang. momentum of pions=0 ->
\(\mathrm{P}\left(\pi^{+} \pi^{-}\right)=\left(\pi^{-} \pi^{+}\right), \mathrm{C}\left(\pi^{-} \pi^{+}\right)=\left(\pi^{+} \pi^{-}\right)\)
\(\bullet\) orbital ang. momentum between \(\mathrm{J} / \psi\) and \(\mathrm{K}_{\mathrm{S}} \mathrm{I}=1, \mathrm{P}=(-1)^{1}=-1\)
\(\mathrm{J} / \psi \mathrm{K}_{\mathrm{L}}(3 \pi): \mathrm{CP}=+1\)
Opposite parity to \(\mathrm{J} / \psi \mathrm{K}_{\mathrm{S}}\left(\pi^{+} \pi^{-}\right)\), because \(\mathrm{K}_{\mathrm{L}}(3 \pi)\) has \(\mathrm{CP}=-1\)

\section*{}

N.B. Plotted: raw asymmetry. The amplitude of \(\pm \sin 2 \phi_{1} \sin \Delta m_{d} \Delta t\) is reduced due to wrong tagging by a factor \((1-2 w)\).

\section*{Checks, systematic errors}

Same analysis for flavour specific final states, where there should be no asymmetry

\(" \sin 2 \phi_{1} "=0.035 \pm 0.032\)

\[
" \sin 2 \phi_{1} "=-0.021 \pm 0.093 \quad " \sin 2 \phi_{1} "=0.004 \pm 0.017
\]

Systematic errors:
\begin{tabular}{|l|c|l|c|}
\hline vertexing & 0.022 & resolution function & 0.014 \\
\hline possible bias in \(\sin 2 \phi_{1}\) fit & 0.011 & \(J / \psi K_{L}\) background fraction & 0.010 \\
\hline\(\Delta m_{d}\) & \(<0.010\) & \(\tau_{B}\) & \(<0.010\) \\
\hline
\end{tabular}


\section*{Fit with free \(|\lambda|\)}
time distribution:
\(P_{\text {sig }}(\Delta t)=\frac{e^{-|\Delta t| / \tau}}{4 \tau}\{1+q\left(1-2 w_{l}\right)[\frac{2 \operatorname{Im} \lambda}{|\lambda|^{2}+1} \sin \Delta m \Delta t+\underbrace{|\lambda|}_{\begin{array}{l}\text { fit with } \\ \text { Im } \lambda /|\lambda|\end{array} \text { and }|\lambda| \text { as free parameters } \quad \underbrace{|\lambda|^{2}+1}_{\begin{array}{c}\text { direct } \\ |\lambda| \nmid \nmid\end{array}} \cos \Delta m \Delta t]}\}\)
\(|\lambda|=0.950 \pm 0.049 \pm 0.025 \quad\) (Be7le, PRD66,071102(02))
\(\sin 2 \phi_{1}=0.719 \pm 0.074 \pm 0.035\)




\section*{\(\sin 2 \phi_{1}(\beta)\) from other processes}
\[
\sin 2 \phi_{1} \text { is the CP asymmetry parameter in }
\]
\[
\bullet b \rightarrow c c d \text { (tree+penguin) }
\]
\[
\bullet b \rightarrow \text { sss (penguin only) }
\]

\[
A(c \bar{c} d)=V_{t b} V_{t d}^{*}\left(P_{d}^{t}-P_{d}^{u}\right)+V_{c b} V_{c d}^{*}\left(T_{c \bar{c} d}+P_{d}^{c}-P_{d}^{u}\right)
\]


(ваваг,
hep-ex/0207058(02); Be11e,
hep-ex/0207058(02))

Tree and penguin contrib. \(O\left(\lambda^{3}\right)\); remove \(\left|\lambda_{f f p}\right|=1\) assumption in fit: \(\quad S_{f}=-\eta_{f} \sin 2 \phi_{1} \quad \mathcal{A}_{\mathrm{f}}=0\)
in leading order \(a_{f_{C P}}=-\underbrace{\frac{2 \operatorname{Im}\left(\lambda_{f_{C P}}\right)}{1+\left|\lambda_{f_{C P}}\right|^{2}}}_{S_{f}} \sin (\Delta m t)+\mathcal{A}_{\mathrm{f}} \underbrace{\frac{\left|\lambda_{f_{C P}}\right|^{2}-1}{\left|\lambda_{f_{C P}}\right|^{2}+1}} \cos (\Delta m t)\)
June 5-8, \(2006 \quad\) Course at University of Tokyo Peter Križan, Ljubljana


\section*{Backup slides}


Considerable increase in statistics.
```

