Part 7: angle $\phi_{2}(\alpha)$
Peter Križan
University of Ljubljana and J. Stefan Institute

Expected asymmetry parameters in b->uud decays
Reconstruction of rare decays
B -> $\pi^{+} \pi^{-}$CP asymmetry measurement
Extraction of $\alpha\left(\phi_{2}\right)$

CP asymmetry:

$$
\begin{aligned}
& a_{f_{C P}}=\frac{P\left(\bar{B}^{0} \rightarrow f_{C P}, t\right)-P\left(B^{0} \rightarrow f_{C P}, t\right)}{P\left(\bar{B}^{0} \rightarrow f_{C P}, t\right)+P\left(B^{0} \rightarrow f_{C P}, t\right)}= \\
& =\frac{\left(1-\left|\lambda_{f_{C P}}\right|^{2}\right) \cos (\Delta m t)-2 \operatorname{Im}\left(\lambda_{f_{C P}}\right) \sin (\Delta m t)}{1+\left|\lambda_{f_{C P}}\right|^{2}} \\
& \lambda_{f_{C P}}=\eta_{f_{C P}} \frac{q}{p} \frac{\bar{A}_{\bar{f}_{C P}}}{A_{f_{C P}}} \\
& \text { \&P in decay: }|\overline{\mathrm{A}} / \mathrm{A}| \neq 1,|\lambda| \neq 1
\end{aligned}
$$

ep in interference between mixing and decay: $\operatorname{Im}(\lambda) \neq 0$

$A(u \bar{u} d)=V_{t b} V_{t d}^{*}\left(P_{d}^{t}-P_{d}^{c}\right)+V_{u b} V_{u d}{ }^{*}\left(T_{u \bar{u} d}+P_{d}^{u}-P_{d}^{t}\right)$

How much does the penguin contribute?
Compare $\mathrm{B} \rightarrow \mathrm{K}^{+} \pi^{-}$and $\mathrm{B} \rightarrow \pi^{+} \pi^{-}$

N.B. in $B \rightarrow \pi \pi$ the two diagrams are the same order in λ

Reconstruction of rare B meson decays

$\mathrm{Br}\left(\mathrm{B} \rightarrow \pi^{+} \pi^{-}\right)=0.4810^{-5}$
-> Rare decay, have to fight against many background sources.
Reconstructing rare B meson decays at $\mathrm{Y}(4 \mathrm{~s})$: use two variables, beam constrained mass $M_{b c}$ and energy diference ΔE

Use event topology parameters to suppress the continuum backgrounds.

Use particle identification to reduce the background from 4 x more copious B $\rightarrow \mathrm{K}^{+} \pi^{-}$decays.

Exploit the very good momentum resolution to kinematically separate the remaining $\mathrm{B} \rightarrow \mathrm{K}^{+} \pi^{-}$contribution.

 IIIT
 Continuum suppression

$$
\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow q q \text { "continuum" (} \sim 3 \mathrm{xB} \text {) }
$$

To suppress it use: -event shape variables -event axis direction Combine to a likelihood ratio:

$$
K L R \equiv \frac{\mathcal{L}_{B \bar{B}}}{\left(\mathcal{L}_{B \bar{B}}+\mathcal{L}_{q \bar{q}}\right)}
$$

Belle 152 M $\overline{\mathrm{BB}}$
with $372 \pm 32 B^{0} \rightarrow \pi^{+} \pi^{-}$events
$S_{\pi \pi}=-1.00 \pm 0.21 \pm 0.07$
$A_{\pi \pi}=+0.58 \pm 0.15 \pm 0.07$
PRL 93, 021601 (2004)
5.2 σ CPV,

First evidence for DCPV (3.20)

BABAR 227M B \bar{B}
with $467 \pm 33 \mathrm{~B}^{0} \rightarrow \pi^{+} \pi^{-}$events

$$
\begin{gathered}
S_{\pi \pi}=-0.30 \pm 0.17 \pm 0.03 \\
A_{\pi \pi}=+0.09 \pm 0.15 \pm 0.04 \\
\begin{array}{c}
\text { hep-ex/0501071, to } \\
\text { appear in PRL }
\end{array}
\end{gathered}
$$

Also ~3.2s discrepancy between Belle and BaBar

Belle $\mathrm{B}^{0} \rightarrow \pi^{+} \pi^{-} 2005$ results

IIIII而III
IIIITIII

$$
A_{\pi \pi}=+0.56 \pm 0.12 \pm 0.06 \quad \text { 1st error statistical, }
$$

$$
\begin{aligned}
& A_{\pi \pi}=+0.56 \pm 0.12 \pm 0.06 \\
& S_{\pi \pi}=-0.67 \pm 0.16 \pm 0.06
\end{aligned}
$$ 2nd systematic

- $\underline{A}_{\pi \pi}$ away from 0: Compelling evidence for direct CP violation in $B \rightarrow \pi^{+} \pi^{-}$with 4.0σ significance
- Confirms previous Belle results.

How to extract ϕ_{2}, δ and $|\mathrm{P} / \mathrm{T}|$?

```
\(\phi_{\text {2eff }}\) depends on \(\delta, \phi_{3}, \phi_{2}\) and \(|P / T|\)
```

$\pi=\phi_{1}+\phi_{2}+\phi_{3} \rightarrow \phi_{2 \text { eff }}$ depends on $\delta, \phi_{1}, \phi_{2}$ and $|\mathrm{P} / \mathrm{T}|$ ϕ_{1} : well measured
penguin amplitudes $\mathrm{B} \rightarrow \mathrm{K}^{+} \pi^{-}$and $\mathrm{B} \rightarrow \pi^{+} \pi^{-}$are equal \rightarrow limits on $|P / T| ~(\sim 0.3) ;$ considering the full interval of δ values one can obtain interval of ϕ_{2} values;
isospin relations can be used to constrain δ (or better to say $\phi_{2}-\phi_{2 \text { eff }}$);

