

EPS HEP 2011, Grenoble, July 27, 2011

Flavour physics at the Intensity Frontier

Peter Križan

University of Ljubljana and J. Stefan Institute

University of Ljubljana "Jožef Stefan" Institute

Contents

•Unitarity triangle:

- final value for $sin2\phi_1(=sin2\beta)$
- ϕ_3 (= γ) with a new method, ADS modes
- sides: V_{ub} from exclusive and inclusive
- •B decays: rare decays, direct CP violation, searches for CPT
- •D: search for CP violation and rare decays
- • τ decays (LFV \rightarrow T. Mori, next talk)
- •Physics at Y(5s)
- $B_s \rightarrow J/\psi \pi \pi$
- h_b and Z_b states
- •X(3872) properties
- •Plans for the future: Super B factories
- •Summary and outlook

Talks at EPS HEP 2011: BaBar

D. Derkach	"Recent BABAR results on CP violation in B decays"				
M. Franco Sevilla	"Semileptonic B and Charm Decays with BABAR"				
A. Gaz	"Recent BABAR measurements of hadronic B branching fractions"				
M. Martinelli	"Recent BABAR Charm Physics Results"				
E.M.T. Puccio	"Charmless Hadronic B Decays with BABAR"				
A. Adametz	"Recent BABAR Tau Physics Results"				
A. Lusiani	"Searches for Light New Physics with BABAR"				
E. Grauges	"Searches for Rare and Forbidden B and Charm Decays with BABAR"				
A. Hafner	"Recent results on hadrons via Initial State radiation"				
E. Guido	"Recent BABAR Studies of Bottomonium States"				
	"Charmonium and Charmonium-like States with BABAR"				

= 11 talks

Talks at EPS HEP 2011: Belle

T. Higuchi	"CPV and CPT in B decays at Belle"
J. Dalseno	" ϕ_2 and ϕ_3 measurements at Belle"
P. Chang	"Direct CPV and charmless B decays at Belle"
M.Z. Wang	"Other B decays at Belle"
R. Louvot	"B _s decays at Belle"
M. Starič	"D _(s) ⁺ decays and their CPV at Belle"
K. Hayasaka	"Rare tau decays at Belle"
P. Urquijo	"Exclusive (semi-)leptonic B meson decays at Belle"
A. Vinokurova	"Charmonium and X,Y,Z at Belle"
J. Wicht	"Observation of h_b and Z_b states at Y(5S)"
U. Tamponi	"Y(2S) decays at Belle"
J. Rorie	"Search for a CP-odd light Higgs in Y(1S) radiative decays at Belle"

= 12 talks

Talks at EPS HEP 2011: continued

Liaoyuan Dong E. Goudzovski C. Bloise

"Recent Results from BESIII" "Kaon physics at CERN: recent results" "Kaon physics at KLOE and KLOE-2 prospects"

+ g-2 related talks by G. Venanzoni, T. Dimova, and S. Eidelman

In total 29 talks – impossible to cover all in 25 minutes...

Flavour physics at the luminosity frontier: asymmetric B factories

Integrated luminosity at B factories

1998/1 2000/1 2002/1 2004/1 2006/1 2008/1 2010/1 2012/1

Unitarity triangle – new/final measurements

CP violation in B system: from the discovery (2001) to a precision measurement.

Constraints from measurements of angles and sides of the unitarity triangle \rightarrow Remarkable agreement, but still 10-20% NP allowed

This conference

Unitarity triangle:

 \rightarrow sin2 ϕ_1 (=sin2 β) : final measurement from Belle

 $\rightarrow \phi_3(=\gamma)$ new model-independent method

 \rightarrow $|V_{ub}|$ from exclusive and inclusive semileptonic decays

Peter Križan, Ljubljana

Final measurement of $sin2\phi_1$ (= $sin2\beta$)

Belle, preliminary, 710 fb⁻¹

 ϕ_1 from CP violation measurements in $B^0 \rightarrow c\overline{c} K^0$

Improved tracking, more data (50% more statistics than last result with 480 fb⁻¹); $c\bar{c} = J/\psi, \psi(2S), \chi_{c1} \rightarrow 25k$ events

for K_L only cluster (direction) in ECL, KLM; missing info from kinematic constraints;

detector effects: wrong tagging, finite Δt resolution, determined using control data samples

Final measurement of $sin2\phi_1$ (= $sin2\beta$)

 ϕ_1 from $B^0 \rightarrow c\overline{c} K^0$

Final result (preliminary) from Belle:

 $S = 0.668 \pm 0.023 \pm 0.013$ $A = 0.007 \pm 0.016 \pm 0.013$

Still statistics limited, part of the syst. is statistics dominated!

Tension between $\mathcal{B}(B \rightarrow \tau \nu)$ and $sin2\phi_1$ $(\sim 2.5 \sigma)$ remains

 \rightarrow talk by V. Niess

CP violation in B \rightarrow D+D and D*+D*-

$\phi_3(=\gamma)$ with Dalitz analysis

$\phi_3(=\gamma)$ from model-independent/binned Dalitz method

GGSZ method: How to avoid the model dependence?

→ Suitably subdivide the Dalitz space into bins

$$M_{i}^{\pm} = h\{K_{i} + r_{B}^{2}K_{-i} + 2\sqrt{K_{i}K_{-i}}(x_{\pm}c_{i} + y_{\pm}s_{i})\}$$

 $x_{\pm} = r_B \cos(\delta_B \pm \phi_3)$ $y_{\pm} = r_B \sin(\delta_B \pm \phi_3)$

 M_i : # *B* decays in bins of *D* Dalitz plane, K_i : # D^0 ($\overline{D^0}$) decays in bins of *D* Dalitz plane ($D^* \rightarrow D\pi$), c_i , s_i : strong ph. difference between symm. Dalitz points \leftarrow Cleo, PRD82, 112006 (2010)

ϕ_3 with the ADS method

ϕ_3 measurement

Combined ϕ_3 value:

 $\phi_3 = (68 + 13_{-14})$ degrees

Note that B factories were not built to measure ϕ_3

It turned out much better than planned!

This is not the last word from B factories, analyses still to be finalized...

Peter Križan, Ljubljana

Search for CPT violation in B decays

Allow in addition to CP violation also for CPT violation in fitting the Δt distribution function (e.g. in J/ ψ K⁰_S decays) CPT-violating complex parameter: *z* \rightarrow Re(*z*) \neq 0 and/or Im(*z*) \neq 0 \rightarrow CPT is violated.

Belle preliminary

$$\begin{aligned} &\text{Re}(z) = (+1.9 \pm 3.7 \pm 3.2) \times 10^{-2} \\ &\text{Im}(z) = (-5.7 \pm 3.3 \pm 6.0) \times 10^{-3} \\ &\Delta\Gamma_d/\Gamma_d = (-1.7 \pm 1.8 \pm 1.1) \times 10^{-2} \\ &\text{535 x 10^6 } B\bar{B} \text{ pairs} \end{aligned}$$

Best CPT violation measurement \rightarrow no CPT violation in the B meson system

→talk by T. Higuchi

Direct CP violation difference in B \rightarrow K⁺ π^{-} and K⁺ π^{0}

 \rightarrow talk by P. Chang

Direct CP violation in $B \rightarrow \eta K^+$, $\eta \pi^+$

 $B \rightarrow \eta K^+$

 $A_{CP} = -0.38 \pm 0.10 \pm 0.01 \ @3.8\sigma$

In agreement with previous Belle and BaBar measurement, $A_{CP} = -0.36 \pm 0.11 \pm 0.03$ @3.3 σ

 $B \rightarrow \eta \pi^+$

 $A_{CP} = -0.19 \pm 0.06 \pm 0.01$ @3.0 σ

Tension between Belle and BaBar 2009 measurement remains $A_{CP} = -0.03 \pm 0.09 \pm 0.03$

Essential: neutral detection capabilities of B factories

$|V_{ub}|$ from inclusive decays

Fully reconstruct one of the B's to tag B flavor/charge, determine its momentum, and exclude decay products of this B from further analysis

Powerful tool for B decays with neutrinos, used in several analyses in this talk \rightarrow unique feature at B factories

 $B \rightarrow D_s^{(*)}K \mid v$

Search for missing exclusive modes in semileptonic B decays

arXiv:1012:4158

$B{\rightarrow}D^{(*)}\tau\nu$

Semileptonic decay sensitive to charged Higgs

Ratio of τ to μ ,e could be reduced/enhanced significantly

$$R(D) \equiv \frac{\mathcal{B}(B \to D\tau\nu)}{\mathcal{B}(B \to D\ell\nu)}$$

$B \rightarrow D^{(*)} \tau \nu$ decays

$B \rightarrow v v$ decay

 $B \rightarrow v v$ similar as $B \rightarrow \mu \mu$ a very sensitive channel to NP contributions Even more strongly helicity suppressed by $\sim (m_v/m_B)^2$ \rightarrow Any signal = NP

Unique feature at B factories: use tagged sample with fully reconstructed B decays on one side, require no signal from the other B.

Use rest energy in the calorimeter and angular distribution as the fit variables.

90% C.L. BR < 1.3 x 10-4 Belle Preliminary 657M BBbar

→talk by P. Urquijo

Charm and τ physics

B factories = charm and τ factories

Charm and τ can be found in any "Y(nS) samples" \rightarrow the integrated luminosity of the samples used for charm and τ studies is larger than for the B physics studies (Belle ~ 1 ab⁻¹, BaBar ~0.550 ab⁻¹)

Charm and τ results: mainly on CP violation searches and rare decays

 τ : lepton flavour violation \rightarrow next talk (T. Mori)

CP violation searches in D decays

Very small in SM, decay rate asymmetry A_{CP} O(0.1%), with NP up to O(1%)

× 1 1

Search for CPV in
$$D^+_{(s)} \rightarrow \phi \pi^+$$
, measure difference of A_{rec} for
 $D^+ \rightarrow \phi \pi^+$ and $D^+_s \rightarrow \phi \pi^+$ decays in bins of $\cos\Theta^*$, p_{π} , $\cos\Theta_{\pi}$
 $\Delta A_{rec}(\cos\theta^*, p_{\pi}, \cos\theta_{\pi}) = \Delta A_{CP} + \Delta A_{FB}(\cos\theta^*)$, odd in
No CPV expected in the $D^+_s \rightarrow \phi \pi^+$ (Cabbibo favoured decay)
 $\Rightarrow A_{CP}^{D^+ \rightarrow \phi \pi^+} = (+0.51 \pm 0.28 \pm 0.05)\%$.
 $D^+ \rightarrow K^0_s \pi^+$ $A_{CP} = (-0.44 \pm 0.13 \pm 0.10)\%$
Contribution from CPV in $K^0_s = -(0.332 + -0.006)\%$
 $D^0 \rightarrow K_s^0 \pi^0$, tag D flavour with the D* decay
 $D^0 \rightarrow K_s^0 \pi^0$ -0.28 $\pm 0.19 \pm 0.10$
Contribution from CPV in $K^0_s = -(0.332 + -0.006)\%$
PRL106, 211801 (2011)
PRL106, 211801 (2011)

Assuming no direct CP in this decay \rightarrow

$$a^{
m ind} = A_{CP}^{K_s^0 \pi^0} - A_{CP}^{K^0} = (+0.05 \pm 0.19 \pm 0.10)\%$$

D decays: CP violation searches and rare decays

T-odd correlations in $D^+ \rightarrow K_s h^+h^-h^+$.

Final state interactions: their effect can be eliminated in the difference $A_T(D^+) - A_T(D^-)$. Result: consistent with 0

 $\mathcal{A}_T(D^+) = (-12.0 \pm 10.0_{\text{stat}} \pm 4.6_{\text{syst}}) \times 10^{-3}$ $\mathcal{A}_T(D^+_s) = (-13.6 \pm 7.7_{\text{stat}} \pm 3.4_{\text{syst}}) \times 10^{-3}$

→ paper submitted →talk by M. Martinelli

 $D \rightarrow \gamma \gamma$ B(D $\rightarrow \gamma \gamma$) < 2.4 10⁻⁶, 10x improvement vs PDG value NP estimates Singer, Fajfer, Zupan, PRD64, 074008 (2011)

→talk by E. Grauges

 X_c →h I⁺I⁻ heavily suppressed, SM~10⁻⁸, NP could enhance it to 10⁻⁶ -10⁻⁵ Influence of resonances in the final state excluded by a veto on ϕ mass. Upper limits depend on the final state, typically 10⁻⁶ -10⁻⁵

Peter Križan, Ljubljana

Data taking at $\Upsilon(5S)$, initial motivation: study B_{s} decays

First 21 fb⁻¹: used to measure $B_s \rightarrow D_s^{(*)}\pi$, $D_s^{(*)}\rho$, $D_s^{(*)}D_s^{(*)}$, B_s and B_s^* mass, world's best measurement

121 fb⁻¹ of $\Upsilon(5S)$ → 15M B_s decays: clean sample →Observation of the first baryonic B_s decay to $\Lambda_c \Lambda \pi$ →CP eigenstates:

- $B_s \rightarrow J/\psi f_0, J/\psi f_0(1370)$
- $B_s \rightarrow J/\psi \eta$, $J/\psi \eta$ ' (almost ready...)

 \rightarrow talk by R. Louvot

Measure $sin2\phi_1$ in Y(5S) \rightarrow B B π decays

 Υ (5S) is a puzzling object...

 \rightarrow Complementary to B_s studies at hadron machines because of neutral and neutrino detection capabilities

Observation for $B_s \rightarrow J/\psi f_0$ First evidence of $B_s \rightarrow J/\psi f_0(1370)$

Puzzles of $\Upsilon(5S)$ decays

$\Upsilon(5S)$ is very interesting and not yet understood

Peter Križan, Ljubljana

Search for $h_b(nP)$ in $\Upsilon(5S)$ decays

h_b(nP): (bb), S=0, L=1, J^{PC}=1⁺⁻

Evidence from BaBar $\Upsilon(3S) \rightarrow \pi^0 h_b(1P) \rightarrow \pi^0 \gamma \eta_b(1S)$ arXiv:1102.4565

Look at $M(h_b\pi^+) = MM(\pi^-)$ measure $\Upsilon(5S) \rightarrow h_b\pi\pi$ yield in bins of $MM(\pi)$

Z_b(10610)

M = 10608.1 ± 1.7 MeV Γ = 15.5± 2.4 MeV

 $Z_b(10650)$ M = 10653.3 \pm 1.5 MeV Γ = 14.0 \pm 2.8 MeV

Exclusive searches:

Observed in $\Upsilon(5S) \rightarrow \Upsilon(1S) \pi + \pi$ -, $\Upsilon(2S) \pi + \pi$ - and $\Upsilon(3S) \pi + \pi$ -

Seen in 5 different final states, parameters are consistent

 $J^{P}=1^{+}$ in agreement with data; other J^{P} are disfavored

 \rightarrow What is the nature of Z_b⁺? Molecules, tetraquarks, cusps, ... ?

X(3872) properties

X(3872) First observed by Belle in 2003 in B \rightarrow K X, X \rightarrow J/ $\psi \pi^+\pi^-$. Mass is close to the (D⁰+D^{*0}) threshold. Width is less than experimental resolution. Confirmed by BaBar, CDF, D0, LHCb, CMS. Nature not known.

New results, full Belle data sample:

X → J/ $\psi \pi^+\pi^-$: X in B⁰ → K⁰ X and B⁺ → K⁺ X is the same particle, ΔM =(-0.69 ± 0.97 ± 0.19) MeV 1⁺⁺ and 2⁻⁺ hypotheses are both possible

arXiv:1105.0177

arXiv:1107.0163

X(3872) radiative decays: $\mathcal{B}(X \rightarrow \psi^{*}\gamma) / \mathcal{B}(X \rightarrow J/\psi \gamma) < 2.1 (90\% \text{ CL})$ (In the molecular model of X, $\mathcal{B}(X \rightarrow \psi^{*}\gamma)$ is highly suppressed compared to $\mathcal{B}(X \rightarrow J/\psi \gamma)$

 \rightarrow talk by A. Vinokurova

B factories: a success story

- Measurements of CKM matrix elements and angles of the unitarity triangle
- Observation of direct CP violation in B decays
- Measurements of rare decay modes (e.g., $B \rightarrow \tau v$, $D \tau v$)
- $b \rightarrow s$ transitions: probe for new sources of CPV and constraints from the $b \rightarrow s\gamma$ branching fraction
- Forward-backward asymmetry (A_{FB}) in $b \rightarrow sl^+l^-$ has become a powerfull tool to search for physics beyond SM.
- Observation of D mixing
- Searches for rare τ decays
- Observation of new hadrons

Possible also because of unique capabilities of B factories: detection of neutrals, neutrinos, clean event environment.

What next?

Next generation: Super B factories \rightarrow Looking for NP

 \rightarrow Need much more data (two orders!)

However: it will be a different world in four years, there will be serious competition from LHCb and BESIII

Still, e⁺e⁻ machines running at (or near) Y(4s) will have considerable advantages in several classes of measurements, and will be complementary in many more

Two projects: SuperKEKB+Belle-II in Japan, SuperB in Italy

B Physics @ 1	(45)		Observable	B Factories (2 ab^{-1})) Super B (75 ab^{-1})	M. Giorgi, ICH	EP2010
Observable B	Factories (2 ab^{-1})	Super B (75 sb^{-}	$ V_{cb} $ (exclusive)	4% (*)	1.0% (*)		D
$\sin(2eta)~(J/\psiK^0)$	0.018	0.005 (†)	$ V_{cb} $ (inclusive)	1% (*)	0.5%~(*)	Charm mixing and C	P
$\cos(2eta)~(J/\psi~K^{*0})$	0.30	0.05	$ V_{ub} $ (exclusive)	8% (*)	3.0%~(*)		((2==2))
$\sin(2\beta)~(Dh^0)$	0.10	0.02	$ V_{ub} $ (inclusive)	8% (*)	2.0%~(*)	Mode Observable $T(4S)$	$\psi(3770)$
$\cos(2\beta) \ (Dh^0)$	0.20	0.04				(75 ab ⁻¹)	(300 fb^{-1})
$S(J/\psi,\pi^0)$	0.10	0.02	${\cal B}(B o au u)$	20%	4% (†)	$D^0 \rightarrow K^+\pi^ x'^2$ 3×10^{-3}	
$S(D^+D^-)$	0.20	0.03	${\cal B}(B o \mu u)$	visible	5%	$y' \qquad 7 \times 10^{-4}$	
$S(\phi \mathbf{K}^{\circ})$	0.13	0.02 (*)	${\cal B}(B o D au u)$	10%	2%	$D^{0} \rightarrow K^{+}K^{-}$ y_{CP} 5×10^{-4}	
$S(\eta \mathbf{A}^{-})$	0.05	0.01 (*)				$D^0 \to K_S^0 \pi^+ \pi^- \qquad x \qquad 4.9 \times 10^{-4}$	
$S(\mathbf{K}_{g}\mathbf{R}_{g}\mathbf{R}_{g})$ $S(K^{0}\pi^{0})$	0.15	0.02 (*)	${\cal B}(B o ho\gamma)$	15%	3% (†)	y $3.5 imes 10^{-4}$	Ł
$S(\omega K^0)$	0.17	0.02(*) 0.03(*)	${\cal B}(B o \omega \gamma)$	30%	5%	$ q/p $ $3 imes 10^{-2}$	
$S(f_0K_0^0)$	0.12	0.02(*)	$A_{CP}(B ightarrow K^* \gamma)$	0.007(†)	0.004 († *)	$\phi \qquad 2^{\circ}$	
(30-3)			$A_{CP}(B ightarrow ho\gamma)$	~ 0.20	0.05	$\psi(3770) \rightarrow D^0 D^0 \qquad x^2$	$(1-2) \times 10^{-3}$
$\gamma (B \to DK, D \to CP \text{ eigenstates})$	$\sim 15^{\circ}$	2.5°	$A_{CP}(b ightarrow s \gamma)$	$0.012(\dagger)$	0.004 (†)	y	$(1-2) \times 10^{-3}$
$\gamma \ (B \to DK, D \to \text{suppressed states})$	$\sim 12^{\circ}$	2.0°	$A_{CP}(b ightarrow (s+d)\gamma$) 0.03	0.006 (†)	$\cos \delta$	(0.01 - 0.02)
$\gamma \ (B \to DK, D \to \text{multibody states})$	$\sim9^{\circ}$	1. 5°	$S(K^0_s\pi^0\gamma)$	0.15	0.02 (*)		
$\gamma \ (B \to DK, ext{ combined})$	$\sim 6^{\circ}$	1-2°	$S(ho^0\gamma)$	possible	0.10	Charm FCNC	Sensitivity
$\alpha \ (B o \pi \pi)$	$\sim 16^{\circ}$	3°	$A_{CP}(B o K^* \ell \ell)$	7%	1%	$D^0 \rightarrow e^+ e^-, D^0 \rightarrow \mu^+ \mu^-$	1×10^{-8}
$lpha \; (B ightarrow ho ho)$	$\sim 7^{\circ}$	1-2° (*)	$A^{FB}(B \to K^*\ell\ell)s$	n 25%	9%	$D^0 \rightarrow \pi^0 e^+ e^- D^0 \rightarrow \pi^0 u^+ u^-$	2×10^{-8}
$lpha (B ightarrow ho \pi)$	$\sim 12^{\circ}$	2°	$A^{FB}(B \to X_s \ell \ell) s_l$	35%	5%	$D \rightarrow \pi e e , D \rightarrow \pi \mu \mu$	
$\alpha \text{ (combined)}$	$\sim 6^{\circ}$	1-2° (*)	$\mathcal{B}(B \to K \nu \overline{\nu})$	visible	20%	$D^0 ightarrow \eta e^+ e^-, D^0 ightarrow \eta \mu^+ \mu^-$	$3 imes 10^{-8}$
$2\beta + \gamma (D^{(*)\pm}\pi^{\mp}, D^{\pm}K^{0}_{2}\pi^{\mp})$	20°	5°	${\cal B}(B o \pi u ar u)$	_	possible	$D^0 \to K^0_s e^+ e^-, D^0 \to K^0_s \mu^+ \mu^-$	$3 imes 10^{-8}$
			_			$D^+ \rightarrow \pi^+ e^+ e^-, D^+ \rightarrow \pi^+ \mu^+ \mu^-$	$1 imes 10^{-8}$
τ Physics	Sensitivi	ity E	B _s Physics @ Y	(5S)			
12/11/2102	$0 + 10^{-9}$	<u> </u>	Observable	Error with 1 ab^{-1}	Error with 30 ab^{-1}	$D^0 o e^\pm \mu^\mp$	$1 imes 10^{-8}$
${\cal B}(au o \mu \gamma)$	2×10^{-5}	ζ	$\Delta\Gamma$	$0.16 \ {\rm ps^{-1}}$	$0.03 \ {\rm ps}^{-1}$	$D^+ \rightarrow \pi^+ e^{\pm} \mu^{\mp}$	1×10^{-8}
$\mathcal{P}(-)$	$0 > 10^{-9}$, І		$0.07 \ {\rm ps}^{-1}$	$0.01 \ {\rm ps^{-1}}$	$D \rightarrow \pi c \mu$	
$\mathcal{B}(\gamma \to e \gamma)$	2×10^{-1}	ß	eta_s from angular analysis	20°	8°	$D^{0} \rightarrow \pi^{0} e^{\pm} \mu^{\pm}$	2×10^{-3}
$\mathcal{B}(\tau \to \mu \mu \mu)$	2×10^{-1}	LO 4	4 _{SL}	0.006	0.004	$D^0 o \eta e^{\pm} \mu^{\mp}$	$3 imes 10^{-8}$
		1	A _{CH}	0.004	0.004	$D^0 ightarrow K^0_s e^\pm \mu^\mp$	$3 imes 10^{-8}$
$\mathcal{B}(au ightarrow eee)$	2×10^{-1}		$\mathcal{B}(B_s o \mu^+ \mu^-)$	-	$< 8 \times 10^{-9}$		
$\mathcal{B}(\tau \rightarrow \mu n)$	4×10^{-1}	LO /	$V_{td}/V_{ts} $ $\mathcal{S}(B_{z} \rightarrow \gamma \gamma)$	0.08 38%	0.017	$D^+ \rightarrow \pi^- e^+ e^+, D^+ \rightarrow K^- e^+ e^+$	$1 imes 10^{-8}$
$D(i \rightarrow \mu i j)$	Η Л IU	μ β	β_s from $J/\psi\phi$	10°	3°	$D^+ \rightarrow \pi^- \mu^+ \mu^+, D^+ \rightarrow K^- \mu^+ \mu^+$	$1 imes 10^{-8}$
${\cal B}(au o e\eta)$	6×10^{-1}	ί υ <u>β</u>	B_s from $B_s \to K^0 \bar{K}^0$	24°	11°	$D^+ \to \pi^- e^\pm \mu^\mp, D^+ \to K^- e^\pm \mu^\mp$	$1 imes 10^{-8}$
$\mathcal{B}(\tau \longrightarrow \ell K^0)$	2×10^{-1}	10	N. Discustore				
$\mathcal{D}(I \rightarrow \mathcal{L} \Pi_S)$	2×10		\rightarrow Physics a	t Super B Fa	actory, arXi	IV:1002.5012 (Belle II)	

 \rightarrow SuperB Progress Reports: Physics, arXiv:1008.1541 (SuperB)

How to increase the luminosity?

Collision with very small spot-size beams

Invented by Pantaleo Raimondi for SuperB

Requirements for the Belle II detector

Critical issues at L= 8 x 10³⁵/cm²/sec

- Higher background (×10-20)
 - radiation damage and occupancy
 - fake hits and pile-up noise in the EM
- Higher event rate (×10)
 - higher rate trigger, DAQ and computing
- Require special features
 - low $p \mu$ identification \leftarrow s $\mu\mu$ recon. eff.
 - hermeticity $\leftarrow v$ "reconstruction"

Solutions:

- Replace inner layers of the vertex detector with a pixel detector.
- Replace inner part of the central tracker with a silicon strip detector.
- Better particle identification device
- Replace endcap calorimeter crystals
- Faster readout electronics and computing system.

Peter Križan, Ljubljana

TDR published arXiv:1011.0352v1 [physics.ins-det]

SuperKEKB/Belle II Status

Funding

- ~100 MUS for machine -- Very Advanced Research Support Program (FY2010-2012)
- Full approval by the Japanese government in December 2010; the project is in the JFY2011 budget as approved by the Japanese Diet end of March 2011
- Most of non-Japanese funding agencies have also already allocated sizable funds for the upgrade of the detector.

Luminosity upgrade projection

Features:

- use nano beams with crab waist scheme: successfully tested at DA Φ NE
- run at charm threshold
- polarized e beam

SuperB Detector (with options)

M. Giorgi, ICHEP2010

SuperB Status

- SuperB has been approved as the first in a list of 14 Italian "flagship" projects within the new national research plan.
- The national research plan has been endorsed by "CIPE" (the institution responsible for infrastructure long term plans)
- A financial allocation of 250 Million Euros in about five years has been approved for the "superb flavour factory"
- At the end of 2010 an initial sum of 19 MEuros has been allocated
- A sum of the order of 50 MEUR is expected for 2011 budget

From a talk by Roberto Petronzio at the XVII SuperB Workshop and Kick Off Meeting - La Biodola (Isola d'Elba) Italy, May 30, 2011

Summary 1

- $\sin 2\phi_1$ result from final data sample (4% error from a single meas.)
- Model independent determination of ϕ_3 (important for LHCb)
- Interesting phenomena observed at Y(5S)
- New BaBar results on $B \rightarrow D^{(*)} \tau v$ decays all above SM
- Analyses using hadronic tag at Belle: much improved eff. X2, important for $B \rightarrow D^{(*)} \tau v$, $B \rightarrow \tau v$, $B \rightarrow Kvv$, exclusive $b \rightarrow u$.
- Many measurements being currently updated with final data sets
- Soon expected: BaBar $b \rightarrow s + d \gamma$, Belle: final measurement of ϕ_2 in $B \rightarrow \pi^+ \pi^-$, measurement of ϕ_2 in $B \rightarrow a_1 \pi$, $B \rightarrow \pi^0 \pi^0$, $\rho^0 \rho^0$
- Concentrate on measurements that use the unique capabilities of B factories

- B factories have proven to be an excellent tool for flavour physics, with reliable long term operation, constant improvement of the performance, achieving and surpassing design perfomance
- Major upgrade at KEK in 2010-14 → SuperKEKB+Belle II, L x40, construction started
- SuperB near Frascati: build a new tunnel, reuse (+ugrade) PEP-II and BaBar, approved, ramping up
- Tau/charm factories, BESIII and the new ones e.g. at BINP, will play an important role in the searches for NP
- Expect a new, exciting era of discoveries, complementary to the LHC

