
The features of
both analogue and
digital filters have
been used together
to improve the
bandwidth of
samplers. frik
Margan illustrates
by example the
improvements to
be obtained by
treating the
combination as a
single filter.

FILTER DESIGN

Antialiasingwith
mixed-modefilters

Analogue and digital filtering in combination can be
used in sampling systems to improve system band-
width, while retaining high out-of-band signal and

noise rejection for effective antialiasing, without the need to
increase the sampling frequency. Alternatively, less compli-
cated, lower order filters can be used for attaining the same
performance. A method of optimising the filter requirements
is discussed.

As an example, suppose the input signal is to be sampled to
12-bit accuracy with a sampling frequency of 2MHz. In this
case, frequencies above the Nyquist frequency (lMHz)
should be attenuated by at least 212, or about 72dB. Assume
also that constraints such as amplifier bandwidth and phase
margin, component tolerances, layout parasitics, thermal
effects, etc, limit the filter design to a 6th-order type.

Normally, Chebyshev or elliptic (Cauer) filter types are
used for effective antialiasing, since these provide sharp cut-
off and the procedure described here is not required.
However, for a perfect transient performance or to preserve
a high degree of phase coherence in complex signals, the ftl-
ter must be of the linear-phase type, leading to a Bessel-type
filter2, an all-pole equi-ripple phase filter (:to.05°) or other
filter types that can be compensated via phase equalisers.

The use of phase equalisers is limited to band-pass filters,
since it is difficult to match the filter phase in wide band-
width. Bessel filters have a smooth knee in the frequency
domain, which makes them a poor choice for anti-aliasing
applications. On the other hand, in contrast to the equi-ripple
phase types, they can be built from a cascade of relatively
low-Q sections, which makes them relatively insensitive to
component tolerances. Most importantly, their time-domain
performance is ideal.

Although a Bessel filter will be used in the example, cal-
culating the stop-band asymptote of a 6th order Butterworth
filter that satisfies the no-alias requirement gives a simple
relation from which the required system asymptotes can eas-
ily be calculated. The frequency fA at which the nth order
Butterworth system reaches the required attenuation A can be
calculated from,

f
- loglO(A2-1)

A -10 2n (1)

Equation I assumes a normalised system, with its -3dB
cut-off frequency fc=l and the response at zero frequency
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Fig. 1. Mixed-mode
filter bandwidth
improvement.
Frequency scale
normalised to the
Nyquist frequency (0.5
of the sampling
frequency).
Attenuation scale
normalised to the

system gain at de.
Dotted curve Ao is the
response of the
original 6th-order
analogue-only filter,
reaching the 12-bit
a-to-d converter
resolution limit of

-72dB at the Nyquist
frequency. If the
analogue filter
bandwidth is moved

upward (Ax), so that
the converter
resolution limit will be

reached at 1.87fNy'Y
the dark-shaded part
area from fN to
1.87fNyq wiif;enerate
an alias spectrum from
fNyq to O.I3fNyq (Iight-
shaded). The alias
spectrum envelope,
flipped about the
frequency axis,
determines the

minimum required
attenuation dashed

line R!lof the digital
filter Dv which would
make the alias

spectrum envelope
equal to the a-to-d
converter resolution

limit. The resulting
mixed-mode Filter

response Mx will have
its -3dB cut-off
frequency 1.468 times
higher than Ao-
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Aa=1. Taking A=212 and n=6 results infA=4.
Now calculate the 6th-order Bessel system polynomial

coefficients (see the Bessel panel), divide them by n'l/da to
normalise the system to have the same stop-band asymptote
as the Butterworth filter and extract the polynomial roots3 to
get the poles.

Since fA must be equal to the Nyquist frequency, denor-
malise the system by taking the inverse value of fA, which
gives the Butterworth bandwidth relative to the Nyquist fre-
quency fNyq' equal to 250kHz. The poles of the Bessel filter
must also be divided by fA, resulting in a -3dB bandwidth of
144kHz. This is the reference figure for the analogue-only
antialiasing filter. If this figure is not high enough and if the
choice of the analogue-to-digital converter limits the maxi-
mum sampling frequency, use mixed-mode filtering to
expand the system bandwidth.

Analogue/digital filters
The idea of using mixed-mode filtering comes from the fact
that the total system frequency response is a simple multi-
plication of the analogue and digital filter frequency respons-
es. Transforming the digital z-domain response is trans-
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Fig. 2. Time-domain
representation of the

mixed-mode filter

performance.
Convolving the

analogue filter step
response with the

digital filter impulse
response gives the

perfect step response
with a rise time shorter

than the analogue-only
filter.
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Fig. 4. Time-domain
performance of the
Fig. 3 mixed-mode

filter, using zeros and
poles in the analogue

section. Note better
rise-time of the mixed-

mode step response.
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Fig. 5. Time-delay (phase vs frequency derivative) of all-pole
mixed-mode filter is constant up to a frequency more than
double that of analogue-only filter.

the analogue signal with the digital filter impulse response
and convolution is exactly the process performed by digital
filtering, the digital filter coefficients representing the sam-
pled equivalent of the impulse response3.

However, as is well known from analogue filters, cascad-
ing two separately optimised filters reduces the total system
bandwidth more than one would like. It is thus better to use

a single filter system but of higher order. Since the limit is a
6th-order analogue filter, calculate a 10th-order filter, assign
six of its poles to the analogue part and the remaining four to
the digital part. A higher order filter has a steeper stop-band
and so its bandwidth can be higher while still satisfying the
antialiasing condition, but how much higher is not yet
known. Figure 1 shows the optimisation criterion.

Dotted curve Ao is the 6th-order analogue-only reference
system, shown along with its pass-band and stop-band
asymptotes. Ax and Dx are the analogue and digital part of the
mixed-mode filter Mx, which is a 10th-order Bessel filter. Of
its ten poles (arranged as five complex-conjugate pairs), six
of them, in three pairs, have been assigned to the analogue
filter Ax and the remaining four in two pairs to Dx.

Since Ax is of the same order as Ao, its stop-band slope is
the same as the reference, allowing easy calculation of the
effect of increasing its bandwidth. In Fig. I, it has been
increased by 1.87 and the line-shaded frequency band

between the Nyquist frequency fNyq and 1.87fNyq will, when
sampled, be reflected into the dot-shaded alias spectrum
between fNyq and (2-1.87)fNyq' The difference, in dB,
between the a-to-d converter resolution level and the alias

spectral envelope gives the minimum required attenuation

(shown as the dashed line Rq) that the digital filter must have
to suppress the alias spectrum below the ADC resolution
level.

From Fig. I, one could conclude that optimal performance
is reached whenever the mixed-mode response reaches the
a-to-d converter resolution level at the Nyquist frequency, but
be warned that this will not be so in the majority of cases.
Instead, the optimum is achieved by iteration - first, shift
upward the analogue and digital frequency responses (the
poles multiplied by a factor between I and 2), then calculate
the alias spectral envelope, take the difference between the
a-to-d converter resolution level and the alias envelope and
finally compare it to the frequency response of the digital fil-
ter. If the filter is much below the required level, repeat the
process; if it is above the required level, multiply the poles by

0.6 a.na1og-on1y BYJrte<n
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formed into its s-domain equivalent gives,

H(s) = A(s) x D(s) (2)

That is also true for the reverse case (i.e. a system formed
from a digital fIlter,a d-to-a converterand analogue filter). In
the time-domain,Eq.2 becomestheconvolutionintegralof
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Frequency

Aliasing
In theory, the bandwidth of
quency, which is one-half
practice, however,
signal frequencies
than the a-to-d converter
discrete frequency coml
noise). This is known in
Further Reading).

Aliasing can be best understood if the reader remembers the scene from
Western movies, where the wheels of the s coach seem to be rotating
backwards, while the horses are running to escape from the desperados
behind. What is perceived, is as if the wheels rotate with a frequency equal to
the difference between the frequency at which the pictures were taken and the
actual wheel rotation frequency.

A wheel, rotating at exactly the same frequency (or its integer multiple or sub-
multiple) as the picture rate, would be perceived as stationary (remember the
stroboscope effect). This is the same as if an a-to-d converter is sampling a
signal of a frequency equal to its sampling frequency - such a signal can not be
distinguished from a d.e. level. Likewise, a signal with a frequency slightly
lower than the sampling frequency, could not be distinguished from a low
frequency, equal to the difference of the two.

Uin
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Fig. 6. Two-pole,
voltage-controlled
filter example. Cascade
of three such sections
needed for the six-pole
example of Figs 1 and
2. This is a classic
Sallen-Key
configuration in which
the resistors have been
replaced by
transconductance
amplifier's gmand each
gm-Cpair buffered.
Buffer op-amps ACFB
must be of the wide-

band type (i.e., with
current feedback) to
prevent parasitic
transfer function zeros.
Q and frequency of
each two-pole section
must be adjusted
separately, in
accordance to the
poles selected.
Resistive dividers of
4.7kQ. and 47Q keep
the OTAs in the linear
range and prevent
slew-rate limiting for
large signals.

Q3

since this would require the analogue filter asymptote to
approach the sampling frequency at the a-to-d converterres-
olution level, extending the alias spectrumtowardsdc, where
it would be hard to eliminate. If the analogue filter is
designed to have some stop-band zeros at the sampling fre-
quency and its first few multiples, a greater bandwidth
improvementwill be possible.One such case is shownin Fig.
3 and Fig. 4, where a six-pole, six-zero analogue filter is
combined with an eight-pole equivalent digital filter. Zeros
are at 1.5 , 2.0 and 4.0 times fNyq' which were not chosen for
optimum pass-to-stop band transition, but for narrowing the
alias band.

While the bandwidth improvement in both cases may seem
small, it will be appreciated by those who use spectrum ana-
lysis daily. It must be noted that the resulting improvement in
phase linearity is even greater than in bandwidth, since the
additional extension comes from the use of a higher order fil-
ter. Figure 5 shows how the all-pole, mixed-mode system
time-delay, i.e. the phase vs frequency derivative,

dcp
tD=-dw

remains constant up to a frequency more than double that in
the analogue-only filter.

If the a-to-d converter system is to be used with different
sampling frequencies, the digital filter part can be left
unchanged, but the analogue filter must be frequency-shifted
accordingly; transconductance operational amplifiers used for
frequency control offer the best way of doing this4. Figure 6
shows an example of a two-pole filter section, with sepa-
rately adjustable frequency and Q.

Voltage at the base of Q2 of about ::!:50mV dc sets the Q
(the imaginary components of the pole pair) and the control
voltage at the base of Q3 (ranging from Vcc-0.7V to about
+0.7V) sets the frequency; the magnitude of the pole pair-
the ratio of the imaginary to the real component remains
unchanged. A cascade of three such sections is needed for the
six-pole analogue filter, each section being adjusted sepa-
rately and the adjustments remaining in fixed proportions as
the frequency control voltage is changed. A simpler, but less
flexible, solution is to make all the transconductances equal
and select the values of capacitors as required by the poles.

I built my experimental filter using RCA CA 3080 opera-
tional transconductance apmlifiers and Comlinear CLC 400
current-feedback devices. However, the Linear Technology
LT 12285, which is a single-chip aT A with current feedback,
is the natural choice. Transfer function of the filter in Fig. 6
IS,

VGU!- gmlgm2/(k2CjC2)

~ - S2 +sgml l(kCj)+ gmlgm2 l(k2CIC2)
(3)

Uout

lOk Q-factor

where k is the attenuation of the aT A input resistive divider
(11101), and gm is the OTA transconductance, set by the bias
currents from the collectors of Ql and Q2 . Comparing Eq. 3
with the general two-pole transfer function:

H(s) = pjP2
(s - PI )(s - p2)

- P\P2

- S2 + s( - PI - p2) + PIP2
(4)

and normalising gml=gm2=1 produces,
I

C]=
k(-PI - P2)

and

I

C2= ePIP2Cj
(5)

'+7

'tk7

a factor lower than 1 and test the result again.
From the shape of the alias spectral envelope it is clear that

there is no point in making the digital filter of high order.
Likewise, it is advantageous to choose the poles having
smaller imaginary part for the digital filter, since this results
in a smoother response and consequently greater bandwidth
improvement factor. In this example, the mixed-mode system
has its - 3dB cut -off frequency at 211.5kHz, which is 1.468
times the all-analogue filter bandwidth.

Splitting the filter poles between the analogue and digital
part may also be taken into consideration; designers of sys-
tems that must operate in real time will look for the pole
selection that gives the digital filter a more symmetrical
impulse response - every other complex-conjugate pole pair
is assigned to the digital filter. This property of symmetry can
then be exploited to reduce the required filter coefficients
(and consequently the number of multiplications) by half,
speeding-up the digital filtering process.

On the other hand, when the available analogue gain-band-
width product is critical, the designer may prefer to assign the
poles with the lower imaginary part to the analogue filter, but
at some expense to the bandwidth improvement.

Figure 2 shows the time-domain behavior of the same fil-
ters used to produce Fig. 1, with the time scale normalised to
the sampling period and the markers on the curves corre-
sponding to actual samples. Analogue step response, with its
notable overshoot, convolved with the digital impulse
response gives a perfect step response with a rise time short-
er than that of the analogue-only filter (the dotted curve).

From Fig. I it is also obvious that all-pole filters can not
achieve a bandwidth improvement greater than about 1.5,
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Table 1. Poles used in the example of Fig. 1 and 2.

Analogue-only
system
-0.1346 :to.2494i
-0.1999 :to.1405i
-0.2273 :to.0464i

Mixed-mode system
Analogue Digital
-0.3886 :to.1534~ -0.4066 :to.051Oi
-0.2870 :to.3657~ -o.3506:t 0.2576i-0.1826 :to.4836/

Alternatively, nonnalising CI=C2=1 produces,
gml= k(-PI - P2)
and

g
- k2PIP2

m2 -
gm!

(6)

Poles PI and P2 are the suitable complex-conjugate pair of
the mixed-mode filter poles.

8essel filters
Bessel filters2 are optimum in the sense that all the deriva-
tives of the envelope (group) delay response are zero at ori-
gin, which results in a maximally flat envelope delay. This
means that all the relevant frequencies pass through the sys-
tem with equal time delay, resulting in a transient response
with a minimal overshoot. In the complex frequency plane, a
system with pure time delay may be represented by

H(s)=e-sT (7)

First, nonnalise this by making T=l; then expand e-s as a
polynomial. However, if this is done using the Taylor series
expression for eXand if the polynomial degree exceeds 4, the
resulting polynomial would not be of the Hurwitz type, since
some of the poles would be in the right-half of the complex
plane, making the system unstable. But there is another
expression for e-s that we can use:

-s 1 Ifsinhse = -
sinh s +cosh s 1+ cosh s fsinh s

The series for hyperbolic sine function has even powers of s
and the hyperbolic cosine odd powers of s. When these poly-
nomials are divided using long division, the poles of the
resulting polynomial meet the stability requirement.
Expressingthis as a partial fractionexpansion truncatedat the
nth fraction gives an nth-order Bessel system. This can be
expressed as

d
H(s) = 1L

Bn(s)

(8)

(9)

where

~n k
Bn(s) = "-'k=odks .

Bn(s) is an nth order Bessel polynomial which, for
different n, satisfies the relations,

Bo(s) = I
B1(s)=s+1

Bn(s) = (2n -1)Bn-I(S) + S2Bn-2(S)

The coefficients dk of the resulting polynomial
can be calculated as,

(10)

(2n-k)!

dk = ( k) ( )' for k =0,1,2...n2 n- k! n-k)!

Roots of Bn(s) are the poles of H(s). Calculated in this way,
the system is nonnalised to a time-delay of I for any n,
which results in a bandwidth increasing with n. In these cal-
culations, a different nonnalisation is used: the asymptote of
the filter stop-band is made equal to that of the Butterworth

(11)

filter of equal order, by dividing the polynomial coefficients
dk by n-..Jdo.

Bessel filter poles are found in the left-half of the complex
plane, on a family of ellipses with one focus at the origin
O+Oiand the other on the positive part of the real axis. Table
1 shows the poles used in the example of Fig. I and Fig. 2.
These values are given relative to the Nyquist frequency - to

get the true values, multiply them by IMHz.

Filter response calculation
In the frequencydomain:

rH-Pi) n(s-zj)
H(s)= i=1 j=1

ll(s- Pj)' n(-zj)
;=1 j=1

(12)

~
where s=jmand Pi are the poles and Zjare the zeros (if any).

Magnitude in decibels is

M(m) =2010glO.JH(jm).H( - jm) (13)

In the time domain, calculate the residue of each pole and
sum the residues at each time point to get the impulse
response. For the step response, each residue is multipliedby
lis the Laplace transfonn of the input unit-step. The residue
of the kth pole can be calculated as,

.

.

...
ll(-p) n(s-z)

Rk(t)= lim(s-pk)' ~=I .j=~ .eP,'
HP, ll(s- p) ll(-z)

i=1 j=1

(14)
~"""

Tenns (S-Pk) cancel for i=k before limiting. Next, make
S=Pk,without using the limiting process. By doing so, the
general applicability of Eq.14 is lost - it does not hold for
systems containing coincident poles, but for all optimised
system families the result is still valid. The time t can be cho-
sen to start from 0 up to any desired time, in sampling peri-
od increments. Then:

I---

n

f(t) =LRk(t)
k=1

(15)

In summary
From all this, one can see that mixed-mode (analogue plus
digital) linear-phase filtering can be used effectively to
extend the usable spectral bandwidth of sampled signals by
about 50% and the phase coherence by more than 100%,
while keeping the signal spectralresolution, the samplingfre-
quency and the number of samples unchanged. .
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