A digital-toanalogue converter

 is hardly a cheap alternative to a potentiometer. However, some readily pay the price, only to get rid of the "dirty" mechanical contact, while others are prepared to pay for remote control and repeatable settings. Erik Margan describes an ingenious design using a single D-toA back to front.
Single D-to-A equalisation

The second op-amp boosts or cuts the filter output by

$$
G=2+\frac{R_{m}}{R_{n}}=4
$$

multiplied by the 4 -bit digital code in symmetrical offset-binary format $(0111=1000=0 \mathrm{~dB})$.
For the band-pass filter I have used a series-shunt R C network. Its transfer function is:

$$
F\left(j_{\omega}\right)=\frac{\frac{R_{b}}{j_{\omega} C_{b} R_{b}+1}}{R_{a}+\frac{1}{j \omega C_{a}}+\frac{R_{b}}{j \omega C_{b} R_{b}+1}}
$$

Fig.1. Circuit diagram. Note the $\pm 7.5 \mathrm{~V}$ DC power supply for the D-to-Aand the data control logic.

With little rearrangement, it may be rewritten as:
$(j \omega)=\frac{\frac{1}{R_{a} C_{b}} j \omega}{(j \omega)^{2}+j \omega\left(\frac{1}{R_{a} C_{a}}+\frac{1}{R_{b} C_{b}}+\frac{1}{R_{a} C_{b}}\right)+\frac{1}{R_{a} C_{a} R_{b} C_{b}}}$
If we compare this to the normalized biquadratic form:

$$
H(s)=A_{0} \frac{\frac{\omega_{0}}{Q} s}{s^{2}+\frac{\omega_{0}}{Q} s+\omega_{0}^{2}}
$$

we find the filter centre frequency at:

$$
\omega_{0}=\sqrt{\frac{1}{R_{a} C_{a} R_{b} C_{b}}}
$$

From the last three equations we may calculate the filter Q -factor:
$=\frac{\sqrt{\frac{1}{R_{a} C_{a} R_{b} C_{b}}}}{\frac{1}{R_{a} C_{a}}+\frac{1}{R_{b} C_{b}}+\frac{1}{R_{a} C_{b}}}=\frac{1}{\sqrt{\frac{R_{b} C_{b}}{R_{a} C_{a}}}+\sqrt{\frac{R_{a} C_{a}}{R_{b} C_{b}}}+\sqrt{\frac{R_{b} C_{a}}{R_{a} C_{b}}}}$
and the attenuation at the centre frequency:
$\frac{1}{R_{a} C_{b}} \cdot \frac{1}{\frac{1}{R_{a} C_{a}}+\frac{1}{R_{b} C_{b}}+\frac{1}{R_{a} C_{b}}}=\frac{1}{\frac{C_{b}}{C_{a}}+\frac{R_{a}}{R_{b}}+1}$

If $R_{a}=R_{b}=R$ and $C_{a}=C_{b}=C$ then

$$
\omega_{0}=\frac{1}{R C} \quad Q=\frac{1}{3} \quad A_{0}=\frac{1}{3}
$$

and this results in one-octave band-width. The filter output voltage is:
$V_{F}=\left(x V_{\text {in }}+(1-x) V_{\text {out }}\right) a_{1} A_{1} F(j \omega)$
where:
$0 \geq x \geq 1 \quad a_{1}=\frac{R_{d}}{R_{c}+R_{d}}=\frac{1}{10} \quad A_{1}=1+\frac{R_{e}}{R_{f}}=6$
The system output voltage is then:
$V_{\text {out }}=-V_{\text {in }}+a_{1} A_{1} G V_{F}$
So the system transfer function will be:
$\frac{V_{\text {out }}}{V_{\text {in }}}=-\frac{1-x a_{1} A_{1} G F(j \omega)}{1-(1-x) a_{1} A_{1} G F(j \omega)}$
Of course, x is digital code dependent:

$$
\frac{12^{7}+D_{2} 2^{6}+D_{1} 2^{5}+D_{0} 2^{4}+\overline{D_{3}}\left(2^{3}+2^{2}+2^{1}+2^{0}\right)}{2^{8}-1}
$$

Figure. 1 shows the circuit schematic diagram and Fig. 2 shows the frequency responses for various settings. To make the settings symmetrical, I used a 4-bit code with the MSB inverted and tied to the lower four bits. Due to the $x /(1-x)$ law, the increment at the filter centre frequency is 1.5 dB around code 1000 , rising up to 2.2 dB at extremes. Of course, up to 8 -bit control is possible.
Other equalizing sections are connected seri-
ally. It is possible to use two separate virtualearth summing junctions for a parallel connection of sections and the D-to-A is then connected in the usual way, but the result is much more noisy. The serial system single-stage noise gain is low ($\mathrm{G}=4$, with no boost or cut), the noise of other stages is passed unaffected and the D-to-A noise (the dominant noise source) is filtered in one-octave bands, so a 10 -band system will be as noisy as a single
wideband stage. Use low impedances wherever possible and low-noise op-amps like the dual OP227.
The maximum input signal level is $2 \mathrm{~V}_{\mathrm{pp}}$, which should allow for boost on all stages without severe distortion and a good signal-tonoise ratio. With filters one-octave wide, some mutual influence of adjacent bands is inevitable (see Fig. 3). If this is undesirable, use more elaborate filters

Fig.2. Frequency responses of a single 1 kHz equalising section at various code values $(0 F, 1 F$, $2 F, \ldots, 7 F, 89,90, A 0, \ldots, F 0$). Maximum boost and cut is 12 dB . Because of the $x /(1-x)$ law, the steps are not equidistant; the lowest is around 1.5 dB and the highest is around 2.2 dB .

Fig.3. Interaction of two adjacent (one octave apart) sections at maximum boost. The resulting boost is 18 dB . If this is undesired, more selective and more complex filter types must be used.

