
 *00437.A0

VPCIVMED

Windows 95 dr iver for

PCI-VME

User’s Manual

March 00 i *00437.A0

 General Remarks

The only purpose of this manual is a description of the product. It must not be interpreted a
declaration of conformity for this product including the product and software.

W-Ie-Ne-R revises this product and manual without notice. Differences of the description in
manual and product are possible.

W-Ie-Ne-R excludes completely any liability for loss of profits, loss of business, loss of use
or data, interrupt of business, or for indirect, special incidental, or consequential damages of
any kind, even if W-Ie-Ne-R has been advises of the possibility of such damages arising
from any defect or error in this manual or product.

Any use of the product which may influence health of human beings requires the express
written permission of W-Ie-Ne-R.

Products mentioned in this manual are mentioned for identification purposes only. Product
names appearing in this manual may or may not be registered trademarks or copyrights of
their respective companies.

No part of this product, including the product and the software may be reproduced,
transmitted, transcribed, stored in a retrieval system, or translated into any language in any
form by any means with the express written permission of W-Ie-Ne-R.

VPCIVMED is designed by ARW Elektronik, Germany

March 00 ii *00437.A0

 Table of contents:

1. VPCIVMED driver: General description...1

2. Installation..2

3. Operating the driver ...3

3.1. A simple test unit: pvmon.exe ..3

3.2. Using the driver for program code...3

3.3. Services..4

3.4. Interrupt vectors...6

APPENDIX A : Packing li st: ...7

APPENDIX B : Short form manual of pvmon...8

APPENDIX C : Header file vpcivmed.h..10

APPENDIX D : Standard initiali zation procedure... 17

APPENDIX E : Standard deinitialization procedure...18

 List of tables:

Table 1: Coding of interrupt level and vector. ...5

Table 2: Interrupt vectors for different sources..6

User’s Manual VPCIVMED W-Ie–Ne-R
Plein & Baus GmbH

March 00 1 *00437.A0

1. VPCIVMED dr iver: General descr iption

VPCIVMED provides an easy access to the VME bus for Windows951 and 98 users. It’ s
major efforts are demonstrated by a small test program pvmon.exe which is supplied in the
same package.

It is easy to use the driver for your own VME application. The driver is independent from the
chosen programming language since Windos95 standard I/O functions are used for the
communication.

VME access is performed via an interface window of an area of virtual memory which is
defined by the driver. For user applications this window looks like normal memory. Read
and write operations to the VME bus are converted into simple read and write operations into
the (not real) memory.

The access to the driver is not limited to one process. Multiple processes can use the driver.
Even one driver supports multiple VME interfaces.

Different levels of VME interrupts are handled by the interface. The driver provides several
serviced to operate these interrupts.

1 Windows95 and Windows98 are trademarks of the Microsoft Corporation.

User’s Manual VPCIVMED W-Ie–Ne-R
Plein & Baus GmbH

March 00 2 *00437.A0

2. Installation

Be sure that PCIADA card of the PCI-VME interface is installed in your PC. Please refer to
the PCI-VME manual to insert the card.

After switching on you machine Windows recognizes the new hardware in you system and
asks for a driver. Insert the supplied CD into your drive and enter the driver’s path. If you
CDROM is drive D type D:\WIN95\DRIVER .

In the next step the driver is copied to WINDOWS\SYSTEM\VPCIVMED.VXD and the
interface is added to the WINDOWS registry. You will find the driver at
HKEY_LOCAL_MACHINE\ENUM\PCI\VEN10B5&DEV9050 ...

You will find the interface at start / settings / control panel / system
/ device manager where Interrupt and I/O settings can be verified.

Note: The driver only works for Windows 95 / 98 in 32 bit mode. Only real 32 bit
applications can use the driver but it does not work for MS-DOS2 or WINDOWS
3.11 programs.

So far WINDOWS NT3 is not supported. A driver is under preparation.

2 MS-DOS and Windows 3.11 are trademarks of the Microsoft Corporation.
3 Windows NT is a trademark of the Microsoft Corporation.

User’s Manual VPCIVMED W-Ie–Ne-R
Plein & Baus GmbH

March 00 3 *00437.A0

3. Operating the dr iver

3.1. A simple test unit: pvmon.exe

The program is a useful tool to check the access to the VME bus and test VME modules. It
expects the driver vpcivmed in C:\WINDOWS\SYSTEM. If it is not there the path has to be
specified.

Open a DOS box and start pvmon by typing pvmon -? . A short help is displayed. Help can
be obtained by typing ? on the prompt, too.

Before accessing the VME bus pvmon has to be configured by typing c . Store the settings
and restart the program. Now you can exchange data with the VME bus.

For more information please refer to the short form manual in APPENDIX B.

3.2. Using the dr iver for program code

Access to the driver is managed by Windows 95 Standard I/O functions which are
independent from the programming language. Header files for c++ programs are supplied
with the interface. They could easy adapted to other languages.

In your program include files vpcivmed.h and windows.h . Add winerror.h too if
you want to use GetLastError() to decode error messages. Use window’s function
CreateFile() to open the interface, DeviceIoControl() to operate it and
CloseHandle () to close it.

At maximum VPCIVMED_MAX_PCIADA PCIADA cards (currently 4),
VPCIVMED_MAX_VMEMM interfaces (16) and VPCIVMED_MAX_WINDOWS (8) different
windows are supported by the driver. These parameters are defined in vpcivmed.h . Only
the number of the VMEMM module is used to identify different modules and cards.

Intercommunication between driver and the users program is done via memory windows.
The driver provides a window for each process who requested it returning a pointer into the
window.

Size, Address Modifier and offset to access the VME bus is fixed for each window. Random
access to different windows it possible. The driver itself takes care of Address Modifier and
address offsets.

Any PCI-VME application using the driver contains three major parts:

1. Star tup

vxd_Handle = CreateFile(VxDpathName,0,0,NULL,0,
FILE_FLAG_DELETE_ON_CLOSE,NULL);

During this procedure number and IDs of connected VMEMM modules is determined.

2. Controll ing the Inter face Each access to the interface is done by

result = DeviceIoControl(vxd_Handle,);

It is only necessary to pass the ID of the selected VMEMM module to the driver. The
corresponding ID of the PCIADA card is calculated automatically.

3. Shut down On the command

CloseHandle(vxd_Handle);

the driver is closed for the application. It is removed of the memory after it’ s last process
has finished.

User’s Manual VPCIVMED W-Ie–Ne-R
Plein & Baus GmbH

March 00 4 *00437.A0

3.3. Services

The driver provides different services which communicate via DeviceIoControl() with
the application. Numbers and structures for this communication are defined in
vpcivmed.h (see APPENDIX C). Define Pointers to in and out structures before calling
the driver.

A call of the driver may look li ke:

VPCIVMED_STANDARD_COMMANDsInterface;
VPCIVMED_VECTOR_LEVEL sVectorLevel;
DWORD DIOC_count;
DWORD dwResult;
*
*
sInterface.dwInterface = 1; // selection of 1 st VMEMM

// poll if an interrupt is pending ------------------
dwResult = DeviceIoControl(vxd_Handle, VPCIVMED_READ_VECTOR,

&sInterface, izeof(sInterface),& sVectorLevel,
sizeof(sVectorLevel), & DIOC_count, NULL);

if (! dwResult)
printf(„ Error %d occured\n“, GetLastError());

else
printf(„I have read a vector %d at level % d\n“,

 sVectorLevel.dwStatusID, wLevel);
*
*

Service VPCIVMED_READ_VECTOR is called. Pointers to in and out structure and it’ s sizes
are necessary. An error code which is explained in winerror.h and the real size of the
returned data is returned.

Description of the defined services:

VPCIVMED_INIT_HARDWARE initiali zes one VMEMM module. Standard initialization
commands are summarized in APPENDIX D. Additional initiali zation commands can be
passed to the interface. All VPCIVMED_INIT_COMMANDs have to be stored in a STOP
terminated array. Example:

struct
{

DWORD dwInterface;
VPCIVMED_INI T_ELEMENT sVIC[3];

} sUserInitStruct = {0, {{VIC, BYTE_ACCESS, 0x57, 0xAA},
{VIC, BYTE_ACCESS, 0x53, 0x00},
{STOP, WORD_ACCESS, 0x00, 0x00}}};

Note: If the array contains only the STOP element the standard initialization will be
performed.

The interface will be initialized on the first call of the service. It has to be deinitiali zed
before a new initiali zation is possible.

VPCIVMED_DEINIT_HARDWARE deinitializes the specified VMEMM board and it’ s
PCIADA card. Additional commands are added as described above. APPENDIX E shows
the standard commands.

VPCIVMED_ATTACH_WINDOW reserves a window for VME access. One process can open
VPCIVMED_MAX_WINDOWS at maximum. Parameters which are required to open a
window are passed in a VPCIVMED_ADD_WINDOW structure. The window size is limited
to 256 Mbyte.

User’s Manual VPCIVMED W-Ie–Ne-R
Plein & Baus GmbH

March 00 5 *00437.A0

Address Modifier, a Base Address and size have to be specified for each window. Only
values at the edge of a 4k page are possible for address and size. The driver’s header file
provides macro functions PAGE_BASE() and PAGE_SIZE() to calculate these
numbers.

The driver maps the specified area of the VME bus into the (virtual) memory. A pointer
to this memory region is returned. Each access to this region is mapped into the VME
bus. Any access out of the window will be denied.

Errors during VME bus access are not reported as Windows errors.

VPCIVMED_DETATCH_WINDOW releases a previously reserved window. Use a
VPCIVMED_REMOVE_WINDOW structure to define parameters.

VPCIVMED_GET_STATIC_STATUS returns status information of a VMEMM interface in
a VPCIVMED_STATIC_STATUS structure.

VPCIVMED_GET_DYNAMIC_STATUS informs about parameters of the interface which
change during operation. Use a VPCIVMED_DYNAMIC_STATUS structure for
communication.

VPCIVMED_READ_VECTOR returns interrupt information in a
VPCIVMED_VECTOR_LEVEL structure.

VPCIVMED_ACCESS_VIC68A provides direct access to the VIC68A chip. Use a
VPCIVMED_VIC68A_ACTION structure to program the chip and for the exchange of
data.

The PCI-VME profits of the huge variety of features which are provided by the VIC68A
chip, e. g. direct access to 68xxx processors and programmable delays by accessing the
VIC68A directly. No limitations of this communication are installed.

Note: Do not change any registers which may influence the Address Modifier
Register. It will cause errors in the mechanism of interface windows.

VPCIVMED_INSTALL_IRQ_HANDLER installs the interrupt handler on the local interrupt
priority level. The TCB (Thread Control Block) of the calli ng thread is stored when the
service is accessed. If an interrupt is enabled and released and the thread is alertable it is
possible to invoke the installed interrupt handler.

Either PCIADA or VMEMM interrupts cause the interrupt handler. Interrupt source is
coded in a parameter which is described in Table 1.

A BUS ERROR is handled as an VMEMM Interrupt. Since the driver is locked after each
VMEMM interrupt it has to be released by the user’s application. Interrupts caused by
PCIADA are treated as virtual level 8.

VPCIVMED_CONTROL_INTERRUPTS controls the interrupt mechanism. It enables or
disables specified interrupts of PCIADA or VMEMM.

VPCIVMED_TAS causes an uninterruptible cycle on the VME bus which is comparable to
the TAS command of 68xxx processors.

VPCIVMED_GET_PCIADA_STATUS returns status of all connected PCIADA boards
installed in the PC. It checks which VMEMM modules are connected and ready.

Table 1: Coding of interrupt level and vector.

meaning unused interrupt level unused interrupt vector

bits 31 to 19 18 to 16 15 to 8 7 to 0

User’s Manual VPCIVMED W-Ie–Ne-R
Plein & Baus GmbH

March 00 6 *00437.A0

VPCIVMED_RESET controls different reset functions of the interface and the VME bus
which are a local reset, a global reset and a VME bus reset.

Contents of all VIC68A registers are lost during a reset. Perform a deinitiali zation and a
reinitiali zation after the reset to reload registers.

3.4. Interrupt vectors

Each interrupt caused by VMEMM has to be vectored. Normally vectors from 0x00 to 0x3F
are used by the driver (internal use) and vectors from 0x40 to 0xFF are reserved for VME
bus and it’ s peripherals. Refer to Table 2 for detailed information.

Note: The time out interrupt generated by PCIADA causes an interrupt vector number 1.

Note: Pressing the reset button on the front panel causes an interrupt. Applications have
to take care of any further action which should be performed.

Note: If more than one application use one window of the interface it is not possible to
locate the cause of a VME BUS ERROR. In this case every only one action is
performed.

If errors occur during interrupt operations check at start / settings / control
panel / system / device manager if any interrupt reserved for the interface. The
interface works without a reserved interrupt but interrupt functions are not available in this
case.

Table 2: Interrupt vectors for different sources.

Interrupt source vector no.

Interrupt caused by PCIADA (time out) 1 (active)

Clock Tick Interrupt Generator 2

Reset push button on the front panel 6 (active)

VME bus Timeout (Bus-Error) 7 (active)

Interprocess communication global switch #0 8

Interprocess communication global switch #1 9

Interprocess communication global switch #2 10

Interprocess communication global switch #3 11

Interprocess communication module switch #0 12

Interprocess communication module switch #1 13

Interprocess communication module switch #2 14

Interprocess communication module switch #3 15

ACFAIL asserted 16

Write post Fail 17

Arbitration Timeout 18

SYSFAIL asserted 19

VME bus Interrupter acknowledge 20

User’s Manual VPCIVMED W-Ie–Ne-R
Plein & Baus GmbH

March 00 7 *00437.A0

APPENDIX A: Packing list:

The driver is delivered in one CD ROM which contains:

Directory WIN95\DRIVER :

vpcivmed.vxd the driver
pcivme.inf INF file for installation

Directory WIN95\DRIVER\SOURCE:

vpcivmed.h header file to access the driver
vic.h header file for the VIC68A chip
vme.h header file to access the VME bus

source files for the driver

Directory WIN95\PVMON:

pvmon.exe a useful program

Directory WIN95\PVMON\SOURCE:

source files for pvmon.

User’s Manual VPCIVMED W-Ie–Ne-R
Plein & Baus GmbH

March 00 8 *00437.A0

APPENDIX B: Short form manual of pvmon

pvmon is a simple shell program to test the PCI-VME interface by ARW Elektronik. The
code is OpenSource and is enclosed to the interface.

This program is free software; you can redistribute it and/or modify it under the terms of
the GPL as published by the FSF (version 2 or later).

Overview of pvmon commands (type “?” to get this help):

a[h] [adrmode] : Change address modifiers, h=help

c : Configure interface

d[m] [start] [end] : Dump memory area

e[m] <start> [value] : Examine or change memory area

f<m> <start> <end> <x> : Fill memory from <start> til <end> with <x>

g<m> <st> <en> [l] [x] : Generate random memory test. (loop l, seed x)

h : This help

i : Interface init

l[m] : Get VME interrupt status/ID

m<m> <src> <end> <dest> : Move memory area

o : Jump to OS

p[adrmode] : Port search

q : Quit program

r[x] <f> <start> [end] : Read file <f> to VME, x= x or s (HEX)

s[m] <start> <end> <p> : Search pattern <p>=different Items

t <start> : TAS emulation, 'Test and Set' bit 7

v : Generate VME SYSRESET

w[x] <f> <start> <end> : Write VME into file <f>, h=Intel Hex

x <start> [val] : Read/Write to interface register @ start

y[1/0] : Read/set/clear SYSFAIL

z[0..3] : Show interface internals

m = mode, e.g. b=byte, w=word, l=long (double) word; h = help, x= hex

start(address), end(address), src=source, dest=destination, []=option

pvmon is available for WIN 95/NT and Linux. The driver for the operating system has to be
installed.

An error message is reported if no driver was found or the VME crate is not online.

The first time pvmon is started a configuration is mandatory. Simply type c on the command
line.

User’s Manual VPCIVMED W-Ie–Ne-R
Plein & Baus GmbH

March 00 9 *00437.A0

Powerful commands are implemented in pvmon. Try p to look for ports or test the RAM on
the VME bus with the command:

gw 0 10000 40 .

In the address range from 0x00000 to 0x10000 RAM is tested for the predetermined address
modifier in 0x40 runs using a random pattern.

Note: Before using the command make sure that no important data is stored in the
address range. All addresses will be overwritten.

To use pvmon interactively type e. g.

pvmon a39/p/a29/p

First address modifier is set to 0x39 and the address range is scanned readable addresses.
The same is repeated for AM = 0x29.

User’s Manual VPCIVMED W-Ie–Ne-R
Plein & Baus GmbH

March 00 10 *00437.A0

APPENDIX C: Header file vpcivmed.h

#ifndef __PCIVMEH_H__

//--

// PCIVMEH.H, shared between applications and VPCIVMED driver
//
// (c) 1999 ARW Elektronik
//
// this source code is published under GPL (Open Source). You can
use, redistribute and
// modify it unless this header is not modified or deleted. No
warranty is given that
// this software will work like expected.
// This product is not authorized for use as critical component in
life support systems
// without the express written approval of ARW Elektronik Germany.
//
// Please announce changes and hints to ARW Elektronik
//
// What
Who When
// first steps
AR 24.01.98
// added direct read write access to vic68a chip registers
AR 12.07.98
// rename PCR_* into LCR_*
AR 19.07.98
// TAS included
AR 17.02.99
// Corrections about interrupt handling
AR 20.02.99
// changes about PCIADA status
AR 25.02.99
// changes of IOCTL codes because of compatibility to WIN NT
AR 12.03.99
// PLX 9052 removed out of VPCIVMED_STATIC_STRUCT
AR 16.03.99
// VIC68A_WRITE_ONLY added
AR 17.03.99
// extension for VME reset
AR 18.04.99
// release of version 2.5 for driver
AR 18.04.99
//

//--

// constants to be used to access certain features of the PCIVME
interface
//
#define VPCIVMED_CTL_CODE(x) (0x80002000 | (x << 2)) //
compatibility to WIN-NT

#define VPCIVMED_INIT_HARDWARE (VPCIVMED_CTL_CODE(0)) //
initializes the hardware with given parameters
#define VPCIVMED_DEINIT_HARDWARE (VPCIVMED_CTL_CODE(1)) //
uninitializes the hardware
#define VPCIVMED_ATTACH_WINDOW (VPCIVMED_CTL_CODE(2)) //
requests a base address to a vme window

User’s Manual VPCIVMED W-Ie–Ne-R
Plein & Baus GmbH

March 00 11 *00437.A0

#define VPCIVMED_DETACH_WINDOW (VPCIVMED_CTL_CODE(3)) //
frees a vme window
#define VPCIVMED_GET_STATIC_STATUS (VPCIVMED_CTL_CODE(4)) // asks
for INTERFACE structure
#define VPCIVMED_GET_DYNAMIC_STATUS (VPCIVMED_CTL_CODE(5)) // asks
for dynamic status
#define VPCIVMED_READ_VECTOR (VPCIVMED_CTL_CODE(6)) //
reads the level and vector of IRQ
#define VPCIVMED_ACCESS_VIC68A (VPCIVMED_CTL_CODE(7)) //
access vic68a register
#define VPCIVMED_INSTALL_IRQ_HANDLER (VPCIVMED_CTL_CODE(8)) //
installs a handler function
#define VPCIVMED_CONTROL_INTERRUPTS (VPCIVMED_CTL_CODE(9)) //
enable, disable of interrupts
#define VPCIVMED_TAS (VPCIVMED_CTL_CODE(10)) // make
test and set
#define VPCIVMED_GET_PCIADA_STATUS (VPCIVMED_CTL_CODE(11)) // get
the status of PCIADA(s) only
#define VPCIVMED_RESET (VPCIVMED_CTL_CODE(12)) // make
a reset to VME or global

//--

// possible return codes
//
#define BOGUSADDRESS 0xffffffff // Returned by MS routines

//--

// some built in limits
//
#define VPCIVMED_MAX_PCIADA 4 // maximum count of supported PCI
interfaces
#define VPCIVMED_MAX_VMEMM 16 // maximum number of supported
VMEMMs
#define VPCIVMED_MAX_WINDOWS 8 // maximum number of windows into
VME

//--

// switches and masks
//

// switches for VPCIVMED_INIT_COMMANDs --------------------------
#define LCR (BYTE)0 // destination is LCR register
#define IFR (BYTE)1 // destination is VME-Interface register
#define VIC (BYTE)2 // destination is VIC68A register
#define STOP (BYTE)255 // this command stops the init machine

#define BYTE_ACCESS (BYTE)1 // write byte wise
#define WORD_ACCESS (BYTE)2 // word
#define LONG_ACCESS (BYTE)4 // long

// switches for VPCIVMED_ACCESS_VIC68A --------------------------
#define VIC68A_READ 0 // read only access
#define VIC68A_WRITE 1 // write and read back access
#define VIC68A_OR 2 // read, bit wise 'or' content and
read back access
#define VIC68A_AND 3 // read, bit wise 'and' content and
read back access
#define VIC68A_WRITE_ONLY 4 // do not read back after write

User’s Manual VPCIVMED W-Ie–Ne-R
Plein & Baus GmbH

March 00 12 *00437.A0

// switches for VPCIVMED_VECTOR_CMD -----------------------------
#define READ_CURRENT_LEVEL 0 // try to get the current IRQ level
#define READ_VECTOR 1 // (if level == 0) read vector @
current LEVEL else @ level

// switches for the VPCIVMED_RESET ------------------------------
#define VME_RESET_CMD 0 // raise a VME reset only
#define LOCAL_RESET_CMD 1 // raise a local reset only
#define GLOBAL_RESET_CMD 2 // raise a global reset
#define POLL_RESET_CMD 3 // ask if reset is finished

// address masks for the pager - to use for offset and size @ window
alignment -----------
#define HI_ADDRESS_MASK (DWORD)0xFFFFF000 // masks the high
part of a vme address
#define LO_ADDRESS_MASK (~HI_ADDRESS_MASK) // masks the low
part of a vme address
#define ONE_PAGE_SIZE (LO_ADDRESS_MASK + 1) // size of 1 page
(hardware related)

// macros to calculate the real base and the real size of demand
pages -------------------
#define PAGE_BASE(base) (base & HI_ADDRESS_MASK) // makes an
aligned base for a page
#define PAGE_SIZE(base, size) (((base + size + LO_ADDRESS_MASK) /
ONE_PAGE_SIZE) * ONE_PAGE_SIZE)

//--

// ERROR RETURNS in dIfcStatus
//
#define E_NO_ERROR 0 // all OK
#define E_INCOMPATIBLE 1 // incompatible hardware
#define E_NO_ADDRESS 2 // cant get lcr or ifr addresses
#define E_NOT_CONNECTED 3 // no VMEMM hardware connected
#define E_CON_ERROR 4 // data transfer failure
#define E_EMPTY -1 // no PCI interface associated

//--

// shared structures between PCIVME-IF and Application - COMMANDS
//
typedef struct
{
 DWORD dwInterface; // some command only need this input
into requests
} VPCIVMED_STANDARD_COMMAND;

typedef struct // one command element to initialize
interface or deinitialize
{
 BYTE range; // 0 = lcr, 1 = vme-interface, -1 =
stop, default = vme-if
 BYTE type; // 1 = byte access, 2 = word access, 4
= dword access, default byte
 WORD offset; // offset into interface address range
for initialisation
 DWORD value; // value to initialize
} VPCIVMED_INIT_ELEMENT;

User’s Manual VPCIVMED W-Ie–Ne-R
Plein & Baus GmbH

March 00 13 *00437.A0

typedef struct
{
 DWORD dwInterface; // targets to interface number
 VPCIVMED_INIT_ELEMENT sVie[1]; // at least one zero element must
be the last
} VPCIVMED_INIT_COMMAND;

typedef struct
{
 DWORD dwInterface; // targets to interface number ...
 DWORD base; // offset into VME address range.
(base + size) must be less than
 DWORD size; // 128 Mbytes for ext, 16 Mbytes for
std, 64k for short
 WORD modifier; // VME address modifier for this
window
} VPCIVMED_ADD_WINDOW;

typedef struct
{
 DWORD dwInterface; // targets to interface number ...
 DWORD *pdwLinAdr; // linear address of window to remove
} VPCIVMED_REMOVE_WINDOW;

typedef struct
{
 DWORD dwInterface; // targets to interface number ...
 DWORD dwAddress; // tas to address
 WORD wModifier; // VME address modifier for this
window
 BYTE bContent; // byte content to store and get back
} VPCIVMED_TAS_STRUCT;

typedef struct
{
 DWORD dwInterface; // targets to interface number ...
 WORD wRegisterAddress; // address offset of vic68a register
 WORD wAccessMode; // read, write, or, and
 BYTE bContent; // content to write, and, or
} VPCIVMED_VIC68A_ACTION;

typedef struct
{
 DWORD dwInterface; // targets to the interface number
...
 DWORD dwIrqHandler; // void (* IrqHandler)(DWORD) = User
Handler
} VPCIVMED_IRQ_HANDLER; // BOGUSADDRESS deinstalled

typedef struct
{
 DWORD dwInterface; // targets to the interface number
...
 WORD wEnable; // a 1 enables, a 0 disables
} VPCIVMED_IRQ_CONTROL;

typedef struct
{
 DWORD dwInterface; // targets to interface number ...
 WORD wAction; // read current irq level, read
vector @ level

User’s Manual VPCIVMED W-Ie–Ne-R
Plein & Baus GmbH

March 00 14 *00437.A0

 WORD wType; // must be set to 1
} VPCIVMED_VECTOR_COMMAND;

typedef struct
{
 DWORD dwInterface; // targets to interface number ...
 WORD wCommand;
} VPCIVMED_RESET_COMMAND;

//--

// shared structures between PCIVME-IF and Application - RESPONSE
//

// includes static information about driver parameters ------
typedef struct // caution: very sensitive on
alignment
{
 DWORD dwInterface; // comes from the interface No.
 DWORD dIfcStatus; // usable ? fits to driver? OK?
 DWORD dwLinkCount; // how often this interface is
requested

 WORD wNumMemWindows; // from actual configuration
 WORD wNumIOPorts;
 WORD wNumIRQs;
 WORD wNumDMAs;

 DWORD dLCR_MemBase; // from actual configuration
 DWORD dLCR_MemLength;

 WORD wLCR_IOBase;
 WORD wLCR_IOLength;
 WORD wLCR_IRQ;
 WORD wReserve1;

 DWORD dUSR_MemBase;
 DWORD dUSR_MemLength;

 WORD wModuleType; // read from connected hardware
 WORD wFPGAVersion;
 WORD wModuleNumber;
 WORD wWordMode;

 WORD wSysControl;
 WORD wConnected;

 PVOID pvLcr; // virtual address of LCR
 PVOID pvIfr; // virtual address of IFR

 // some addresses to tune performance
 WORD *pwCSR; // pointer to csr register
 WORD *pwIRQStat; // pointer to irq status
 BYTE * pbVector; // pointer to vector read register
 DWORD *pdwVMEAdr; // pointer to VME address register
 BYTE * pbModifier; // pointer to address modifier
register
 void * pvVME; // pointer into VME window
 DWORD dwPagePhysVME; // physical page number of the VME
window

User’s Manual VPCIVMED W-Ie–Ne-R
Plein & Baus GmbH

March 00 15 *00437.A0

 void * psIrqDescriptor; // pointer to associated irq
descriptor
 DWORD dwActivePage; // the current active page of this
interface

 WORD wReserve2;

 char cszHWRevision[10];
} VPCIVMED_STATIC_STATUS;

typedef struct
{
 DWORD dwInterface; // comes from the interface No.

 WORD wVMEMM_connected; // status: VMEMM is connected and
powered
 WORD wVMEMM_enable; // status: VMEMM access is enabled
 WORD wPCIADAIrq; // status: PCIADA timeout IRQ pending
 WORD wVMEMMIrq; // status: VMEMM IRQ pending
} VPCIVMED_DYNAMIC_STATUS;

typedef struct
{
 DWORD dwInterface; // comes from the interface No.

 DWORD dwStatusID; // interrupt-vector (byte, word, long)
 WORD wLevel; // interrupt-level
 WORD wPCIIrq; // pending PCIADA Irq detected and
cleared
} VPCIVMED_VECTOR_LEVEL;

typedef struct
{
 DWORD dwDummy; // nothing useful in here
 WORD wVersion; // Version of driver
 WORD wNumberOfInterfaces; // number of detected PCIADA
 struct
 {
 DWORD dIfcStatus; // connection status of PCIADA-VMEMM
 DWORD dwLinkCount; // how often this interface is
requested

 WORD wModuleType; // if connected: type of connected
module
 WORD wFPGAVersion; // if connected: Version of VMEMM FPGA
 WORD wModuleNumber; // if connected: Number of Connected
VMEMM
 WORD wWordMode; // if connected: Mode of operation

 WORD wSysControl; // if connected: VMEMM sysctl status
 WORD wConnected; // connected or not

 WORD wDummy;
 char cszHWRevision[10]; // revision of PCI interface
 } sPCIAda[VPCIVMED_MAX_PCIADA]; // status of each one
} VPCIVMED_PCIADA_STATUS;

typedef struct
{
 DWORD dwInterface; // targets to interface number ...
 WORD wResult;

User’s Manual VPCIVMED W-Ie–Ne-R
Plein & Baus GmbH

March 00 16 *00437.A0

} VPCIVMED_RESET_RESULT; // polling result: in progress if
(wResult != 0)

#define __PCIVMEH_H__
#endif

User’s Manual VPCIVMED W-Ie–Ne-R
Plein & Baus GmbH

March 00 17 *00437.A0

APPENDIX D: Standard initialization procedure

The standard initialization procedure is summarized in the following array:

{LCR, WORD_ACCESS, 0x4c, 0x0009} // disable
interrupts
{LCR, WORD_ACCESS, 0x50, 0x4180} // enable
interface

{VIC, BYTE_ACCESS, (WORD)0x03, 0xf8+1} // VIICR

{VIC, BYTE_ACCESS, (WORD)0x07, 0x78+1} // VICR1
{VIC, BYTE_ACCESS, (WORD)0x0b, 0x78+2}
{VIC, BYTE_ACCESS, (WORD)0x0f, 0x78+3}
{VIC, BYTE_ACCESS, (WORD)0x13, 0x78+4}
{VIC, BYTE_ACCESS, (WORD)0x17, 0x78+5}
{VIC, BYTE_ACCESS, (WORD)0x1b, 0x78+6}
{VIC, BYTE_ACCESS, (WORD)0x1f, 0x78+7} // VICR7

{VIC, BYTE_ACCESS, (WORD)0x23, 0xf8+0} // DSICR

{VIC, BYTE_ACCESS, (WORD)0x27, 0xf8+1} // LICR1
{VIC, BYTE_ACCESS, (WORD)0x2b, 0xf8+2}
{VIC, BYTE_ACCESS, (WORD)0x2f, 0xf8+3}
{VIC, BYTE_ACCESS, (WORD)0x33, 0xf8+4}
{VIC, BYTE_ACCESS, (WORD)0x37, 0xf8+5}
{VIC, BYTE_ACCESS, (WORD)0x3b, 0x38+6}
{VIC, BYTE_ACCESS, (WORD)0x3f, 0x38+7} // LICR7

{VIC, BYTE_ACCESS, (WORD)0x43, 0xf8+2} // ICGS
{VIC, BYTE_ACCESS, (WORD)0x47, 0xf8+3} // ICMS

{VIC, BYTE_ACCESS, (WORD)0x4b, 0xe8+6} // EGICR

{VIC, BYTE_ACCESS, (WORD)0x4f, 0x08} // ICGS-IVBR (!)
{VIC, BYTE_ACCESS, (WORD)0x53, 0x0c} // ICMS-IVBR (!)

{VIC, BYTE_ACCESS, (WORD)0x57, 0x00} // LIVBR (!)

{VIC, BYTE_ACCESS, (WORD)0x5b, 0x10} // EGIVBR (!)

{VIC, BYTE_ACCESS, (WORD)0x5f, 0x00} // ICSR

{VIC, BYTE_ACCESS, (WORD)0x63, 0x00} // ICR0
{VIC, BYTE_ACCESS, (WORD)0x67, 0x00}
{VIC, BYTE_ACCESS, (WORD)0x6b, 0x00}
{VIC, BYTE_ACCESS, (WORD)0x6f, 0x00}
{VIC, BYTE_ACCESS, (WORD)0x73, 0x00} // ICR4

{VIC, BYTE_ACCESS, (WORD)0x83, 0xfe} // VIRSR

{VIC, BYTE_ACCESS, (WORD)0x87, 0x0f} // VIVR1
{VIC, BYTE_ACCESS, (WORD)0x8b, 0x0f}
{VIC, BYTE_ACCESS, (WORD)0x8f, 0x0f}
{VIC, BYTE_ACCESS, (WORD)0x93, 0x0f}
{VIC, BYTE_ACCESS, (WORD)0x97, 0x0f}
{VIC, BYTE_ACCESS, (WORD)0x9b, 0x0f}
{VIC, BYTE_ACCESS, (WORD)0x9f, 0x0f} // VIVR7

{VIC, BYTE_ACCESS, (WORD)0xa3, 0x3c} // TTR - 16 usec

User’s Manual VPCIVMED W-Ie–Ne-R
Plein & Baus GmbH

March 00 18 *00437.A0

{VIC, BYTE_ACCESS, (WORD)0xb3, 0x40} // ARCR
{VIC, BYTE_ACCESS, (WORD)0xb7, 0x29} // AMSR
{VIC, BYTE_ACCESS, (WORD)0xd3, 0x00} // RCR

{IFR, LONG_ACCESS, (WORD)ADRHL, 0xF0F0F0F0} // ADR-H, ADR-L
{IFR, WORD_ACCESS, (WORD)CSR , 0x0000} // Contr-Reg

{VIC, BYTE_ACCESS, (WORD)0x7f, 0x80} // ICR7

{LCR, WORD_ACCESS, 0x4c, 0x0009} // disable
interrupts

{STOP, WORD_ACCESS, 0, 0}

APPENDIX E: Standard deinitialization procedure

Deinitialization is divided into two part. Part one is run before the user deinitiali zation:

{VIC, BYTE_ACCESS, (WORD)0x7f, 0x00}, // ICR7 - set
SYSFAIL
{LCR, WORD_ACCESS, 0x4c, 0x0009}, // disable
interrupts
{STOP, WORD_ACCESS, 0, 0}};

Part two starts after the user commands:

{LCR, WORD_ACCESS, 0x50, 0x4080}, // disable
interface
{STOP, WORD_ACCESS, 0, 0}};

