VPCIVMED
Windows 95driver for
PCI-VME

User's Manual

*00437A0

General Remarks

The only purpase of this manual is a description of the product. It must nat be interpreted a
dedaration of conformity for this product including the product and software.

W-1e-Ne-R revises this product and manual without notice Differences of the description in
manual and product are possible.

W-1e-Ne-R excludes completely any liability for loss of praofits, lossof business, lossof use
or data, interrupt of business, or for indirect, special incidental, or consequential damages of
any kind, even if W-1€-N€-R has been advises of the possibility of such damages arising
from any defect or error in this manual or product.

Any use of the product which may influence heath of human beings requires the express
written permission of W-1€-Ne-R.

Products mentioned in this manual are mentioned for identification purposes only. Product
names appearing in this manual may or may not be registered trademarks or copyrights of
their respective companies.

No part of this prodwct, including the product and the software may be reproduced,
transmitted, transcribed, stored in a retrieval system, or trandated into any language in any
form by any means with the expresswritten permisson o W-1e-Ne-R.

VPCIVMED isdesigned by ARW Elektronik, Germany

March 00 [*00437A0

Table of contents:

1. VPCIVMED driver: General desCription............ccevveeireiiiiiiimeeneeieeeeeeeeeeeeeeeeeeaeeseennnens 1
P 1 0= 7 | = o OO PPPUPPRPRRRR 2
3. OpEAING e ANVEN ..o ennnraeees 3
3.1. A simpletest Unit: PVMON.EXEccooiiiiiiiiiiiiiieeee e 3
3.2. Usingthedriver for program Code.............covvieiiiiiiiiiieeeie e 3
K S o= PP PPRRPPPRRPR 4
G S 1 01 (= (] 0BV = (0] £ TP 6
APFENDIX A PagKing liSt: ..evvueiiiiiiiiiiiiiiiiimmme ettt eeee e s e 7
APFENDIX B : Short form manual of pymon...............ccooooiiiiii e 8
APFENDIX C: Header file VPCIVIMEA.NL.....eueiiiciccee e eeeeeeeeeeeeeeeee e 10
APFENDIX D : Standard initiali zation proCeAUIre.............covvveviiieiieiieeeee e 17
APFENDIX E : Standard deinitialization procedure...............ccoovvveiiiieeeeeccieeeceee e, 18
List of tables:
Table 1: Coding of interrupt level andVeAOr.coiieiiiee e eeee 5
Table 2: Interrupt vedors for different SOUrCES............ooovviiiiiiiiiiiiceeeeccccce e 6

March 00 ii *00437A0

User’'s Manual VPCIVMED W-1e-NEe-R
Plein & Baus GmbH

VPCIVMED driver: General description

VPCIVMED provides an easy awessto the VME bus for Windows95" and 98 users. It's
major efforts are demonstrated by a small test program pvmon.exe whichis suppliedinthe
same padckage.

It iseasy to usethe driver for your own VME application. The driver is independent from the
chaosen programming language since Windas95 standard 1/0 functions are used for the
communication.

VME accessis performed via a interface window of an areaof virtual memory which is
defined by the driver. For user applications this window looks like normal memory. Read
and write operations to the VME bus are mnverted into simple read and write operations into
the (nat real) memory.

The access to the driver is nat limited to ore process Multiple processes can use the driver.
Even ore driver supports multiple VME interfaces.

Different levels of VME interrupts are handled by the interface The driver provides svera
serviced to operate these interrupts.

! Windows95 and Windows98 are trademarks of the Microsoft Corporation.

March 00 1 *00437A0

User’'s Manual VPCIVMED W-1e-NEe-R
Plein & Baus GmbH

| nstallation

Be sure that PCIADA cad of the PCI-VME interface isinstalled in your PC. Please refer to
the PCI-VME manual to insert the card.

After switching on you machine Windows recognizes the new hardware in you system and
asks for a driver. Insert the supplied CD into your drive and enter the driver’s path. If you
CDROM isdrive D type D:\WIN95\DRIVER .

In the next step the driver is copied to WINDOWS\SYSTEM\VPCIVMED.VXnd the
interface is added to the WNDOWS registry. You will find the driver at
HKEY_LOCAL_MACHINE\ENUM\PCI\VEN10B5&DEV9050 ...

You will find the interface & start / settings / control panel / system
/ device manager where Interrupt and /O settings can be verified.

Note: The driver only works for Windows 95/ 98 in 32 bit mode. Only red 32 bit
applications can use the driver but it does not work for MS-DOS” or WINDOWS
3.11 pograms.

So far WINDOWS NT? is not supported. A driver is under preparation.

2MS-DOS and Windows 3.11 are trademarks of the Microsoft Corporation.

3 Windows NT is atrademark of the Microsoft Corporation.

March 00 2 *00437A0

3.1.

3.2.

User’'s Manual VPCIVMED W-1e-NEe-R
Plein & Baus GmbH

Operating thedriver

A smpletest unit: pvnon. exe

The program is a useful tod to check the accessto the VME bus and test VME modues. It
expects the driver vpcivmed in C:\WINDOWS\SYSTEMIT it is not there the path hes to be
specified.

Open a DOS box and start pvmon by typing pvmon -? . A short help is displayed. Help can
be obtained by typing ? onthe prompt, too.

Before accessing the VME bus pvmon hes to be configured by typing c. Store the settings
and restart the program. Now you can exchange data with the VME bus.

For more information please refer to the short form manual in APFENDIX B.

Using thedriver for program code

Access to the driver is managed by Windows 95 Standard 1/0O functions which are
independent from the programming language. Header files for c++ programs are supplied
with the interface. They could easy adapted to other languages.

In your program include files vpcivmed.h and windows.h . Add winerror.h too if
you want to use GetLastError() to decode aror messages. Use window’s function
CreateFile() to open the interface DeviceloControl() to operate it and
CloseHandle () to closeit.

At maximum VPCIVMED MAX PQIDA PCIADA cads (currently 4),
VPCIVMED_MAX_VMEMNterfaces (16) and VPCIVMED_MAX_WINDOWS) different
windows are supported by the driver. These parameters are defined in vpcivmed.h . Only
the number of the VMEMM modueis used to identify different modues and cards.

Intercommunication ketween driver and the users program is dore via memory windows.
The driver provides awindow for ead process who requested it returning a pointer into the
window.

Size, AddressModifier and off set to accessthe VME bus isfixed for each window. Random
acaessto dfferent windows it possible. The driver itself takes care of Address Modifier and
addressoffsets.

Any PCI-VME appli cation using the driver contains threemajor parts:
1. Startup

vxd_Handle = CreateFile(VxDpathName,0,0,NULL,O,
FILE_FLAG_DELETE_ON_CLOSE,NULL);

During this procedure number and IDs of connected VMEMM modues s determined.
2. Controalling the Interface Each aacessto the interface is dore by
result = DeviceloControl(vxd_Handle,);

It isonly necessary to passthe ID of the seleded VMEMM modueto the driver. The
corresponding ID of the PCIADA card is calculated automatically.

3. Shut down On the command
CloseHandle(vxd_Handle);

the driver is closed for the goplication. It isremoved of the memory after it’slast process
has finished.

March 00 3 *00437A0

3.3.

User’'s Manual VPCIVMED W-1e-NEe-R
Plein & Baus GmbH

Services

The driver provides different services which communicae via DeviceloControl() with
the application. Numbers and dtructures for this communicaion are defined in
vpcivmed.h (see APFENDIX C). Define Pointers to in and out structures before alling
the driver.

A cdl of the driver may look like:

VPCIVMED_STANDARD_COMMANSInterface;
VPCIVMED_VECTOR_LEVEL sVectorLevel,

DWORD DIOC_count;

DWORD dwResult;

*

*

sinterface.dwinterface = 1, 1 selection of1 8 VMEMM

/[poll ifan interrupt is pending ------------------

dwResult = DeviceloControl(vxd Handle, VPCIVMED_READ VECTOR,
&slinterface, izeof(slnterface),& sVectorLevel,

sizeof(sVectorLevel), & DIOC_count, NULL);

if ! dwResult)

printf(, Error %d occured\n®, GetLastError());
else
printf(,l have reada vector%d at level% d\n“,
sVectorLevel.dwStatusID, wlLevel);

Service VPCIVMED_READ_VECTQRcalled. Pointersto in and aut structure andit’s sizes
are neassry. An error code which is explained in winerror.h and the real size of the
returned datais returned.

Description d the defined services:

VPCI VMED | NI T_HARDWARE initidlizes one VMEMM modue. Standard initialization
commands are summarized in APPENDIX D. Additiond initiaization commands can be
passd to the interface. All VPCIVMED _INIT_COMMANEhave to be stored in a STOP
terminated array. Example:

struct

DWORDwInterface;
VPCIVMED_INIT_ELEMENTsVICJ3];
} sUserlnitStruct = {0, {{VIC, BYTE_ACCESS, 0x57, OxAA},
{VIC, BYTE_ACCESS, 0x53, 0x00},
{STOP, WORD_ACCESS, 0x00, 0x00}}};

Note: If the aray contains only the STOP element the standard initialization will be
performed.

The interface will be initialized onthe first call of the service. It has to be deinitiaized
before anew initiaizaionis possible.

VPCI VMED DEI NI T_HARDWARE deinitializes the spedfied VMEMM board and it's
PCIADA cad. Additiona commands are added as described above. APFENDIX E shows
the standard commands.

VPClI VMED ATTACH W NDOWreserves a window for VME acass One process can open
VPCIVMED_ MAX_ WINDOWS maximum. Parameters which are required to open a
window are passed inaVPCIVMED_ADD_WINDQ¥#ucture. The window sizeis limited
to 256Mbyte.

March 00 4 *00437A0

User’'s Manual VPCIVMED W-1e-NEe-R
Plein & Baus GmbH

Address Modifier, a Base Address and size have to be specified for each window. Only
values at the alge of a 4k page ae possible for address and size. The driver’s header file
provides maao functions PAGE_BASE() and PAGE_SIZE() to cadculate these
numbers.

The driver maps the specified areaof the VME bus into the (virtual) memory. A paointer
to this memory region is returned. Each aacessto this region is mapped into the VME
bus. Any acessout of the window will be denied.

Errors during VME bus access are not reported as Windows errors.

VPCl VMED_DETATCH W NDOW releases a previoudy reserved window. Use a
VPCIVMED_REMOVE_WIND@¥I(cture to define parameters.

VPCl VMED GET_STATI C_STATUS returns datus information o a VMEMM interface in
aVPCIVMED_STATIC_STATUStructure.

VPCl VMED_GET_DYNAM C_STATUS informs abou parameters of the interface which
change during operation. Use a VPCIVMED_DYNAMIC_STATUSstructure for
communication.

VPCl VMED_READ VECTOR returns interrupt information in a
VPCIVMED_VECTOR_LEVHitructure.

VPCl VMED_ACCESS_VI C68A provides dired aacess to the VIC68A chip. Use a
VPCIVMED_VIC68A_ACTIONStructure to program the chip and for the exchange of
data.

The PCI-VME profits of the huge variety of features which are provided by the VIC68A
chip, e. g. dired aacess to 63xxx procesrs and programmable delays by accesing the
VIC68A directly. No limitations of this communication are installed.

Notee Do na change awy registers which may influence the Address Modifier
Register. It will cause arorsin the mecdhanism of interface windows.

VPCl VMED | NSTALL | RQ HANDLER ingtalls the interrupt handler on the local interrupt
priority level. The TCB (Thread Control Block) of the alling thread is dored when the
service is aaessed. If an interrupt is enabled and released and the thread is dertable it is
possible to invoke the installed interrupt handler.

Either PCIADA or VMEMM interrupts cause the interrupt handler. Interrupt source is
coded in a parameter which isdescribed in Table 1.

Table 1: Coding of interrupt level and vedor.

meaning unused interrupt level unused interrupt vector
bits 31t0 19 18t0 16 15t0 8 7100

A BUS ERROR is handed asan VMEMM Interrupt. Sincethe driver islocked after each
VMEMM interrupt it has to be released by the user’s applicaion. Interrupts caused by
PCIADA are treated as virtual level 8.

VPClI VMED CONTRCOL_| NTERRUPTS controls the interrupt mechanism. It enables or
disables pedfied interrupts of PCIADA or VMEMM.

VPCl VMED_TAS causes an uninterruptible o/cle on the VME bus which is comparable to
the TAS command d 68XXX processors.

VPClI VMED GET_PCI ADA STATUS returns datus of al connected PCIADA boards
installed in the PC. It checks which VMEMM modues are conrected and ready.

March 00 5 *00437A0

3.4.

User's Manual VPCIVMED

W-1e-Ne-R

Plein & Baus GmbH

VPCl VMED_RESET controls different reset functions of the interface ad the VME bus

which are alocd reset, aglobal reset and aVME busreset.

Contents of all VIC68A registers are lost during a reset. Perform a deinitialization and a

reinitiali zation after the reset to reload registers.

Interrupt vectors

Each interrupt caused by VMEMM has to be vedored. Normally vedors from 0x00to Ox3
are used by the driver (internal use) and vedors from 0x40 to OxFF are reserved for VME

bus andit’s peripheras. Refer to Table 2 for detailed information.

Note: Thetimeout interrupt generated by PCIADA causes an interrupt vedor number 1.

Table 2: Interrupt vectorsfor different sources.

I nterrupt source vedor no.
Interrupt caused by PCIADA (time out) 1 (active)
Clock Tick Interrupt Generator 2

Reset push button a the front panel 6 (active)
VME bus Timeout (Bus-Error) 7 (active)
Interprocesscommunication global switch #0 8
Interprocesscommunication global switch #1 9
Interprocesscommunication global switch #2 10
Interprocesscommunication global switch #3 11
Interprocesscommunication modu e switch #0 12
Interprocesscommunication modue switch #1 13
Interprocesscommunicaion modue switch #2 14
Interprocesscommunicaion modue switch #3 15
ACFAIL assrted 16
Write post Fall 17
Arbitration Timeout 18
SYSFAIL assrted 19

VME bus Interrupter adkknowledge 20

to take cae of any further action which should be performed.

performed.

Note: Pressing the reset button on the front panel causes an interrupt. Applications have

Note: If more than one goplication use one window of the interfaceit is not possible to
locate the cause of a VME BUS ERROR. In this case every only one &tion is

If errors occur during interrupt operations ched at start / settings / control
panel / system / device manager if any interrupt reserved for the interface The
interfaceworks withou a reserved interrupt but interrupt functions are not avail able in this

cese.

March 00 6

*00437A0

User’'s Manual VPCIVMED W-1e-NEe-R
Plein & Baus GmbH

APPENDIX A: Packing list:

Thedriver isdelivered in ore CD ROM which contains:
Directory WIN95\DRIVER:

vpcivmed.vxd the driver
pcivme.inf INF filefor installation

Directory WIN95\DRIVER\SOURCE

vpcivmed.h header file to accessthe driver
vic.h header file for the VIC68A chip
vme.h header file to accessthe VME bus

source filesfor the driver

Directory WIN95\PVMON
pvmon.exe auseful program

Directory WIN95\PVMON\SOURCE
source files for pvmon.

March 00 7 *00437A0

W-1e-Ne-R

Plein & Baus GmbH

User's Manual VPCIVMED

APPENDI X B: Short form manual of pvmon

pvmon is a simple shell program to test the PCI-VME interface by ARW Elektronik. The
code is OpenSource and is enclosed to the interface

This program is freesoftware; you can redistribute it and/or modify it under the terms of
the GPL as published by the FSF(version 2 a later).

Overview of pvmon commands (type “?” to get this help):

a[h] [adrmode]

c

d[m] [start] [end]

e[m] <start> [value]
f<m> <start> <end> <x>
g<m> <st> <en> [1] [X]

: Change aldress modifiers, h=help

: Configureinterface

: Dump memory area

: Examine or change memory area

: Fill memory from <start> til <end> with <x>

: Generate randam memory test. (loopl, seed x)

h : Thishelp

[. Interfaceinit

[[m] : Get VME interrupt status/ID
m<m> <src> <end> <dest> : Move memory area

o] : Jump to OS

p[adrmode] : Port seach

q > Quit program

r[x] <f> <start> [end|

g m] <start> <end> <p>
t <start>

v

w[x] <f> <start> <end>
X <start> [val]

y[1/0]

7[0..3

: Rea file <f>to VME, x=x or s (HEX)
: Search pattern <p>=different Items

: TASemulation, Test and Set' bit 7

: Generate VME SY SRESET

: Write VME into file <f>, h=Intel Hex

: Read/Writeto interfaceregister @ start
: Read/set/clea SY SFAIL

: Show interfaceinternals

m = mode, e.g. b=byte, w=word, I=long (dowble) word; h = help, x= hex
start(address), end(address), src=source, dest=destination, [[=option

pvmonis available for WIN 95/NT and Linux. The driver for the operating system has to be

installed.

An error message is reported if no driver was fourd or the VME crate is not online.

Thefirst time pvmonis gsarted a @nfiguration is mandatory. Simply type ¢ onthe cmmand

line.

March 00

8 *00437A0

User’'s Manual VPCIVMED W-1e-NEe-R
Plein & Baus GmbH

Powerful commands are implemented in pvmon. Try p to look for ports or test the RAM on
the VME bus with the command:

gw 0 10000 40

In the addressrange from 0x00000to 0x100M RAM s tested for the predetermined address
modifier in 0x40 runs using a randam pattern.

Note: Before using the command make sure that no important data is stored in the
addressrange. All addresses will be overwritten.

To use pvmoninteractively type e g.
pvmon a39/p/a29/p

First address modifier is st to 0x39and the aldressrange is <anned readable addresses.
The sameisrepeated for AM = 0x29.

March 00 9 *00437A0

User’'s Manual VPCIVMED W-1e-NEe-R
Plein & Baus GmbH

APPENDI X C: Header file vpcivmed.h
#ifndef _ PCIVMEH_H__

1

/I PCIVMEH.H, shared between applications and VPCIVMED driver
1

/I (c) 1999 ARW Elektronik

1

/I this source code is published under GPL (Open Source). You can
use, redistribute and

/I modify it unless this header is not modified or deleted. No
warranty is given that

/I this software will work like expected.

/I This product is not authorized for use as critical component in

life support systems

/I without the express written approval of ARW Elektronik Germany.
1

/I Please announce changes and hints to ARW Elektronik
1

/I What

Who When

/I first steps

AR 24.01.98

/l added direct read write access to vic68a chip registers

AR 12.07.98

/I rename PCR_* into LCR_*

AR 19.07.98

/[TAS included

AR 17.02.99

/I Corrections about interrupt handling

AR 20.02.99

/I changes about PCIADA status

AR 25.02.99

/I changes of IOCTL codes because of compatibility to WIN NT

AR 12.03.99

/I PLX 9052 removed out of VPCIVMED_STATIC_STRUCT

AR 16.03.99

/I VIC68A_WRITE_ONLY added

AR 17.03.99

Il extension for VME reset

AR 18.04.99

Il release of version 2.5 for driver

AR 18.04.99

1

I

/I constants to be used to access certain features of the PCIVME
interface

1

#define VPCIVMED_CTL_CODE(x) (0x80002000 | (x << 2)) //
compatibility to WIN-NT

#define VPCIVMED_INIT_HARDWARE (VPCIVMED_CTL_CODE(0)) /
initializes the hardware with given parameters

#define VPCIVMED_DEINIT_HARDWARE (VPCIVMED_CTL_CODE(1)) //
uninitializes the hardware

#define VPCIVMED_ATTACH_WINDOW (VPCIVMED_CTL_CODE(2)) //
requests a base address to a vme window

March 00 10 *00437A0

User’'s Manual VPCIVMED W-1e-NEe-R
Plein & Baus GmbH

#define VPCIVMED_DETACH_WINDOW (VPCIVMED_CTL_CODE(3)) //
freesa vme window

#define VPCIVMED_GET_STATIC_STATUS (VPCIVMED_CTL_CODE(4)) // asks
for INTERFACE structure

#define VPCIVMED_GET_DYNAMIC_STATUS (VPCIVMED_CTL_CODE(5)) // asks
for dynamic status

#define VPCIVMED_READ_VECTOR (VPCIVMED_CTL_CODE(6)) //

reads the level and vector of IRQ

#define VPCIVMED_ACCESS_VIC68A (VPCIVMED_CTL_CODE(7)) //

access vic68a register

#define VPCIVMED_INSTALL_IRQ_HANDLER (VPCIVMED_CTL_CODE(8)) //
installs a handler function

#define VPCIVMED_CONTROL_INTERRUPTS (VPCIVMED_CTL_CODE(9)) //
enable, disable of interrupts

#define VPCIVMED_TAS (VPCIVMED_CTL_CODE(10)) // make

test and set

#define VPCIVMED_GET_PCIADA_STATUS (VPCIVMED_CTL_CODE(11)) // get
the status of PCIADA(s) only

#define VPCIVMED_RESET (VPCIVMED_CTL_CODE(12)) // make

a reset to VME or global

I

/I possible return codes
1
#define BOGUSADDRESS Oxffffffff ~ // Returned by MS routines

I

/I some built in limits

1

#define VPCIVMED_MAX_PCIADA 4 // maximum count of supported PCI
interfaces

#define VPCIVMED_MAX_VMEMM 16 // maximum number of supported
VMEMMs

#define VPCIVMED_MAX_WINDOWS 8 // maximum number of windows into
VME

1

/I switches and masks
1

/I switches for VPCIVMED_INIT_COMMANDs
#define LCR (BYTE)O // destination is LCR register
#define IFR (BYTE)1 // destination is VME-Interface register

#define VIC (BYTE)2 // destination is VIC68A register

#define STOP (BYTE)255 // this command stops the init machine

#define BYTE_ACCESS (BYTE)1 // write byte wise
#define WORD_ACCESS (BYTE)2 // word
#define LONG_ACCESS (BYTE)4 // long

/I switches for VPCIVMED_ACCESS_VIC68A
#define VIC68A_READ 0 //read only access

#define VIC6BA_WRITE 1 // write and read back access
#define VIC68A_OR 2 [/l read, bit wise 'or' content and
read back access

#define VIC68A_AND 3 [/l read, bit wise ‘and’ content and
read back access

#define VIC68A_WRITE_ONLY 4 // do not read back after write

March 00 11 *00437A0

User’'s Manual VPCIVMED W-1e-NEe-R
Plein & Baus GmbH

/I switches for VPCIVMED _VECTOR_CMD
#define READ_CURRENT_LEVEL 0 // try to get the current IRQ level
#define READ_VECTOR 1 /I (if level == 0) read vector @
current LEVEL else @ level

Il switches for the VPCIVMED_RESET
#define VME_RESET_CMD 0 //raise a VME reset only
#define LOCAL_RESET_CMD 1 //raise a local reset only
#define GLOBAL_RESET_CMD 2 //raise a global reset
#define POLL_RESET_CMD 3 //askif reset is finished

/I address masks for the pager - to use for offset and size @ window
alignment -----------

#define H_ADDRESS_MASK (DWORD)OxFFFFFO00 // masks the high
part of a vme address

#define LO_ADDRESS_MASK (~HI_ADDRESS_MASK) // masks the low
part of a vme address

#define ONE_PAGE_SIZE (LO_ADDRESS MASK + 1) // size of 1 page
(hardware related)

/I macros to calculate the real base and the real size of demand

pages -------------------

#define PAGE_BASE(base) (base & HI_ADDRESS_MASK) // makes an
aligned base for a page

#define PAGE_SIZE(base, size) (((base + size + LO_ADDRESS_MASK) /
ONE_PAGE_SIZE) * ONE_PAGE_SIZE)

1

// ERROR RETURNS in dlIfcStatus

1

#define E_ NO_ERROR 0 //all OK

#define E_INCOMPATIBLE 1 // incompatible hardware

#define E_NO_ADDRESS 2 [l cant get Icr or ifr addresses
#define E_NOT_CONNECTED 3 // no VMEMM hardware connected

#define E_CON_ERROR 4 |/ data transfer failure

#define E_EMPTY -1 /I no PCl interface associated

1

/I shared structures between PCIVME-IF and Application - COMMANDS
1
typedef struct

DWORDwInterface; /I some command only need this input
into requests
} VPCIVMED_STANDARD_COMMAND;

typedef struct /I one command element to initialize
interface or deinitialize
BYTE range; 110= ler, 1 = vme-interface, -1 =
stop, default = vme-if
BYTE type; /I 1 = byte access, 2 = word access, 4
= dword access, default byte
WORD offset; /I offset into interface address range
for initialisation
DWORD value; /I value to initialize

} VPCIVMED_INIT_ELEMENT;

March 00 12 *00437A0

User’'s Manual VPCIVMED W-1e-NEe-R
Plein & Baus GmbH

typedef struct
{

DWORD dwinterface; // targets to interface number
VPCIVMED_INIT_ELEMENT sVie[1]; // at least one zero element must
be the last
} VPCIVMED_INIT_COMMAND;

typedef struct

{
DWORD dwinterface; /I targets to interface number ...
DWORD base; /I offset into VME address range.
(base + size) must be less than
DWORD size; // 128 Mbytes for ext, 16 Mbytes for
std, 64k for short
WORD maodifier; /I VME address modifier for this
window

} VPCIVMED_ADD_WINDOW;

typedef struct
{

DWORDdwInterface; /[targets to interface number ...
DWORD pdwLinAdr; I linear address of window to remove
} VPCIVMED_REMOVE_WINDOW,;
typedef struct

DWORD dwinterface; /I targets to interface number ...

DWORD dwAddress; I tas to address

WORD wModifier; /I VME address modifier for this
window

BYTE bContent; /I byte content to store and get back

} VPCIVMED_TAS_STRUCT;

typedef struct

{
DWORDwInterface; /[targets to interface number ...
WORD wRegisterAddress; // address offset of vic68a register
WORD wAccessMode; /l read, write, or, and
BYTE bContent; /I content to write, and, or

} VPCIVMED_VIC68A_ACTION,;

typedef struct

DWORDwInterface; /l targets to the interface number
DWORDwIrgHandler; /I void (* IrgHandler)(DWORD) = User
Handler
} VPCIVMED_IRQ_HANDLER; /I BOGUSADDRESS deinstalled
typedef struct
{
DWORDwInterface; /I targets to the interface number
WORD wEnable; /l a1 enables, a 0 disables

} VPCIVMED_IRQ_CONTROL;
typedef struct
DWORDdwInterface; [/l targets to interface number ...

WORD wAction; /I read current irq level, read
vector @ level

March 00 13 *00437A0

User’'s Manual VPCIVMED W-1e-NEe-R
Plein & Baus GmbH

WORD wType; /I must be setto 1
} VPCIVMED_VECTOR_COMMAND;

typedef struct
{

DWORDdwInterface; [/l targets to interface number ...
WORD wCommand;
} VPCIVMED_RESET_COMMAND;

1

/I shared structures between PCIVME-IF and Application - RESPONSE
I

/l'includes static information about driver parameters ------

typedef struct /I caution: very sensitive on
alignment
DWORDwInterface; /I comes from the interface No.
DWORDOlIfcStatus; /I usable ? fits to driver? OK?
DWORDIwLinkCount; /I how often this interface is
requested

WORD wNumMemWindows; /l from actual configuration
WORD wNumIOPorts;

WORD wNumIRQs;

WORD wNumDMAS;

DWORDILCR_MemBase; /I from actual configuration
DWORDOILCR_MemLength;

WORD wLCR_I0OBase;
WORD wLCR_IOLength;
WORD wLCR_IRQ;
WORD wReservel,;

DWORDIUSR_MemBase,;
DWORDUSR_MemLength;

WORD wModuleType; /I read from connected hardware
WORD wFPGAVersion;

WORD wModuleNumber;

WORD wWordMode;

WORD wSysControl;
WORD wConnected;

PVOID pvLcr; Il virtual address of LCR
PVOID pvilfr; /I virtual address of IFR
/I some addresses to tune performance
WORD *pwCSR; /I pointer to Csr register
WORD *pwIRQStat; /I pointer to irq status
BYTE * pbVector; /I pointer to vector read register
DWORD pdwVMEAdr; /I pointer to VME address register
BYTE * pbModifier; /I pointer to address modifier
register
void * pvVME; /l pointer into VME window
DWORDIwPagePhysVME; /I physical page number of the VME
window

March 00 14 *00437A0

User’'s Manual VPCIVMED W-1e-NEe-R
Plein & Baus GmbH

void * pslirqDescriptor; // pointer to associated irg
descriptor

DWORDwActivePage; /l the current active page of this
interface

WORD wReservez,;

char cszHWRevision[10];
} VPCIVMED_STATIC_STATUS;

typedef struct
DWORDwInterface; /l comes from the interface No.

WORD wVMEMM_connected; // status: VMEMM is connected and

powered
WORD wVMEMM_enable; /I status: VMEMM access is enabled
WORD wPCIADAIrq; /I status: PCIADA timeout IRQ pending
WORD wVMEMMIrq; / status: VMEMM IRQ pending

} VPCIVMED_DYNAMIC_STATUS;

typedef struct

DWORDwInterface; /I comes from the interface No.

DWORDIwStatusID; /I interrupt-vector (byte, word, long)

WORD wLevel, Il interrupt-level

WORD wPClIrq; I/l pending PCIADA Irg detected and
cleared

} VPCIVMED_VECTOR_LEVEL;

typedef struct

{
DWORDIwDummy; /I nothing useful in here
WORD wVersion; /l Version of driver
WORD wNumberOfinterfaces; // number of detected PCIADA
struct
DWORDlIfcStatus; /I connection status of PCIADA-VMEMM
DWORDIwLinkCount; /I how often this interface is
requested

WORD wModuleType; /I if connected: type of connected
module
WORD wFPGAVersion; /I if connected: Version of VMEMM FPGA
WORD wModuleNumber; /I if connected: Number of Connected
VMEMM

WORD wWordMode; Il if connected: Mode of operation
WORD wSysControl; I/l if connected: VMEMM sysctl status
WORD wConnected; /I connected or not

WORD wDummy;
char cszHWRevision[10]; // revision of PCI interface
} sPCIAda[VPCIVMED_MAX_PCIADA]; /I status of each one
} VPCIVMED_PCIADA_STATUS;

typedef struct

DWORDdwInterface; [/l targets to interface number ...
WORD wResult;

March 00 15 *00437A0

User’'s Manual VPCIVMED W-1e-NEe-R
Plein & Baus GmbH

} VPCIVMED_RESET_RESULT; I/l polling result: in progress if
(wResult 1= 0)

#define _ PCIVMEH_H_
#endif

March 00 16 *00437A0

User's Manual

VPCIVMED W-1e-Ne-R

Plein & Baus GmbH

APPENDI X D: Standard initialization procedure

The standard initialization procedure is summarized in the following array:

{LCR,

WORD_ACCESS, 0x4c, 0x0009}

interrupts

{LCR,

WORD_ACCESS, 0x50, 0x4180}

interface

{VIC, BYTE_ACCESS, (WORD)0x03, Oxf8+1}

{vIC,
{vic,
{vic,
{vic,
{vic,
{vIC,
{vic,

{vIC,

{vic,
{vic,
{vic,
{vic,
{vic,
{vIC,
{vic,

{vIC,
{vic,

{vIC,

{vIC,
{vic,

{vIC,
{vIC,
{vIC,

{vic,
{vic,
{vIC,
{viC,
{vic,

{vIC,

{vic,
{vic,
{vic,
{vic,
{vic,
{vIC,
{vic,

{vIC,

March 00

/l disable

/I enable

I VIICR

BYTE_ACCESS, (WORD)0x07, 0x78+1} // VICR1

BYTE_ACCESS, (WORD)0x0b, 0x78+2}
BYTE_ACCESS, (WORD)O0XOf, 0x78+3}
BYTE_ACCESS, (WORD)O0x13, 0x78+4}
BYTE_ACCESS, (WORD)0x17, 0x78+5}
BYTE_ACCESS, (WORD)0x1b, 0x78+6}
BYTE_ACCESS, (WORD)O0X1f, 0x78+7}

BYTE_ACCESS, (WORD)0x23, 0xf8+0}

BYTE_ACCESS, (WORD)0x27, Oxf8+1}
BYTE_ACCESS, (WORD)0x2b, 0xf8+2}
BYTE_ACCESS, (WORD)0x2f, 0xf8+3}

BYTE_ACCESS, (WORD)0x33, Oxf8+4}
BYTE_ACCESS, (WORD)0x37, Oxf8+5}
BYTE_ACCESS, (WORD)0x3b, 0x38+6}
BYTE_ACCESS, (WORD)O0Xx3f, 0x38+7}

BYTE_ACCESS, (WORD)0x43, Oxf8+2}
BYTE_ACCESS, (WORD)0x47, Oxf8+3}

BYTE_ACCESS, (WORD)0x4b, Oxe8+6}

BYTE_ACCESS, (WORD)O0x4f, 0x08}
BYTE_ACCESS, (WORD)0x53, 0x0c}

BYTE_ACCESS, (WORD)0x57, 0x00}
BYTE_ACCESS, (WORD)0x5b, 0x10}
BYTE_ACCESS, (WORD)0Xx5f, 0x00}

BYTE_ACCESS, (WORD)0x63, 0x00}
BYTE_ACCESS, (WORD)0x67, 0x00}
BYTE_ACCESS, (WORD)0x6b, 0x00}
BYTE_ACCESS, (WORD)0Xx6f, 0x00}
BYTE_ACCESS, (WORD)0x73, 0x00}

BYTE_ACCESS, (WORD)0x83, Oxfe}

BYTE_ACCESS, (WORD)0x87, 0x0f}
BYTE_ACCESS, (WORD)0x8b, 0x0f}
BYTE_ACCESS, (WORD)0x8f, 0xOf}
BYTE_ACCESS, (WORD)0x93, 0x0f}
BYTE_ACCESS, (WORD)0x97, 0x0f}
BYTE_ACCESS, (WORD)0x9b, 0x0f}
BYTE_ACCESS, (WORD)0x9f, 0xOf}

BYTE_ACCESS, (WORD)0xa3, 0x3c}

I VICR7
/I DSICR

// LICR1

Il LICRY

I1'1CGS
I 1ICMS

I EGICR

/1 ICGS-IVBR ()
/I ICMS-IVBR ()

/I LIVBR (1)
/I EGIVBR ()
/I 'CSR

/' 1CRO

/' '1CR4
/I VIRSR

/l VIVR1

Il VIVR7

/I TTR -16 usec

17 *00437A0

User’'s Manual VPCIVMED W-1e-NEe-R
Plein & Baus GmbH

{VIC, BYTE_ACCESS, (WORD)0xb3, 0x40} // ARCR
{VIC, BYTE_ACCESS, (WORD)0xb7, 0x29} // AMSR
{VIC, BYTE_ACCESS, (WORD)0xd3, 0x00} // RCR

{IFR, LONG_ACCESS, (WORD)ADRHL, 0OXFOFOFOF0} // ADR-H, ADR-L
{IFR, WORD_ACCESS, (WORD)CSR , 0x0000} // Contr-Reg

{VIC, BYTE_ACCESS, (WORD)Ox7f, 0x80} // ICR7

{LCR, WORD_ACCESS, 0x4c, 0x0009} I disable
interrupts

{STOP, WORD_ACCESS, 0, 0}
APPENDIX E: Standard deinitialization procedure

Deinitializationis divided into two part. Part one is run before the user deinitiali zation:

{VIC, BYTE_ACCESS, (WORD)O0x7f, 0x00}, // ICR7 - set
SYSFAIL

{LCR, WORD_ACCESS, 0x4c, 0x0009}, / disable
interrupts

{STOP, WORD_ACCESS, 0, 0}};

Part two starts after the user commands:

{LCR, WORD_ACCESS, 0x50, 0x4080}, /I disable
interface
{STOP, WORD_ACCESS, 0, 0}};

March 00 18 *00437A0

