User’s Manual PCI-CC32 Ww-Ie-Ne-R
Plein & Baus GmbH

Vpcic32D.VXD,
PCICC32SYS
&
PCICC32 NI

Windows 9598 driver, Windows-NT
driver for
PCIl-to-CAMAC Interface

User’s Manual

April 2001 1 *00527.A1

User’s Manual PCI-CC32 Ww-Ie-Ne-R

Plein & Baus GmbH

General Remarks

The only purpose of this manual is a description of the product. It must not be interpreted a declaration
of conformity for this product including the product and software.

W-le-Ne-R revises this product and manual without notice. Differences of the description in manual
and product are possible.

W-le-Ne-R excludes completely any liability for loss of profits, loss of business, loss of use or data,
interrupt of business, or for indirect, special incidental, or consequential damages of any kind, even if
W-le-Ne-R has been advises of the possibility of such damages arising from any defect or error in this
manual or product.

Any use of the product which may influence health of human beings requires the express written
permission of W-le-Ne-R.

Products mentioned in this manual are mentioned for identification purposes only. Product names
appearing in this manual may or may not be registered trademarks or copyrights of their respective
companies.

No part of this product, including the product and the software may be reproduced, transmitted,
transcribed, stored in aretrieval system, or translated into any language in any form by any means with
the express written permission of W-1e-Ne-R.

VPCICC32D is designed by ARW Elektronik, Germany

Windows95/98 und Windows-NT are trade marks of Microsoft Corp.
LINUX isaLinus Torvalds trade mark

April 2001 2 *00527.A1

User’s Manual PCI-CC32 Ww-Ie-Ne-R
Plein & Baus GmbH

Table of contents

1. GENERAL DESCRIPTION. . .cciittti ettt e ettt e siie s e etee e sttt e s sttt e ettt besa st e e s sbaeseessae e sbseeesasaeassseessbbeeesabaes senneeesnnns 4
2. INSTALLATION OF THE WINOSO98 DRIVER ..ottt ettt ettt et s evae s s s sraas e saaee e 5
3. INSTALLATION OF THE WIN-NT DRIVERttt ettt ettt e svaaa e e s sabr e s s s sbaeee e e s s nnes 7
4. TEST OF DRIVER INSTALLATION Lottt ittt ettt st e st e e e stae e satee s sate e s e stes s sabaeessbaessssbessasnesssbenssnsnnees 9
5. DRIVER DESCRIPTION ..ottt ittt ettt et e ettt e st st e e e stbe s eebs e saatseestaeaessbaessbsessasbaseesbsessabeeesstbessebanesannns 10
LT R e Y ol B =11V = = TSRS 10
D.2. DIRIVER ACCESS ...cciittueiitieteiiitteestteseibeaesastsssstasessatees sabsessasbaseasssees shassesabbe s seabaeesstaessbbes sanbees sabsebeanbesasssbeessssesnnns 11
5.3, READ AND WRITE ..veetiiiictttieie e e s ettt e et et stee s s e sbases s eesas sabesesssssaaba e ees e sass b e ees eesabeseses e s sbsesbeessss sanenaesssasansnreessesnnns 12
5.4. CALCULATION OF ACCESS ADDRESSFROM NAF-CODEcoiiituiiiiirieiiiitie ettt e ssteieesses e s stbe e e s sbae s sassassssbanasssbaessnsesssnne 13
LTS T O @ 1S = 5 LAV = = N 13
6. VPCIC32D AND PCICC32SERVICES ... oottt ettt e e s e saate e s e e srse s be e s s srte s aessenssrssesessannnnes 14
6.1. ATTACH WINDOW - VPCIC32_ATTACH_CC32[0X002200QD]ceeivurreeereenreieeseeereesesseessssessessessansessessessessnns 14
6.2. DETACH WINDOW - VPCIC32 DETACH_CC32 [0X0022000]eeverveeeeereenrereeseerseesenseenersessessessessessessessessens 14
6.3. GET STATUS - VPCIC32_GET_STATUSORPCICC32_GET_STATUS[0X00220008]ccoveveererrerreererreerernens 14
6.4. CLEAR STATUS - VPCIC32_CLEAR_STATUSORPCICC32_CLEAR_STATUS[0x0022000C]cccceeeeveenee 15
6.5. SETACCESSPARAMETER - VPCIC32_SET_ACCESS PARA OoRPCICC32_SET_... [0x0022001]]..........c....... 15
6.6. CONTROLINTERRUPTS— VPCIC32_CONTROL_INTERRUPTS ORPCICC32_CONTROL... c.cccuvivrririierriernnns 16
6.7. IRQHANDLER — VPCIVME_INSTALL_IRQ_HANDLER [0X00220018]......ccceeerteeeereeseeeneerereeeinesseeeeseeneeenens 16
6.8. IRQRESFONSE — PCICC32_INSTALL_IRQ _BLOCK [0X002200IC]eoeieeeeeereeieeeseeeeseesseneeeseseeseesensseseeseens 17
6.9 ACCESSLCR—-VPCIC32_ACCESS LCR ORPCICC32_ACCESS LCR[0X00220020]coveveeverrerreeserreerennens 18
7. CAMAC LIBRARY PCICCS32_ NI.DLL weeiiititiiie ettt sttt sttt st sttt see s et sreesbeente s seensesnesssessnesseens 19
7. L. INITIALIZE AND CLOSE CALLS...iitittiittteiesteteisistsssiatessessssesssssssassstessssssssasesssassssesssssssssssssssstessasssssssssssssssnessssessone 19
7.2. CAMAC READ AND WRITE CALLS .. utuiiiiitieeitttie e ettes e steesss st s e e stte s sabee s sabessaesbessessseesabaes sessbessanbssesassessssnsssassnsesnsens 19
7.3. GENERAL CAIMAC COMMANDS. ... oeiiiietiteeeeeissessseresssssssssssessssissssssesssassssesesssassssssssssessssssssssssssssssssssssssssseeesssarsens 21
T.4. LAM OPERATIONS AND CALLS .. .uuiiiiitiit ittt e ctetiestte s s stessstbessesbess essbesabeesssbess sasssbessssssesssssssabesssatssssnssssessssssesnsns 22
7.5, SOFTWARE INTERFACEvteitiieiiteeieesessssresesssssiassseeessasssssasess assssesssssens shssssesssassssssssssassssssessssnssnsesesssasssnsesssssnssrens 23
LS I N S AV A I VAT AV I TR 25
O. DRIVER LIMITATIONS. . ..ottt ettt e s e e e sttt et etee s ahte e e s et b be e e st e e s abaeeeestbe s seabaeessat e e sreee snbeessrbeeseanbeeeesnens 26

April 2001 3 *00527.A1

User’s Manual PCI-CC32 Ww-Ie-Ne-R

Plein & Baus GmbH

1. GENERAL DESCRIPTION

Vpcic32D.VXD provides an easy acessto the CC32 CAMAC crate aontroller for Windows95! and 98
users. The same does PCICC32.SY S for Windows-NT.

A separate driver is provided for use with LINUX?. The properties of this driver are not explained here.

It is easy to use the drivers for your own CAMAC applicaion. The driver is independent from the
chosen programming language since WIN32 standard 1/O functions are used for communication to the
drivers.

There are small differences in the gplication interface. These differences are mentioned when
appropriate (noted WIN95/98 o WIN-NT)

WIN9598: CAMAC accessis performed via a interface window of an area of virtual memory, which
is defined by the driver. For user applications this window looks like normal memory. Read and write
operations to the CAMAC controller and / or bus are converted into simple read and write operations
whereas the destination (address) corresponds to the NAF code of the operation.

WIN-NT: CAMAC access is performed with normal file read and write operations. A “file off set”
cdculated from the NAF code is used to reference the accesslocation. Since afil e read/write does not
know if the dement to read or write should be 16-bit or 32-bit in size, this property has to be set before
the read/write operation. This stup is done with aspedal 1/0-cdl to the driver.

The access to the drivers are not limited to one process Multiple processes can use the drivers. Even
one driver supports multiple CAMAC interfaces.

Two different hardware interrupts (LAM and time out) are handled by the interface. The driver
provides severa servicesto operate these interrupts.

I Windows95 and Windows98 are trademarks of the Microsoft Corporation.

2| INUX isatrademark of Linus Torvalds.

April 2001 4 *00527.A1

User’s Manual PCI-CC32 Ww-Ie-Ne-R

Plein & Baus GmbH

2. INSTALLATION OF THE WIN95/98 DRIVER

The PCI-CAMAC system consisting of PCIADA and CC32 has been delivered with software drivers
and applicdions on a CD-ROM. This CD-ROM includes in the PCICAMAC directory the following
files:

Subdiredory \WIN95\DRIVER:

Vpcic32D.vxd - Win95/98 diver

pciC32.inf - 'INF filefor installation

Subdiredory \WIN95\DRIVER\SOURCE:

Vpcic32D.h - driver interfaceheader-fil e for applications,

vpcic32d.vxd driver source

Note: The driver only works with Windows 95/ 98 in 32 hit mode including console gplications.
Only real 32 hit applications can use the driver. It does not work with MS-DOSZ or
WINDOWS 3.11 programs.

Note: Windows NT systems require adifferent driver however, the driver interface will be partially
compatible.

Be sure that PCIADA cad of the PCI-CAMAC system is installed in your PC. Please refer to the PCI-
CAMAC user manual to insert the card.

After switching on the mmputer the M S-Windows operating system reaogn zes automaticdly the new
hardware in your system and asks for the driver and “INF" file. Insert the supplied CD into your CD-
ROM drive and enter the driver’ s path. If your CD-ROM drive isthe “D:drive" type:

D:\ PCICAMAC\WIN95DRIVER\

In the following installation process the driver is copied to the Windows g/stem diredory
“WINDOWS\SY STEM\Vpcic32D.VXD*" and the interface is entered into the Windows Registry
(under HKEY_LOCAL_MACHINE\ENUM\PCI\VEN10B5& DEV2258....).

To chedk the driver installation and settings you will find the interface & the systems sttings of the
control panel (start / settings/ control panel / system / device manager) where interrupt and 1/0 settings
can be verified.

2 MS-DOS and Windows 3.11 are trademarks of the Microsoft Corporation.
April 2001 5 *00527.A1

User’s Manual PCI-CC32 Ww-Ie-Ne-R

Plein & Baus GmbH

Eigenzchaften von System EE3 |

Allgemein Gerate-tanager | Hardwarepmfilel Leistungsmerkmalel

i+ Modelle nach Typ anzeigen € Modelle nach Anschiuss anzeigen

= _ornputer
-2 Andere Komponenten
- 5 Anschilizse [COM und LPT)
g CC32
- ey ARW Elektronik PCICC32 Driver
25 CO-ROM
-5 Diskettenlaufwerk-Controller
--% Festplattencontroller
@ Grafikkarten
=D Laufwerke
M auz
-3 Moritore
\> Multifunktionskarten
B8 Netzwerkkarten
-- Sygtemb.omponenten
W

Tastatur

Eigenschaftenl Aktualizieren | Entfernen | Drucken... |

0k | Abbrechen |

Picture 1. Example of settings / control panel / system / device manager

Notee The PCIADA interface card can work with both VME (VMEMM) and CAMAC (CC32)
systems. Normally the PCIADA is configured for use with CC32. If you have to change the
PCIADA configuration for any reason please look for the description of the program
PL Xeep.exe.

April 2001 6 *00527.A1

User’s Manual PCI-CC32 Ww-Ie-Ne-R

Plein & Baus GmbH

3. INSTALLATION OF THE WIN-NT DRIVER

The PCI-CAMAC system consisting of PCIADA and CC32 has been delivered with software drivers
and applicdions on a CD-ROM. This CD-ROM includes in the PCICAMAC directory the following
files:

Subdiredory \WINNT\DRIVER:

Pcicc32.sys - Windows-NT kernel driver

install .exe - instalation program to install and start the driver
Subdiredory \WINNT\DRIVER\SOURCE:

Pcicc32.h - driver interfaceheader-fil e for applications,

pcicc32.sys driver source

Note: The driver only works with Windows-NT including console gplications running on
Windows-NT.

Note: Windows-95/98 systems require adifferent driver however, the driver interface will be partialy
compatible.

Be sure that PCIADA cad of the PCI-CAMAC system isinstalled in your PC. Please refer to the PCI-
CAMAC user manual to insert the cad.

Now start your computer running Windows-NT and login as administrator. Open a dos box and change
to the CDROM-path with the driver and the instal program. Then cdl the install program with
foll owing parameters. If your CD-ROM driveisthe “D:drive’ type:

D:
cd \ PCICAMAC\WINNT\DRIVER
install —d=pcicc32.sys—v

In the following installation process the driver is copied to the Windows driver diredory
“WINNT\SY STEM32\DRIVERS\pcicc32.sys* and some information is added to the registry. The
driver is garted immediately.

To ched the driver installation and settings you will find the interface a the systems ttings/devices
with the entry “PCICC32 started automatic”.

April 2001 7 *00527.A1

User’s Manual PCI-CC32

W-I1€-Ne-R
Plein & Baus GmbH
T > |
Gerat Statuz Startart
Oligcs Deaktiviert;l
Farallel Gestartet Automatizc
Parport Gestartet Automatizc Starten |
Part/dm Gestartet Automatizc
: Gestartet Automatizc Beenden |
PCIDummp System
PCIVME Manuel _ Sttt |
Pcmcia Deaktiviert Huws-Profile. |
PP |54 Enabler Driver Syztem —
pidisp Deaktiviert;l Hilfe |

Picture 2. Example of System Settings / Devices

Note: You can remove the driver with the install program too. Please invoke “install -?” for more
information.

Notee The PCIADA interface card can work with both VME (VMEMM) and CAMAC (CC32)
systems. Normally the PCIADA is configured for use with CC32. If you have to change the
PCIADA configuration for any reason please look for the description of the program
PLXeep.exe.

April 2001 8 *00527.A1

User’s Manual PCI-CC32 Ww-Ie-Ne-R

Plein & Baus GmbH

4. TEST OF DRIVER INSTALLATION

To test the coorrect driver instalation as well as the hardware operation there is the program
“pcicc32_test.exe” which can be found on the on the driver and applicaion CD-ROM. To avoid
interference with any other CAMAC hardware please use the program first with only the CC32 inserted
into the CAMAC crate.

To run the program use ather the “RUN” option of the Windows START menu or open the MS-DOS
box and start the application with “pcic32_test.exe” after setting the path to the directory on the CD-
ROM containing it. . The program can be started with dfferent run-time parameters; the cdl
“pcic32_test -?* prints a short help text including the parameter list.

If working corredly the pcic32_test.exe program performs for about 20 seconds multiple acesss to
all CAMAC station numbers (N) with all possble sub-addresses (A) and function codes (F).

Note: The default driver path for WIN95/98 is “\.\C:\WINDOWS\SY STEM\V pcic32D.vxd". If using
adifferent path this has to be @mnsidered in the run-time parameters cdli ng pcic32_test.exe.

Note: The default driver path for WIN-NT is “\.\PCICC32:\CC32_1". The “.._1" pinpoints the CC32
interface cnfigured for module number 1. For further information about the module number
see the PCICC32 hardware users manual .

April 2001 9 *00527.A1

User’s Manual PCI-CC32 Ww-Ie-Ne-R
Plein & Baus GmbH

5. DRIVER DESCRIPTION

WIN9598: The “Vpcic32D.vxd" is a dynamicaly loadable Driver, i.e. it will not be implemented
during the start of the operating system. Every application using the driver has to load it first and has to
release it before dosing. Up to 16 PCI interface cards (PCIADA) corresponding up to 16 CAMAC
controllers (CC32) can be accessd viathe driver. They all are distinguished only by the different CC32
module number.

WIN-NT: The driver is loaded during the start of WINDOWS-NT. Every applicaion using the driver
has to creae a path to the device first and removes it when closing. Up to 16 PCI interface cards
(PCIADA) corresponding up to 16 CAMAC controll ers (CC32) can be accessed viathe driver. They all
are distinguished only by a different CC32 path number, e.g. PCICC32\CC32_1, PCICC32:\CC32_2,

The VpciC32D driver establishes a well defined software interface to the PCI-CAMAC hardware. It
works in the processor ring-0 (WIN95/98) or as kernel driver (WIN-NT) and is available to al calling
applications with equal rights. Thus it can be used simultaneously by multiple applicaions however, it
does not support asynchronous cdls.

Accessto the driver is managed by Windows Standard /O functions which are independent from the
programming language. Header files for c++ programs are supplied with the interface They can be
easily adapted to ather languages.

All driver parameters (addresses) will be taken from the Windows Registry. This smplifiesthe cdlsin
the user application.

WIN95/98: For a maximum performance the PCI-to-CAMAC access is done using a 32kB memory
segment for NAF coding and data transfer. User appli cations can directly read or write to the CAMAC
dataway via this memory segment without further hardware consideration. To do this the gplicaion
has to request first the window to the CAMAC address gace. The driver returns a pointer to it which
can be used as the base addressof the segment. Within the window the relative aldress corresponds to
the NAF code of the CAMAC cdl. The windows can be acessed by multiple gplicaions
simultaneously without further restrictions.

WIN-NT: For compatibility with standard file accessmechanisms all reads and writes to CAMAC are
done via standard file-read and file-write cdls. A specia 10-control cdl is used to setup the data access
width for further reads or writes. With the standard “ SetFil ePointer(...)” cdl the next access address
cdculated from the NAF-code is &t. No auto-increment or decrement of access addresss is
supported.

5.1. Load Driver

hHandle = CreateFile(PathName,0,0,NULL,0,
April 2001 10 *00527.A1

User’s Manual PCI-CC32 Ww-Ie-Ne-R

Plein & Baus GmbH

FILE_FLAG_DELETE_ON_CLOSE,NULL);
During this procedure number and IDs of conneded CC32 CAMAC controll ers is determined.

Note: The pathname differs for WIN95/98 and WIN-NT. The WIN-NT pathname crries the module
number to accesswhile the WIN95/98 path gpens a more general path to al avail able CC32 interfaces
connected to this computer. Thisimplies for WIN-NT that the “dwlinterfacée variable used with the
input structure of the DevciceloControl(...) callsisonly aidle placéholder. With the WIN95/98
application interfacethis “dwlinterfac€e variable selects the called CC32 module number.

5.2. Driver access

The driver provides diff erent services which can be cdled from a user appli cation viathe Windows
functionDevi cel oControl ():

result = DeviceloControl(hHandle, handle to CC32

service, service code called

&input, reference to input structure

sizeof(input), size of input structure

&output reference to output structure

sizeof(output), size of output structure

&DIOC _count, referenceof red size of returned

data

NULL);

The first parameter hHandle indicates a particular CC32 controller, i.e. the driver itself considers the
connection between the CC32 with given CC32 module number and the corresponding PCIADA
interface cad.

The second parameters describes the service to be alled. This can be done by using the pre-defined
service names or the crresponding numbers (seeVpcic32d.h for WIN95/98 or pcicc32.h for WIN-NT)
as for instance VPCIC32 ATTACH_CC32 defined with 0x00220000. In addition ead serviceis
asciated with a particular input and output structure. This requires the definition of pointers to the
structures as well asto their sizes as own in the foll owing example.

The cdl of “DevicelOControl(..)* returns a result value which indicates in case of “0” the correct
operation. If an error occurred the value is different to 0. In this case the Windows function
“GetLastError()* will return the eror number. All error numbers are defined in the “winerror.h* header
file.

WIN95/98: Example for requesting a memory window into the CC32 address pace

VPCIC32D_ DEVICE sinterface;
VPCIC32D_WINDOW sWindow;
DWORD DIOC_count;

April 2001 11 *00527.A1

User’s Manual PCI-CC32 Ww-Ie-Ne-R

Plein & Baus GmbH

DWORD dwResult;

*

*

sInterface.dwinterface = 1; /I selection of CC32 with Module #1

/I request for a memory window into CAMAC CC32 ------------------
dwResult = DeviceloControl(hHandle, VPCIC32_ATTACH_CC32,
&sinterface, sizeof(sinterface), &sWindow, sizeof(sWindow),
&DIOC_count, NULL);

if ('dwResult)
printf(,Error %d occured\n“, GetLastError());
else
printf(,| have got a memory window @ 0x%08x\n“, sWindow.pvWindowBase);

The called service is “VPCIC32_ATTACH_CC32“ with a single DWORD input structure sinterface
containing the CC32 number. The size of thisinput structureis “ sizeof(sInterface)”.

The call returns the structure “VPCIC32D_WINDOW swWindow* with size “sizeof(sWindow)“ which
contains the base aldressfor the CC32 window.

The variable ,DIOC_count” contains the red size of the returned data from the driver

5.3. Read and Write

This applies only to WIN-NT, with WIN95/98 all reads and writes are done via a direct accessible
32 kbyte memory segment.

First you have to set the file pointer to the address location calculated from the NAF-code. If the
address pointer still is set nothing is to do. Then you can read or write a block of data which size is a
multiple of the preset data access width (2 or 4 bytes).

DWORD ReadCAMAC(HANDLE hHandle,
unsigned long adr,
void *buffer,
int nBytesToRead)

{
DWORD bytesRead;

SetFilePointer(hHandle, adr, NULL, FILE_BEGIN);
April 2001 12 *00527.A1

User’s Manual PCI-CC32 Ww-Ie-Ne-R

Plein & Baus GmbH

if ('ReadFile(hHandle, buffer, nBytesToRead, &bytesRead, NULL))
printf("Can't read (0x%08x)\n", GetLastError());

return bytesRead;

}

Note: To improve performance you can open a path to each block-read or block-write NAF-codes,
even if they are accessed through the same CC32 interface. Then you have to set the file
pointer only once at initial setup of the path.

5.4. calculation of access address from NAF-code

According to the PCICC32 hardware manual the access addressis calculated like
#define NAF(n, a, f) ((unsigned long)((n << 10) + (a << 6) + ((f & Oxf) << 2)))

It is advisable to use this macro for al calculations.

5.5. Close driver

After using the driver it hasto be closed before finishing the application:
CloseHandle(hHandle);

The driver will be automatically removed from the system when closed by the last application
previously using it.

April 2001 13 *00527.A1

User’s Manual PCI-CC32 Ww-Ie-Ne-R

Plein & Baus GmbH

6. Vpcic32D AND PCICC32 SERVICES

Please see for reference the “vpcic32d.h* header file (WIN95/98) or the “pcicc32.h” header file (WIN-
NT).

6.1. Attach Window - VPCIC32 ATTACH CC32 [0x00220000]

Thiscdl isnot applicable to WIN-NT.
VPCIC32_ATTACH_CC32 generates amemory window into the CC32 CAMAC address pace

Input structure: typedef struct

{
DWORD dwlnterface; /I CC32 module number
} VPCIC32D_DEVICE;

Output structure: typedef struct
{

DWORD dwInterface; /I CC32 module number

void *pvWindowBase; /I the base address into the 32 kbyte
Window
} VPCIC32D_WINDOW;

6.2. Detach Window - VPCIC32 DETACH CC32 [0x00220004]

Thiscall isnot applicable to WIN-NT.

VPCIC32_DETACH_CC32 deinitiaizes the PCIADA with the corresponding CC32 controller. The
CAMAC windowsiis released.

Input structure: typedef struct

{
DWORD dwInterface; /I CC32 module number
} VPCIC32D_DEVICE;

Output structure: Thereis nothing to output. Pointer to structureis NULL, size of structureisO.

6.3. Get Status - VPCIC32 GET STATUSor PCICC32 GET STATUS[0x00220008]

VPCIC32_GET_STATUS (WIN95/98) or PCICC32_GET_STATUS (WIN-NT) alows to obtain the
status of the PCIADA interface card (time-out) as well as of the CC32 crate controller (LAM). Thiscall
can be used for LAM polling.

April 2001 14 *00527.A1

User’s Manual PCI-CC32 Ww-Ie-Ne-R
Plein & Baus GmbH

Input structure: typedef struct

{
DWORD dwInterface; // CC32 module number, idle for WIN-NT
} VPCIC32D_DEVICE;

Output structure: typedef struct

{
DWORD dwlnterface; // CC32 module number, idle for WIN-NT
WORD bTimeout; // PCIADA timeout
WORD blnterrupt; /l pending LAM interrupt of CC32

} VPCIC32D_DEVICE; // (WIN95/98), PCICC32_DEVICE (WIN-NT)

The returned bTimeout indicates a hardware error or disconnection of the CC32 controller (or CAMAC
power off). The output bLAM shows any active pending LAM-interrupt (Look At Me).

Note: The LAM interrupt depends in addition to a LAM request from a CAMAC station on the
LAM mask setting of the controller. Please see the PCI-CAMAC manual for reference.

6.4. Clear Status - VPCIC32 CLEAR STATUSor PCICC32 CLEAR STATUS[0x0022000C]

VPCIC32_CLEAR_STATUS (WIN95/98) or PCICC32_CLEAR_STATUS (WIN-NT) can be used to
clear a pending bTimeout interrupt. The pending bLam has to be cleaed at the appropriate CAMAC
slave station with corresponding calls from the user.

Input structure: typedef struct

{
DWORD dwInterface; /I CC32 module number, idle for WIN-NT
} VPCI C32D DEVI CE; // (W N95/98), PCICC32 DEVICE (WIN-NT)

Output structure: Thereis nothing to output. Pointer to structureis NULL, sizeof structureisO.

6.5. SetAccessParameter - VPCIC32 SET ACCESS PARA or PCICC32 SET ... [0x00220010]

PCICC32_SET_ACCESS PARA dlowsto set the further data acesswidth for this path to 16-bit or 2
byte or 32-bit or 4 byte. With the wBlockTransfer parameter you can enable or disable some feaures
for fast data readout. The UNTIL_NOT _Q enables the next read into the provided buffer until not ‘Q’
is sgnaled from the slave device or the buffer is filled. AUTOREAD enables the PCIADA to read one
item ahead to increase readout spead through overlapp of PC-read and CAMAC-read.

Please note that the parameter “wAccessType” at WIN95/98 is determined with the acessitself. Also
the UNTIL_NOT_Q has no function at WIN95/98. Due to the direct access medanism the accesscode
has to manage this feaure itself.

April 2001 15 *00527.A1

User’s Manual PCI-CC32 Ww-Ie-Ne-R

Plein & Baus GmbH

Input structure:
typedef struct

{
ULONG dwinterface; I
USHORT wAccessType; /] set the aurrent access type, see ‘pcicc32.h” (idle @ WIN95)
USHORT wBlockTransfer; // seetable

} PCICC32_ACCESS COMMAND;

wBlockTransfer
UNTIL_NOT_Q read until not Q only applicable for WINNT
AUTOREAD PCIADA reads 1 item ahead

Table: wBlockTransfer modes
Output structure: Thereis nothing to output. Pointer to structureis NULL, size of structureisO.

6.6. Controllnterrupts - VPCIC32 CONTROL INTERRUPTS or PCICC32 CONTROL...

VPCIC32_CONTROL_INTERRUPTS (WIN95/98) or PCICC32_CONTROL_INTERRUPTS (WIN-
NT) enables or disables interrupt requests for this path. Note that interrupt requests are associated to a
CC32 module and not to a specia path. This implies that only one of the paths accessing a special
CC32 module can provide interrupt handling for this module.

Input structure: typedef struct

{
DWORD dwInterface; /I CC32 module number, idle for WIN-NT

WORD wEnable; /l a1l enables, a0 disables interrupt requests
} VPCIC32D_IRQ_CONTROL; // (WIN95/98), PCICC32_IRQ_CONTROL

Output structure: There is nothing to output. Pointer to structureis NULL, size of structureisO.

6.7. IRQHandler - VPCIVME INSTALL IRQ HANDLER [0x00220018]

Thisis not applicable to WIN-NT.
VPCIC32_INSTALL_IRQ HANDLER instal a callback routine to a CC32 module. This function is
called whenever interrupts are enabled and the handler isinstalled. To prevent interrupt overflows the
driver itself clears the LAM-Flip-Flop or resets the PCIADA depending on the interrupt source.
Input structure: typedef struct
{
DWORD dwInterface; // CC32 module number, idle for WIN-NT
DWORD dwlrgHandler; // void (*IrgHandler)(DWORD),User Handler

April 2001 16 *00527.A1

User’s Manual PCI-CC32 Ww-Ie-Ne-R

Plein & Baus GmbH

} VPCIC32D_IRQ HANDLER;

Output structure: There is nothing to output. Pointer to structureis NULL, size of structureisO.

When called the IRQ-handler callback function is called with the current LAM-vector as argument. For
al possible LAM-vectors see 6.8.

6.8. IRQResponse — PCICC32 INSTALL IRQ BLOCK [0x0022001C]

Thisis not applicable to WIN95/98.

PCICC32_INSTALL_IRQ BLOCK instdls a blocking IO-Control cdl which waits for a interrupt to
occur. The cdl returns only if ainterrupt has raised and the interrupt is enabled. It returns immediately
without error when a interrupt was pending. To prevent interrupt overflows you have to re-enable
interrupts when the cdl returns without error. No input structure is neeled, the output structure
provides information about what interrupts ceased the blocking.

Input structure: Thereis nathing to input. Pointer to structureis NULL, size of structureisO.

Output structure: typedef struct
{

DWORD dwilnterface; /I CC32 module number
DWORD dwilnterruptFlags, // flagsto mark pending interrupts
} PCICC32_IRQ_RESPONSE;

The “dwinterruptFlags’ correspond to the LAM-AND Status of the CC32 associated to this path.

Bit # Function
0 LAMO AND LAM_MASKO
1 LAM1 AND LAM_MASK1
* *
* *
23 LAM23 AND LAM_MASK23
24 0
25 0
26 0
27 bTimeout
28 LAM-BUS-OR
29 LAM-NOT-OR
30 LAM-AND-OR
31 LAM-Flip-Flop

The PCIADA-timeout interrupt flag “bTimeout” is mapped into bit #27 of “dwlinterruptFlags’.

April 2001 17 *00527.A1

User’s Manual PCI-CC32 Ww-Ie-Ne-R

Plein & Baus GmbH

6.9 Access LCR - VPCIC32 ACCESS LCR or PCICC32 ACCESS LCR [0x00220020]

VPCIC32 ACCESS_LCR or PCICC32 ACCESS provides a way to access the Local Configuration
Registers LCR of the PLX chip hosted on PCIADA. This feature is for test and debug only.

typedef struct
{
ULONG dwInterface; // here dummy 'cause of compatibility to WIN9S5
ULONG dwContent; // content to write, and, or
USHORT wRegisterAddress; // address offset of LCR register
UCHAR bAccessMode; /I LCR_READ, write, or, and
UCHAR bBytesLane; // the data access width

} PCICC32_LCR_ACCESS;

// data lane size constants for PCICC32_ACCESS LCR

#define BY TE_ACCESS (UCHAR)1 // write byte wise (illegal)
#define WORD_ACCESS(UCHAR)2 /I word

#define LONG_ACCESS (UCHAR)4 /I long

/I PCICC32_ACCESS LCR accessconstants

#define LCR_READ 0 //read only access

#defineLCR WRITE 1 // write and read back access

#define LCR_OR 2 /lread, bitwise 'or' content and read back aacess
#define LCR_AND 3 /lread, bitwise 'and' content and read badk acass
#define LCR_WRITE_ONLY 4 // donot read back after write

With the bAccessMode constant you can define the type of access. Even a atomic OR or AND of the
content with the given register is possible.

Please note that using this feature in parallel to normal use of the driver can make the driver and
even the operating system unstable.

April 2001 18 *00527.A1

User’s Manual PCI-CC32 Ww-Ie-Ne-R
Plein & Baus GmbH

7. CAMAC LIBRARY PCICC32 NI.DLL

The “pcicc32_ni.dil* adds a user friendly CAMAC library to the PCI-CAMAC driver. This layer
standardizes the CAMAC cdls for the different operating systems Windows 95/98, Windows NT and
LINUX allowing to port applicaion programs between these operating systems with minimum
changes.

The following paragraph describes the CC32 / PCIADA CAMAC cdls based on the use of the
pcicc32_ni.dll and pcicc32 ni.lib Library. Please refer to the CC32 manual and the driver descriptionin
this manual.

The PCICC32dem.C file supplied on the driver and application CD-ROM shows examples for the use
of this library. Please note the different device driver path declarations for use within Windows 95/98
and Windows NT and LINUX.

7.1. Initialize and Close calls

cc32_open (cszPath, nModuleNumber, *handle);
char * cszPath path to driver or device, depends on OS
int nModuleNumber number of CC32 (default 1)
CC32_ HANDLE *handle handleto path

cc32_close (handle);
CC32_HANDLE handle handle to path

7.2. CAMAC Read and Write calls

Read 16 bitswith N,A,F

cc32 read_word (handle, N, A, F);
CC32_HANDLE handle handle to path

unsigned int N CAMAC station N
unsigned int A CAMAC sub-address A
unsigned int F CAMAC function F
return: unsigned short data 16 bit data (D15..D00 = R16..R1)

Read 32 bits with N,A,F and get the result Q and X

cc32 read_long (handle, N, A, F, Q, X);
CC32_HANDLE handle handle to path
unsigned int N CAMAC station N

April 2001 19 *00527.A1

User’s Manual

PCI-CC32

W-Ie-Ne-R
Plein & Baus GmbH

unsigned int A
unsigned int F
char *Q
char *X

return: unsigned long data

Read 32 bits with N,A,F

cc32 read_long_all (handle, N, A, F);
CC32_HANDLE handle
unsigned int N
unsigned int A
unsigned int F
return: unsigned long data

Write 16 bitswith NLA F

cc32_write word (handle, N, A, F, uwData);
CC32_HANDLE handle
unsigned int N
unsigned int A
unsigned int F
unsigned short data

Write 32 bitswith NLA F

cc32_write_long (handle, N, A, F, ulData);
CC32_HANDLE handle
unsigned int N
unsigned int A
unsigned int F
unsigned long data

Read 16 bit datainto a buffer with N,A,F

CAMAC sub-address A

CAMAC function F

Q response

X response

32 bit data (D23..D00 = R24..R1, D29..D24 =0,
D31,D30Q,X)

handle to path

CAMAC station N

CAMAC sub-address A

CAMAC function F

32 bit data (D23..D00 = R24..R1, D29..D24 = 0,
D31,D30Q,X)

handle to path

CAMAC station N

CAMAC sub-address A

CAMAC function F

16 bit data (D15..D00 = W16..W1)

handle to path

CAMAC station N

CAMAC sub-address A

CAMAC function F

32 bit data (D15..D00 = W16..W1)

cc32 read_word_buffer (handle, N, A, F, pwBuffer, pdwLen)

CC32_HANDLE handle
unsigned int N
unsigned int A
unsigned int F
unsigned long * pwBuffer

April 2001

handle to path

CAMAC dtation N

CAMAC sub-address A
CAMAC function F

pointer to aword (16 bit) buffer

*00527.A1

User’s Manual PCI-CC32 Ww-Ie-Ne-R

Plein & Baus GmbH

unsigned long * pdwLen pointer to the length of the buffer in words
Read 32 bit datainto a buffer with N,A,F

cc32 read_long_buffer (handle, N, A, F, pdwBuffer, pdwLen)
CC32_HANDLE handle handle to path

unsigned int N CAMAC station N

unsigned int A CAMAC sub-address A

unsigned int F CAMAC function F

unsigned long * pdwBuffer pointer to along (32 bit) buffer

unsigned long * pdwLen pointer to the length of the buffer in longs

Read 32 bit data into a buffer with N,A ,F without any masking of X, Q information

cc32 read_long_all_buffer(handle, N, A, F, pdwBuffer, pdwLen)
CC32_HANDLE handle handle to path

unsigned int N CAMAC station N
unsigned int A CAMAC sub-address A
unsigned int F CAMAC function F

unsigned long *pdwBuffer pointer to along (32 bit) buffer
unsigned long * pdwLen pointer to the length of the buffer in longs

Set the access features for the next transfers

cc32_access switch (handle, unsigned short wSwitch)
CC32_HANDLE handle handle to path
unsigned short wSwitch Constants SW_UNTIL_NOT_Q
or SW_AUTOREAD (see driver manual)

7.3. General CAMAC commands

All CC32 commands are based on NAF mapping. System commands (as CAMAC C, Z, I, ...) and
LAM mask / broadcast are using station numbers (N) higher than 24. Plesse seethe CC32 hardware
manual for reference

NO* AO* Fx = C (CamacClea) (Write Word)
NO*A1*Fx = Z (Camaclnitialize) (Write Word)
NO* A2* Fx = C + Inhibit reset (Write Word)
NO* A3*Fx = Z + Inhibit set (Write Word)
N27*A0*Fx = Inhibit set (Write Word)

April 2001 21 *00527.A1

User’s Manual PCI-CC32 Ww-Ie-Ne-R
Plein & Baus GmbH

N27*Al*Fx = Inhibit reset (Write Word)
Examples:
CAMAC-C cc32_write word (handle, 0O, O, 16, 0);
CAMAC-Z cc32_write word (handle, 0, 1, 16, 0);
Set Inhibit cc32_write word (handle, 27, 0, 16, 0);
Reset Inhibit cc32_write word (handle, 27, 1, 16, 0);

7.4. LAM Operations and Calls

N28*A0*Fx = LAM-FF reset (Write/ Read Word)
N28*A1*Fx = LAM-mask (Write/Read Long)
With: D23..D00 << MASK?24.LMASK1

D27..D24 =0, D28 = LAM-BUS-OR,
D29 = LAM-NOT-OR, D30 = LAM-AND-OR, D31 = LAM-FF)
N28*A2*Fx = LAM AND mask (Read Long)
With: D23..D00 << AND?24...AND1
D27..D24 =0, D28 = LAM-BUS-OR,
D29 = LAM-NOT-OR, D30 = LAM-AND-OR, D31 = LAM-FF)
N28*A3*Fx = LAM NOT mask (Read Long)
With: D23..D00 << NOT24...NOT1
D27..D24 =0, D28 = LAM-BUS-OR,
D29 = LAM-NOT-OR, D30 = LAM-AND-OR, D31 = LAM-FF)
N28*A4*Fx = LAM (nomask) (Read Long)
With: D23..D00 << LAM24...LAM1
D27..D24 =0, D28 = LAM-BUS-OR,
D29 = LAM-NOT-OR, D30 = LAM-AND-OR, D31 = LAM-FF)

Any pending LAM of an enabled station is shown in the LAM FF register depending onthe LAM-
mask.
LAM interrupt status:

cc32_pall_error (handle, *nTimeout, *nLam);
CC32_HANDLE handle handleto driver
char *nTimeout, time out flag
char *nLam LAM flag

Examples:
Enable dl LAMs cc32_write word (handle, 28, 1, 16, OXFFFF);
Reset LAM-FF cc32_write word (handle, 28, 0, 16, 0);
Poll LAM cc32_poll_error (handle, *nTimeout, *nLam);

April 2001 22 *00527.A1

User’s Manual PCI-CC32 Ww-Ie-Ne-R

Plein & Baus GmbH

7.5. Software interface

The interface to the pcicc32_ni.dll is defined in the Libec32.h header file:

/*--- DEFINES */
#define SW_UNTIL NOT Q 1 /* switches for cc32_access switch(..., uSwitch); */
#define SW_AUTOREAD 2

/* open a path to a device. E.g. "/dev/pcicc32 1" */

int _ declspec(dllexport) cc32_open(char *cszPath, int nModuleNumber, CC32 HANDLE
*handle);

/* close the opened path */

int _ declspec(dllexport) cc32 close(CC32 HANDLE handle);

/* read only a word - 16 bits - from a address made out of N,A,F */

unsigned short _ declspec(dllexport) cc32 read word(CC32 HANDLE handle, unsigned int N,
unsigned int A, unsigned int F);

/* read a long - 32 bits - from a address made out of N,A,F and get the result Q and X */

unsigned long declspec(dllexport) cc32 read long(CC32 HANDLE handle, unsigned int N,
unsigned int A, unsigned int F, char *Q, char *X);

/* read a long - 32 bits - without any interpretation */

unsigned long declspec(dllexport) cc32 read long all(CC32 HANDLE handle, unsigned int N,
unsigned int A, unsigned int F);

/* write a word - 16 bits - to a destination made out of N,A,F */

void _ declspec(dllexport) cc32 write_ word(CC32 HANDLE handle, unsigned int N, unsigned int
A, unsigned int F, unsigned short uwData);

/* write a long - 32 bits - uninterpreted to a destination made out of N,A,F */

void __ declspec(dllexport) cc32 write _long(CC32 HANDLE handle, unsigned int N, unsigned int
A, unsigned int F, unsigned long ulData);

/* poll the state of the timeout line and the LAM state. The timeout line is cleared if it was set */
int __ declspec(dllexport) cc32 _poll error(CC32 HANDLE handle, char *nTimeout, char *nLam);
/* read 'len' words or "UNTIL NOT Q' from a address made out of N,A,F into a buffer*/

int __ declspec(dllexport) cc32 read word buffer(CC32 HANDLE handle, unsigned int N, unsigned
int A, unsigned int F, unsigned short *pwBuffer, unsigned long *pdwLen);

/* read 'len' longs or 'UNTIL NOT Q' from a address made out of N,A,F into a buffer*/

int __ declspec(dllexport) cc32 read long buffer(CC32 HANDLE handle, unsigned int N, unsigned
int A, unsigned int F, unsigned long *pdwBuffer, unsigned long *pdwLen);

/* read 'len' longs or 'UNTIL NOT Q' from a address made out of N,A,F into a buffer, no
interpretation */

int __declspec(dllexport) cc32 read long all buffer(CC32 HANDLE handle, unsigned int N,
unsigned int A, unsigned int F, unsigned long *pdwBuffer, unsigned long *pdwLen);

/* switch UNTIL NOT_Q or AUTOREAD on or off */

APIIT ZUUT L3 UUOZT7T. /A1

User’s Manual PCI-CC32 Ww-Ie-Ne-R
Plein & Baus GmbH

April 2001 24 *00527.A1

User’s Manual PCI-CC32 Ww-Ie-Ne-R

Plein & Baus GmbH

8. LABVIEW-VI'S

Together with the ,,pcicc32_ni.dll“ the following virtua instruments (VI’s) for the National Instruments
graphica programming software for instrumentation LabView are provided.

c32Init.vi the VI to initialize apath to ainterface

c32Close.vi the V1 to close a path opened with c32Init.vi

c32Poll Error.vi the VI to get apending LAM or an interface cnnedion timeout
C32Reallong.vi the VI to read alongword (32 hit) containing X and Q
C32ReaLongS.vi the same & above but with resolved X and Q

C32ReaWord.vi the VI to read aword (16 hit) without reading X and Q
C32WriteLong.vi the VI to write alongword (24 bit CAMAC)

C32WriteWord.vi the VI to write aword (16 bit) only

c32Testl_95.vi asimple write/ read test configured for WIN95/98.

c32Testl NT.vi the same & above but for WIN-NT

C32Test2_95.vi asimple LAM test.

C32Test2_NT.vi the same & above but configured for WIN-NT.

pcicamac.vi CAMAC example ontroller with loop functions and NAF/R/W display.

April 2001 25 *00527.A1

User’s Manual PCI-CC32 Ww-Ie-Ne-R
Plein & Baus GmbH

9. DRIVER LIMITATIONS

» Presently the driver for LINUX does not support hardware interrupt servicing however, al interrupt
sources (time out and LAM) can be monitored by polling the VPCIC32D _GET_STATUS
(WIN95/98) or the PCICC32_GET_STATUS (WIN-NT) function.

* Presently the Labview VI'sfor LINUX is not adopted to the shared library for LINUX.

» Presently some of the DLL entries does not have al.abview NI counterpart.

April 2001 26 *00527.A1

