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The purpose of this experiment is to demonstrate 1) the existence of a speed limit on the motion 
of particles by a measurement of the speed of cosmic-ray muons, and 2) the relativistic dilation of 
time by a comparison of the mean life of muons at rest and in high speed motion. 

PREPARATORY QUESTIONS 

1.	 What are muons, how are they produced in the at
mosphere, and why are the particularly penetrating 
particles (as opposed to electrons for example)? 

2.	 Derive from the Lorentz transformation equations 
an expression for the mean life measured in the lab-
oratory of unstable particles of a given kind trav
eling with kinetic energy K if their rest mass is m0 

and their mean life at rest is τ0 . Assuming that 
the most likely momentum for the muon is approx
imately 1GeV/c (see Appendix C), calculate β, γ 
and the flight time for a trip of 3 meters (approxi
mate flight path in this apparatus.) 

3.	 A singly charged particle traveling in matter at 
nearly the velocity of light loses energy by Coulomb 
interactions with the atoms of matter at a rate of 
approximately 2 MeV/(gm/cm 2)−1 . (The denomi
nator is an areal density and is equal to the volume 
density times the thickness). How much energy is 
lost by a relativistic particle (v ≈ c) particle in 
traversing the entire atmosphere? 

4.	 Describe how a scintillation counter works, starting 
from the entrance of an energetic charged parti
cle into a scintillator, and ending with an electrical 
pulse at the output of the photomultiplier. 

5.	 Suppose the rates of pulses from the top and middle 
scintillator “paddles” are n1 and n2, respectively, 
due mostly to physically unrelated events in the 
two scintillators. Suppose further that the differ
ences in arrival times at the time-to-amplitude con
verter (TAC) of pulses produced by muons travers
ing the paddles are spread over a time interval τ due 
to differences in the path lengths and jitter in the 
electronics. What is the rate of background events 
in this interval due to accidental near-coincidences 
between physically unrelated events? Now suppose 
that n1 = n2 = n, and τ =1.0x10−8 s. If the rate of 
muon traversals of the two paddles when they are 
separated as far as possible is 0.1 s−1 , how large a 
value of n could be tolerated? 

6.	 The weight of the cylinder of plastic scintillator 
used in the measurement of the muon mean life 

is 20.3 kg. Predict the rate of muon decay events 
in the cylinder. (See Appendix A). 

WHAT YOU WILL MEASURE 

1.	 According to classical mechanics the speed of a par
ticle is proportional to the square root of its kinetic 
energy. Since there is no limit, in principle, on the 
kinetic energy of a body, there is no classical speed 
limit. According to the theory of relativity there 
is a speed limit. In the first of these experiments 
you will measure the distribution in velocity of high 
energy muons that are generated high in the atmo
sphere through the interactions of primary cosmic 
ray nuclei and pass through the lab from ceiling to 
floor. 

2.	 In the second experiment you will measure the de-
cay curve and mean life of muons that have come to 
rest in a scintillator. Given your measured values 
of the speed limit and the mean life, and given the 
fact that most of the muons are produced at alti
tudes above 10 km, you will confront the fact that 
the muons that traverse the scintillator paddles sur
vived much longer than the mean life of muons at 
rest in the laboratory. How is that possible? 

INTRODUCTION 

Webster’s Ninth New Collegiate dictionary defines 
kinematics as “a branch of dynamics that deals with as
pects of motion apart from considerations of mass and 
force”. Relativistic kinematics deals with motion at 
speeds approaching that of light. These experiments are 
concerned with phenomena of high speed kinematics -
the distribution in speed of very high energy particles, 
and the comparative rates of clocks at rest and in high 
speed motion. 

Common sense, based on experience with compara
tively slow motions, is a poor guide to an understand
ing of high speed phenomena. For example, in classical 
kinematics velocities add linearly in accordance with the 
Galilean transformation which implies no limit, in princi
ple, to the relative velocities of two bodies. On the other 
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hand, Maxwell’s equations have solutions in the form of 
waves that travel in vacuum with the universal velocity 
c, without regard to the motion of the source or observer 
of the waves. Thus, until Einstein straightened things 
out in 1905 in his special theory of relativity, there was 
lurking in the kinematical foundations of physics, as em-
bodied in Newtonian mechanics and the Maxwell theory 
of electromagnetism, a fundamental contradiction. 

This contradiction was laid bare in interferometry ex
periments begun by Michelson in 1881 which demon
strated the absence of any detectable effect of the motion 
of an observer on the velocity of light. Apparently with-
out knowing about the Michelson experiment, Einstein 
took this crucial fact for granted when he began to think 
about the problem in 1895 at the age of sixteen (Pais, 
1982). Ten years later he discovered the way to fix the 
contradiction; keep Maxwell’s equations intact and mod
ify Galilean kinematics and Newtonian dynamics. The 
fundamental problem of kinematics is to find the rela
tions between measurements of space, time and motion 
in different reference frames moving with respect to one 
another. 

Consider, for example, two events (think of two flash 
bombs, or the creation and decay of a muon) that occur 
on the common x-axes of two mutually aligned inertial 
coordinate systems A and B in uniform motion relative to 
one another in the direction of their x-axes. Each event is 
characterized by its four coordinates of position and time, 
which will, in general, be different in the two frames. Let 
xa, ya, za, ta represent the differences between the coor
dinates of the two events in the A frame, i.e., the com
ponents of the 4-displacement. Similarly, xb, yb, zb, tb are 
the components of the 4-displacement in the B frame. 
According to the Galilean transformation of classical me
chanics the components of the 4-displacement in A and 
B are related by the simple equations 

xb = xa − vta, yb = ya, zb = za, tb = ta (1) 

and their inverse 

xa = xb + vtb, ya = yb, za = zb, ta = tb (2) 

where v is the velocity of frame B relative to frame A. If 
the two events are, in fact, two flash bombs detonated at 
a particular location in a third coordinate system (think 
of a rocket ship carrying the bombs) traveling in the x-
direction with velocity u relative to B, then 

xb/tb = u and xa/ta = u + v (3) 

i.e., the velocity of the rocket ship relative to A is the 
sum of its velocity relative to B and the velocity of B 
relative to A. This simple result accords with common 
sense based on experience with velocities that are small 

compared to c , the speed of light. Clearly, it implies no 
limit on the velocity of one body relative to another and 
assigns no special significance to any particular velocity. 
For example, if u = 0.9c and v = 0.9c, then xa/ta = 
1.8c. According to the special theory of relativity such a 
“superluminal” velocity is impossible because kinematics 
is actually governed by the transformation equations 

xb = γ(xa − βcta), yb = ya, zb = za, ctb = γ(cta − βxa), 
(4) 

and their inverse 

xa = γ(xb +βctb), ya = yb, za = zb, cta = γ(ctb +βxb), 
(5) 

where β = v/c and γ = 1/ (1 − β2). We obtain the 
addition equation for velocities, as before, by dividing the 
equations for xa and ta. Thus 

xa/ta = (u + v)/(1 + uv/c2) (6) 

Now, if u = 0.9c and v = 0.9c, then xa/ta = 0.9945c 
. No compounding of velocities less than c can yield a 
relative velocity of two bodies that exceeds c. Moreover, 
any entity that propagates with velocity c (i.e., massless 
particles such as photons, gravitons, and probably neu
trinos) relative to one inertial reference frame will propa
gate with velocity c relative to every other inertial frame 
regardless of the motions of the frames relative to one 
another. Thus the velocity of light in vacuum is raised 
to the status of a universal constant - the absolute speed 
limit of the universe. The first experiment will demon
strate the consequences of this fact of relativity for the 
distribution in velocity of high-energy cosmic-ray muons. 

Consider what these equations imply about different 
observations of the time interval between two events such 
as that between two flash bombs or between the birth 
and death of a particle or person. Suppose a rocket ship 
carrying two flash bombs is at rest in frame B so that the 
bombs go off at the same position in B (xb = 0) with a 
separation in time of tb. Then ta = γtb , i.e. as measured 
in frame A the time interval between the two events is 
longer by the Lorentz factor γ. This is the relativistic 
dilation of time. 

COSMIC RAYS 

Interstellar space is populated with extremely rarefied 
neutral and ionized gas (≈ 10−3 to 103 atoms cm−2), 
dust (≈ 1-10% of gas), photons, neutrinos, and high-
energy charged particles consisting of electrons and bare 
nuclei of the elements with energies per particle ranging 
up to 1021 eV. The latter, called cosmic rays, constitute a 
relativistic gas that pervades the galaxy and significantly 
affects its chemical and physical evolution. The elemen
tal composition of cosmic-ray nuclei resembles that of the 
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sun, but with certain peculiarities that are clues to their 
origins. Most cosmic rays are generated in our galaxy, 
primarily in supernova explosions, and are confined to 
the galaxy by a pervasive galactic magnetic field of sev
eral microgauss. It is an interesting and significant fact 
that the average energy densities of cosmic rays, the in
terstellar magnetic field, and turbulent motion of the in
terstellar gas are all of the order of 1 eV cm−3 . 

When a primary cosmic ray (most often a proton or 
alpha particle) impinges on the earth’s atmosphere it in
teracts with an air nucleus, generally above an altitude 
of 15 km. Such an interaction initiates a cascade of high-
energy nuclear and electromagnetic interactions that pro
duce an “air shower” of energetic particles spreading out-
ward in a cylindrically symmetric pattern around a dense 
core. See Figure 1. As the shower propagates downward 
through the atmosphere the energy of the incident and 
secondary hadrons (nucleons, antinucleons, pions, kaons, 
etc.) is gradually transferred to leptons (weakly inter-
acting muons, electrons and neutrinos) and gamma rays 
(high-energy photons) so that at sea level the latter are 
the principal components of “secondary” cosmic rays. 
Typical events in such a cascade are represented by the 
reactions shown in Figure 1. High altitude observations 
show that most of the muons that arrive at sea level are 
created above 15 km. At the speed of light their trip 
takes ≈ 50 µsec. 

In 1932, Bruno Rossi, using Geiger tubes and his own 
invention, the triode coincidence circuit (the first practi
cal AND circuit), discovered the presence in cosmic rays 
of highly penetrating and ionizing (i.e. charged) particles 
that were shown in 1936 by Anderson and Nedermeyer 
to have a mass intermediate between the masses of the 
electron and the proton. In 1940 Rossi showed that these 
particles, now called muons, decay in flight through the 
atmosphere with a mean life in their rest frame of about 
2 microseconds. Three years later, using another elec
tronic device of his invention, the time to pulse-height 
converter (TAC), he measured the mean life of muons at 
rest in an experiment resembling the present one in Ju
nior Lab, but with Geiger tubes instead of a scintillation 
detector. 

FIG. 1: (a) Production and decay of pions and muons in a 
representative high energy interaction of a cosmic-ray proton 
with a neutron in the nucleus of an air atom. (b) Masses and 
lifetimes of pions and muons. 

Cosmic rays are a convenient and free source of en
ergetic particles for high energy physics experiments. 
They suffer the disadvantage of being a mixed bag of 
uncollimated particles of various kinds with low inten
sity and a very broad range of energies. Nevertheless, 
the highest energy of a cosmic-ray primary measured so 
far, ≈ 1021 eV , exceeds by many orders of magnitude 
the practical limit of any existing or conceivable man-
made accelerator. Cosmic rays will therefore always be 
the only source of particles for the study of interactions 
at the highest observable energies. In the present exper
iment they will be used to explore relativistic kinemat
ics at the comparatively modest energies of a few GeV 
(1 GeV= 109 eV), which are the typical energies of the 
muons detected at sea level. 

THE SPEED DISTRIBUTION OF COSMIC-RAY 
MUONS 

According to Newtonian mechanics the velocity of a 
particle is related to its energy and mass by the equation 

v = 2E/m = c 2E/mc2 . (7) 

For the muon the value of mc2 is 105.7 MeV. Thus the 
Newtonian prediction for the velocity of a 1 GeV muon is 
approximately 4.3c. According to relativistic mechanics 
the higher the energy of a particle the closer its speed 
approaches c. Thus an observation of the distribution in 
speed of high-energy cosmic-ray muons provides a dra
matic test of the relation between energy and velocity. 
The experiment consists of a measurement of the dif
ference in the median time of flight of muons between 
two detectors in the form of plastic scintillator “paddles” 
when they are close together and far apart. 
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FIG. 2: (a) Arrangement for measuring the speed of cosmic-
ray muons. 

The setup is shown in Figure 2. The measurement 
can be made either between the top and middle detector 
(with no lead absorber) or between the middle and bot
tom detector with a lead absorber to block the passage of 
the so-called “soft” component (electrons and photons) 



and low energy muons near the end of their range when 
they traverse the detectors. The signal from the top (or 
bottom) detector generates the start pulse for the time-
to-amplitude converter (TAC). The pulse from middle 
detector, after appropriate delay in a long cable, gener
ates the STOP pulse. A multi-channel analyzer (MCA) 
records the amplitude of the positive output pulse of the 
TAC; that amplitude is proportional to the time interval 
between the input start and stop pulses. The median 
value of this interval for many events changes when the 
middle detector is moved from the top to the bottom po
sition . The change in the median value is a measure 
of the median time of flight of the detected muons and, 
given the distance between the top and bottom positions 
of the middle paddle, of the median velocity. 

PROCEDURE 

Throughout the setup procedure it is essential to use 
the fast oscilloscope to check the signs, amplitudes, oc
currence rates and timing relationships of the pulses into 
and out of each component of the electronic system. 
Since you are aiming to measure time differences of the 
order of the travel time of light from the ceiling to the 
floor (≈ 10 nanosec), all the circuits up to the MCA must 
have “rise times” substantially shorter, which means that 
you must use very high sweep speeds on the oscilloscope 
in order to perceive whether things are behaving prop
erly. To avoid confusing reflections from the ends of ca
bles, it is essential that all cables carrying fast pulses 
be terminated at their outputs by their characteristic 
impedance of 50 ohms, either with a terminating plug 
on a T-connector, or by an internal termination at the 
input of a circuit. 

To check the reasonableness of the various rates of sin
gle and coincident pulses you can use the following em
pirical formula that provides a good fit to measurements 
of the intensity of penetrating particles at sea level as a 
function of the zenith angle: 

I(φ) = Iv cos 2(φ), (8) 

where Iv = 0.83 × 10−2 cm−2 s−1 str−1 , and φ is the 
zenith angle (Rossi 1948). I(φ)dΩdAdt represents the 
number of particles incident upon an element of area dA 
during the time dt within the element of solid angle dΩ 
from the direction perpendicular to dA. By integrating 
this function over the appropriate solid angle you can es
timate the expected counting rates of the detectors due to 
the total flux of penetrating particles from all directions, 
and the expected rate of coincident counts due to parti
cles that arrive within the restricted solid angle defined 
by the telescope (See Appendix B). 

Set the discriminator dials of the constant fraction dis
criminators (CFD) to 0.5 V. Adjust the high voltages 

supplied to the photomultipliers (PM) of each of the de
tectors so that the rate of gate pulses from the CFD’s 
is about 200 counts/s, roughly 5 times the rate of muon 
traversals from all directions. This will achieve a high de
tection efficiency for muon pulses including those buried 
in the background of events due to local radioactivity. 

Explore the operation of the TAC and the MCA with 
the aid of the time calibrator (TC). The TC produces 
pairs of fast negative pulses separated by multiples of a 
precise interval. When these pulses are fed to the START 
and STOP inputs of the TAC, the TAC produces output 
pulses with amplitudes proportional to the time intervals 
between the input pulses. The amplitudes are measured 
by the MCA. 

With the aid of the TC, set the controls of the TAC 
and MCA so that the calibration of the system is ap
proximately 20 MCA channels per nanosecond. Test the 
linearity of the time-to-height conversion. Calibrate the 
system so that you can relate accurately the difference 
between the numbers of any two channels on the MCA 
display to a change in the time interval between START 
and STOP pulses at the TAC. 

Now feed the negative gate pulses from CFD1 and 
CFD2 to the start and stop inputs of the TAC, mak
ing sure you have them in the right order so that the 
stop pulse arrives at the stop input after the start pulse 
arrives at the start input, taking account of both the 
time of flight and the pulse transmission times in the ca
bles. Connect the output of the TAC to the input of 
the MCA operating in the PHA mode. Adjust the de-
lays and set the controls of the TAC and MCA so that 
the timing events generated by the muons are recorded 
around channel 500 of the MCA with a timing sensitivity 
of approximately 10 channels per nanosecond. 

Accumulate on the MCA the distribution in duration 
of the time intervals between the START and STOP 
pulses when the middle detector is located near the top 
of the apparatus and again when it is near the bottom 
(don’t waste time at intermediate positions). 

Calibrate the time base with the TC. Do not alter any 
of the cabling or electronic settings between any pair of 
top and bottom measurements. Even a small change in 
a high voltage or the triggering level of a discriminator 
can change the timing by enough to introduce a large 
systematic error in a velocity determination. 

Optional: If you want to explore the effect on the 
average speed of selecting muons with higher energy you 
can use the bottom detector in place of the top detector. 
Between the bottom and middle detectors there is a layer 
of lead bricks, which absorb low-energy, slow muons. 

ANALYSIS 

Keep in mind the fact that the measured quantities 
are not actual times of flight of muons between the up 



and down positions of the middle detector. Rather, they 
are differences in arrival times of pulses from the top 
and middle detectors generated by flashes of scintillation 
light that have originated in various places within each 
scintillator paddle and have diffused at the speed of light 
in plastic to the photomultiplier window. Each event 
yields a quantity ti that can be expressed as 

ti = t0 + di/vi + Δti, (9) 

where t0 is a constant of the apparatus, di is the slant 
distance traveled by the ith muon between the top and 
middle detectors, vi is the velocity of the muon, and Δti 

is the error in this particular measurement due to the dif
ference in the diffusion times of the scintillation light to 
the two photomultipliers and other instrumental effects. 
(In this measurement it is reasonable to assume that the 
systematic error due to the timing calibration is negligi
ble. Therefore we can deal directly with the ti’s as the 
measured quantities rather than with the channel num
bers of the events registered on the MCA.) Suppose we 
call Tu and Td the mean values of the ti’s in the up and 
down positions respectively. The simplest assumption is 
that 

ΔT = Td − Tu = D/v, (10) 

where D is the difference in the mean slant distance 
traveled by the muons from the top to the middle paddle 
in the down and up positions, and v is the mean velocity 
of cosmic ray muons at sea level. Implicit in this is the 
assumption that (Δti)av is constant in both the up and 
down positions. Then v can be evaluated as 

v = D/(Td − Tu), (11) 

and the random error can be derived from the error 
in the means (i.e. in Td and Tu) which can be figured 
according to the usual methods of error propagation (the 
error of a mean is the standard deviation divided by the 
square root of the number of events). An additional com
plication is due to the width of the timing curve. This 
width is of the same order of magnitude as the muon 
flight time in the apparatus for several reasons: 

1.	 The time of flight between the two counters is given 
by Eq. (10), ΔT = Td − Tu = D/v. The cosmic 
ray muons have a momentum distribution given in 
Figure 9 in Appendix C. Using the experimental 
points in this figure estimate the dispersion in ΔT 
due to this effect. 

2.	 The cosmic ray muons have a distribution of angles 
given by Eq. (8). This causes the distribution of 
distribution of flight paths D to differ in the “close” 
and “far” position. Estimate the dispersion in ΔT 
due to this effect. Take into account the dimensions 
of the detectors. 

3.	 The cosmic ray muons hit the scintillators approxi
mately uniformly. However the phototube is placed 
at one end of the scintillator. There is a disper
sion in the time that a light pulse, created in the 
scintillator from the passage of the muons, hits the 
phototube. Estimate the dispersion in ΔT due to 
this effect, assuming that the index of refraction of 
the scintillator, n ≈ 1.5. 

Calibration of tref	 using an LED and two optical 
light fibers 

There is a method to reduce the systematic error in 
this experiment. A light pulse from a LED is brought 
by two equal length optical fibers to the centers of the 
top and the movable scintillation counters. The light 
from the common LED feeding the fibers is simultaneous 
and corresponds to t0, The different propagation in the 
scintillators, the delays in the phototubes and cables will 
be the same as the signals from a muon traversing the 
counters on top of each other. Coming from an LED the 
pulses are more uniform than the muon induced signals 
and give a precise Gaussian peak in the time spectrum. 
The absolute accuracy is limited by the discriminator 
response to about 0.9 ns. 
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FIG. 3: Measurement of t0 using simultaneous light pulses in 
two paddles 

For smallest relative errors you still will measure 
the difference in the time-of -flight spectra between 
the counters close together and about 3m apart. The 
light pulse calibration provides the tref at the day you 
measure regardless of the relative position of the counters 
and a quick check that nothing has changed due to 
different cables, high voltage settings, etc. Before 
starting a TOF (time of flight) measurement simply 
turn on the pulse generator at the back wall and record 
the position of the peak which is t0. Adding a 2m length 
of “RG58/U” cable (the dielectric between the inner 
conductor and the outer conductor has κe = 2.30) 
into the signal path of the movable counter will shift 
the peak by 10ns and calibrates the channel bins into 
nanoseconds. 



MEASUREMENT OF THE MEAN LIFE OF 
MUONS AT REST 

Muons were the first elementary particles to be found 
unstable, i.e. subject to decay into other particles. At 
the time of Rossi’s pioneering experiments on muon decay 
the only other “fundamental” particles known were pho
tons, electrons and their antiparticles (positrons), pro-
tons, neutrons, and neutrinos. Since then dozens of par
ticles and antiparticles have been discovered, and most of 
them are unstable. In fact, of all the particles that have 
been observed as isolated entities the only ones that live 
longer than muons are photons, electrons, protons, neu
trons, neutrinos and their antiparticles. Even neutrons, 
when free, suffer beta (e−) decay with a half life of ∼ 15 
minutes in the decay process 

− n → p e νe. 

Similarly, muons decay through the process 

− − µ → e νe νµ 

5 

with a lifetime of τ −1 = G2 mµ in the Fermi β-decay192π3 

theory, based on Figure 4 (a) which has become better 
understood in the modern electroweak theory, where the 
decay is mediated by heavy force carriers W. 
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FIG. 4: Feynman diagrams of the muon decay process 

Muons can serve as clocks with which one can study the 
temporal aspects of kinematics at velocities approaching 
c where the strange consequences of relativity are encoun
tered. Each muon clock, after its creation, yields one tick 
- its decay. The idea of this experiment is, in effect, to 
compare the mean time from the creation event to the 
decay event (i.e. the mean life) of muons at rest with the 
mean time for muons in motion. Suppose that a given 
muon at rest lasts for a time tb. Equation 5 predicts that 
its life in a reference frame (See Figure 4 (a)) with re
spect to which it is moving with velocity v, is γtb, i.e. 
greater than its rest life by the Lorentz factor γ. This is 
the effect called relativistic time dilation. (According to 
relativistic dynamics, γis the ratio of the total energy of 
a particle to its rest mass energy). 

In this experiment you will observe the radioactive de-
cay of muons and measure their decay curve (distribu
tion in lifetime) and their mean life after they have come 
to rest in a large block of plastic scintillator. From your 
previous measurement of the mean velocity of cosmic-ray 
muons at sea level and the known variation with altitude 
of their flux you can infer a lower limit on the mean life 
of the muons in motion. A comparison of the inferred 

lower limit with the measured mean life at rest provides 
a vivid demonstration of relativistic time dilation. Dur
ing the period from 1940 to 1950 observations of muons 
stopped in cloud chambers and nuclear emulsions demon
strated that the muon decays into an electron and that 
the energy of the resulting electron may have any value 
from zero to approximately half the rest energy of the 
muon, i.e. ≈ 50 MeV. From this it was concluded that 
in addition to an electron the decay products must in
clude at least two other particles, both neutral and of 
very small or zero rest mass (why?). The decay schemes 
are shown in Figure (1). 
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FIG. 5: Arrangement for measuring the mean life of muons 

The experimental arrangement is illustrated in Figure 
5. According to the range-energy relation for muons (see 
Rossi 1952, p40), a muon that comes to rest in 10 cm of 
plastic scintillator ([CH2]n with a density of ≈ 1.2 g cm3) 
loses about 50 MeV along its path. The average en
ergy deposited by the muon-decay electrons in the plas
tic is about 20 MeV. We want both START and STOP 
pulses for the TAC to be triggered by scintillation pulses 
large enough to be good candidates for muon-stopping 
and muon-decay events, and well above the flood of < 1 
MeV events caused mostly by gamma rays and the “af
ter” pulses that often occur in a photomultiplier after a 
strong pulse. The effect of “after-pulses” from the pho
totubes is eliminated by the use of two PM’s and the 
coincidence requirement. 

The success of the measurement depends critically on 
a proper choice of the discrimination levels set by the 
combination of the HV and the CFD settings. If they 
are too low, and the rate of accidental coincidences into 
the TAC is correspondingly too high, then the relatively 
rare muon decay events will be lost in a swamp of acci
dental delayed coincidences between random pulses. If 
the discrimination levels are too high, you will miss most 
of the real muon decay events. To arrive at a decision, 
review your prediction of the rate of decay events in the 
plastic cylinder. The answer to Preparatory Problem 5 
tells you (implicitly) how to estimate the rate of acciden
tal delayed coincidence events in which a random start 
pulse is followed by a random stop pulse within a time 
interval equal to, say, five muon mean lives. You want 
this rate of accidental events to be small compared to 
the rate of muon stoppings, allowing for reasonable inef-



ficiency in the detection of the muon decay events due to 
the variability of the conditions under which the muons 
stop and the decay electrons are ejected. 

To avoid inhibiting the timing sequences by the simul
taneous arrival of every pulse at the START and STOP 
inputs of the TAC the pulses to the START input must 
be delayed with a sufficient length of coaxial cable to 
insure that their effect at the STOP input is finished be-
fore the timing sequence is initiated. Every pulse that 
triggers the discriminator should start a timing sequence 
which will be stopped by the next pulse that arrives at 
the STOP input, provided it occurs before the end of the 
TAC timing ramp. What effect does this necessary delay 
of the start pulse and the consequent loss of short-lived 
events have on the mean life measurement? 

A potential complication in this measurement is the 
fact that roughly half of the stopped muons are negative 
and therefore subject to capture in tightly bound orbits 
in the atoms of the scintillator. If the atom is carbon then 
the probability density inside the nucleus of a muon in a 
1s state is sufficiently high that nuclear absorption can 
occur by the process (see Rossi, “High Energy Particles”, 
p 186) 

µ − + p → n + ν, (12) 

which competes with decay in destroying the muon. 
(Note the analogy with K- electron capture which can 
compete with positron emission in the radioactive decay 
of certain nuclei. Here, however, it is the radioactive 
decay of the muon with which the muon capture pro
cess competes.) The apparent mean life of the negative 
stopped muons is therefore shorter than that of the pos
itive muons. Consequently the distribution in duration 
of the decay times of the combined sample of positive 
and negative muons is, in principle, the sum of two ex
ponentials. Fortunately, the nuclear absorption rate in 
carbon is low so that its effect on the combined decay 
distribution is small. 

PROCEDURE 

Examine the outputs of the high gain photomultipliers 
with the oscilloscope. Adjust the high voltage supplies so 
that negative pulses with amplitudes of 1 volt or larger 
occur at a rate of the order expected for muon traversals 
(use Equation 3 to check this). Do not exceed 1850 V 
to keep the noise tolerable. Feed the pulses to the coin
cidence circuit. Examine the output of the coincidence 
circuit on the oscilloscope with the sweep speed set at 
1 µsec cm−1 , and be patient. You should occasionally 
see a decay pulse occurring somewhere in the range from 
0 to 4 or so µsec, and squeezed into a vertical line by 
the slow sweep speed. Now feed the negative output of 

the coincidence circuit directly to the STOP input and 
through an appropriate length of cable (to achieve the 
necessary delay as explained above) to the START input 
of the TAC. A suitable range setting of the TAC is 20.0 
µsec, obtained with the range control on 0.2 µsec and 
the multiplier control on 100. Connect the TAC output 
to the MCA. Verify that most of the events are piling up 
on the left side of the display within a timing interval of 
a few muon lifetimes. Let some events accumulate and 
check that the median lifetime of the accumulated events 
is reasonably close to the half-life of muon. Calibrate the 
setup with the time calibrator. 

Commence your measurement of muon decays. To 
record a sufficient number of events for good statistical 
accuracy you may have to run overnight or over a week-
end. Plan your run so as to conform with the following 
schedule: 

Lab Section Run Time 

Mon/Wed AM Mon 4:00 PM to to Tue 9:00 AM 
Mon/Wed PM Wed 4:00 PM to Thu 9:00 AM 
Tue/Thu AM Tue 4:00 PM to Wed 9:00 AM 
Tue/Thu PM Thu 4:00 PM to Fri 9:00 AM 

In any case, leave a note on the experiment with your 
name, phone number, email and what the file is to be 
saved as. Friday is another possibility – be sure to sign 
up for the experiment! 

If you have recorded a sufficient number of events, say 
several thousand, and if the background counts are a 
small fraction of the muon decay events near t =0 then 
the pattern on the MCA screen should look like that 
shown in Figure (6). 

muon decay rate 

background 

FIG. 6: Typical appearance on the MCA of the distribution 
in time of muon decays 

There is a potential pitfall in the analysis. The dis
tribution in duration of intervals between successive ran
dom pulses is itself an exponential function of the du
ration, with a characteristic “decay” time equal to the 
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reciprocal of the mean rate. If this characteristic time is 
not much larger than the muon lifetime, then the muon 
decay curve will be distorted and a simple analysis will 
give a wrong result. If the average time between events 
is much larger than the mean decay time, then you may 
assume that the probability of occurrence of such events 
is constant over the short intervals measured in this ex
periment, provided the triggering level is independent of 
the time since the last pulse. Under this condition, the 
observed distribution is a sum of a constant plus an ex
ponential function of the time interval between the start 
and stop pulse. The constant, which is proportional to 
the rate of background events, is the asymptotic value 
of the observed distribution for large values of t. If this 
constant is subtracted from the distribution readout of 
the MCA, then the remainder should fit a simple expo
nential function the logarithmic derivative of which is the 
reciprocal of the mean life. 

ANALYSIS 

Sum the data in equal time intervals of a duration that 
is some sizable fraction of the apparent mean life, say 
1/5. This is easily done by manipulation of the cursors 
and the ‘integration’ feature of the Omega MCA. For ex-
ample, you might begin with the start cursor on channel 
101 and the stop cursor on channel 150. Record the num
ber of counts registered in the interval. Then move ‘both’ 
cursors together so that the start cursor is on channel 151 
and the stop cursor on channel 200, and record the num
ber of counts, etc. You can derive a value of the muon 
mean life by first determining the background rate from 
the data at large times, and then fitting a straight line by 
eye to a hand drawn plot of the natural logarithms of the 
numbers of counts minus background in successive equal 
time bins versus the mean decay time in the interval. If 
you want to obtain the best possible results, try fitting 
the 3-parameter function 

ni = a e(−ti /τ ) + b (13) 

to your data by adjusting a, b, and τ by the method 
of least squares, i.e. by minimizing the quantity 

(ni − mi)
2/mi, (14) 

where mi is the observed number of events in the i 
th time interval. (Watch out for faulty data in the first 
few tenths of a µsec due to lag in the recovery of the 
CFD, after pulsing of the photomultiplier, and the decay 
of negative muons that suffer loss by nuclear absorption.) 
Consult Melissinos (1966) for advice on error estimation. 

Contemplate the fact of time dilation by addressing 
the following questions: 

•	 How far does a high energy muon go in a time equal 
to the mean life of muons at rest? 

•	 How long does it take a typical high energy cosmic-
ray muon to get to sea level from its point of pro
duction? What would its survival probability be if 
its life expectancy were the same as that of a muon 
at rest? 

•	 What would be the vertical intensity of muons at 
an altitude of 10 km given their observed intensity 
at sea level if all cosmic ray muons were produced 
at altitudes above 10 km and time dilation were not 
true. How does this value compare with the actual 
value measured in balloon experiments? (See Ap
pendix A.) 

•	 Calculate a typical value of the Lorentz factor γ at 
production of a muon that makes it to sea level and 
into the plastic scintillator. 

•	 Problem: Suppose your twin engineered for you a 
solo round trip to Alpha Centauri (4 light years 
away) in which you felt a 11.0 g acceleration or 
deceleration all the way out and back (could you 
get out of your seat?). How much older would each 
of you be when you returned? 

THEORETICAL TOPICS 

1. The Special Theory of Relativity. 

2. Energy loss of charged particles in matter. 

3. Fate of negative muons that stop in matter. 

4. Violation of parity conservation in muon decay. 

GLOSSARY OF ACRONYMS 

ADC analog to digital converter

TC timing calibrator

CFD constant fraction discriminator

MCA multi-channel analyzer

PHA pulse height analyzer

PM photomultiplier

TAC time to pulse height converter

SCA single channel analyzer


APPENDIX A 

PROPERTIES OF THE FLUX OF COSMIC-RAY 
MUONS 

A particularly useful way to characterize the flux 
of cosmic-ray muons is to specify the distribution 
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δΑ 

δΩ = sin φδφδθ 

FIG. 7: Differential element of the flux of cosmic-ray muons. 

I(R,ϕ) of their residual ranges which we define so that 
I(R,ϕ)dR dΩ dA dT is the rate at which muons with 
residual range (measured in g cm−2) between R and 
R+dR and zenith angle ϕ in the solid angle dΩ cross 
an area dA perpendicular to their direction in time dT . 

Figure 10, extracted from a general review article by 
Rossi (1947) on the properties of cosmic rays, is a plot of 
the range distribution I(R, 0) for vertical (ϕ = 0) muons 
at sea level. The distributions at other zenith angles 
can be represented fairly well by the empirical formula 
I(R,ϕ) = I(R, 0) cos2 ϕ. The stopping material in the 
experiment is a cylinder of scintillator plastic. Call its 
height b, its top area A , and its density ρ. Consider 
an infinitesimal plug of area dA in an infinitesimally thin 
horizontal slice of thickness (measured in g cm−2) dR = 
ρdx of the cylinder. The stopping rate of muons arriving 
from zenith angles near ϕ in dϕ in the element of solid 
angle dΩ in that small volume dAdx can be expressed as 

ds = I(R� , 0) cos 2 ϕ(cos ϕdA)(ρdx/ cos ϕ)dΩ (15) 

where (cos ϕdA) is the projected area of the plug in the 
direction of arrival, (dx/ cos ϕ) is the slant thickness of 
the plug, and R� is the residual range of muons that arrive 
from the vertical direction with just sufficient energy to 
penetrate through the overlying plastic to the elemental 
volume under consideration. The total rate S of muon 
stoppings in the cylinder can now be expressed as the 
multiple integral 

A b π/2 

S = 2πρ dA I(R� , 0)dx cos 2ϕ sin ϕdϕ (16) 

0 0 0 

in which we have replaced dΩ by 2πsinϕdϕ under the 
assumption of azimuthal symmetry of the muon inten
sity. According to Figure A1, the muon range spectrum 

is nearly constant out to energies much greater than nec
essary to penetrate the building and the plastic. So we 
can approximate the quantity I(R� , 0) by the constant 
I(R, 0). Performing the integrations and calling m = Abρ 
the mass of the entire cylinder, one readily finds for the 
total rate of muons stopping in the cylinder the expres
sion 

2π 
S = mI(Rav , 0). (17)

3 

DISTRIBUTION OF DECAY TIMES 

The fundamental law of radioactive decay is that an 
unstable particle of a given kind that exists at time t will 
decay during the subsequent infinitesimal interval dt with 
a probability rdt, where r is a constant characteristic of 
the kind of the particle and independent of its age. Call 
P (t) the probability that a given particle that exists at 
t = 0 will survive till t. Then the probability that the 
particle will survive till t + dt is given by the rule for 
compounding probabilities, 

P (t + dt) = P (t)[1 − rdt]. (18) 

Thus 

dP = −Prdt, (19) 

from which it follows that 

−rtP (t) = e . (20) 

To find the differential distribution of decay times n(t), 
which is the distribution measured in the muon decay 
experiment with the TAC and MCA, we multiply the 
negative derivative of P by the product of the rate S at 
which muons stop in the scintillator by the total time T 
of the run. Thus 

−rt n(t) = (ST )(−dP/dt) = (ST )re . (21) 

Identical reasoning can be applied to the problem of 
finding the distribution in duration of the intervals be-
tween random events that occur at a constant average 
rate s, like the background events in the muon decay ex
periment. In this case each random event that starts a 
timing operation, in effect, creates an ’unstable’ inter
val (=particle) that terminates (=decays) at the rate s. 
Thus the distribution is a function of exactly the same 
form, namely 

−st m(t) = (sT )s e , (22) 



where (sT ) is the expected total number of events in 
the time T . Note that the number of background events 
is proportional to s2 . This suggests a limit on how low 
the discriminator can be set in an effort to catch all of the 
muon stopping events. At some point the ratio of muon 
decay events to background events will begin to decrease 
as s2 . 
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