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The Maxwell-Boltzmann distribution and Bragg scattering of thermalized neutrons; the DeBroglie
relation; neutron absorption cross sections. The technique of time-of-flight spectroscopy with a
mechanical beam chopper is used to study the properties of thermal neutrons in a beam emerging
from the MIT research reactor. First, the distribution in velocity of the neutrons is measured, and the
results are compared with the Maxwell Boltzmann distribution for the temperature of the reactor.
Second, the DeBroglie relation between wavelength and momentum of neutrons is determined from
measurements of the angle of Bragg reflection of the beam from a copper crystal as a function of
the velocity measured by time-of-flight. Third, the absorption cross sections of several elements are
measured, and the 1/v dependence of the boron cross section is observed.

PREPARATORY QUESTIONS

1. Compute the average velocity of neutrons in a beam
emerging from a reactor operating at 50◦C.

2. Describe how a proportional counter containing
boron trifluoride (BF3) works to detect neutrons.
Why is a low efficiency detector used for the mea-
surement of the velocity distribution of the thermal
neutrons?

3. Compute the angles of first order Bragg diffrac-
tion of 0.025 eV neutrons from the (200) and (111)
planes of crystalline copper. Could you diffract
0.0025 eV neutrons from a copper crystal?

4. Suppose a measurement shows that a sheet of linear
thickness x of a particular element of atomic weight
A and density ρ reduces the intensity of a beam of
monoenergetic neutrons by the ratio I/I0. Derive
a formula for the cross section σ of the element
for absorption of neutrons in terms of these defined
quantities.

EXPERIMENTATION AT THE MIT RESEARCH
REACTOR (MITR): RADIATION PROTECTION

AND SECURITY

This experiment was developed for Junior Lab by Pro-
fessor Clifford Shull [1]. It employs a rather intense beam
of low energy neutrons produced at the MIT Research
Reactor.
The MIT reactor has been
operating for 30 years and has served as a base for count-
less investigations by faculty, graduate and undergradu-
ate thesis students, and UROP and other undergraduate
student projects. Use of its facilities is perfectly safe,
providing reasonable and common-sense guidelines and
procedures are followed. To insure that you are familiar
with these procedures, a certain amount of indoctrina-
tion is required. This involves some advance study of
material, followed by a briefing by staff from the Radia-
tion Protection Office and from the Reactor Operations

Group. Following completion of this procedure, you are
“cleared” to perform the experiment on your own initia-
tive and according to your own schedule, consistent with
that of other students and the operation schedule of the
facility. In keeping with the spirit of the Junior Lab, you
will operate all the equipment yourself, although mem-
bers of the teaching staff will generally be available to
explain details and answer questions, particularly during
your first session.
Access to the reactor building is restricted in keeping

with regulations at this and every other nuclear reactor
facility in this country (or anywhere for that matter).
You cannot come and go until you have been granted
“clearance”. Federal and state government regulations
specify how this is to be obtained. For the purpose of
Junior Laboratory experimentation, the following steps
should be taken in order:

1. Pick up the orange-color bound packet of mate-
rial, labeled MIT Required Procedures for Radia-
tion Protection , at the second of the two organiza-
tional sessions at the start of the term, or from the
8.13/8.14 Course Administrator in the Undergrad-
uate Physics office. In this packet
(which looks impressive—but don’t panic!), there
is a form letter from the Reactor Radiation Protec-
tion Officer outlining the sections you must read
and be familiar with. There are also certain forms
you must fill out completely before attending the
briefing. Altogether this will take about one hour,
and can be done at home.

2. Study this material, and then attend your sched-
uled briefing session at the reactor to discuss the
reading material and to submit the required forms
mentioned in step (1). Following this discussion,
you will be taken on an Inspection Tour of the re-
actor by the operating staff. The discussion period
and tour will take about 1.5 hours—thereafter you
will be immediately “cleared”, and able to get on
with the experiment. You will notice that entry
into the reactor building is through a locked gate
which may be opened with a magnetically-coded



identification card, issued to you upon your clear-
ance. The Professor has made arrangements with
the reactor staff to meet with students who have
selected a “line” of experiments that includes this
one. To minimize the load on the reactor staff we
urge you to attend your designated briefing session.
If you miss the scheduled session contact the Professor
of the Junior Lab staff to work out an alterna-
tive briefing time. The equipment is reserved for
your use at the scheduled time. You may also use
it at other times, such as evenings, Monday and
Wednesday afternoons or all day on Friday. The
reactor operates continuously from Monday morn-
ing to 6:00pm Friday and occasionally through the
weekend. Some rearranging of periods may also be
necessary to accommodate the reactor operations
schedule.

3. During your first scheduled period, the Professor
or a TA will be present to show you the ap-
paratus and procedures. Please contact the Professor
in advance if a conflict or change of schedule in-
terferes with this important introductory session.
Arrange with him any additional periods when you
may want to use the apparatus so as to avoid con-
flict with other groups.

OPERATIONAL PHYSICS OF THE NUCLEAR
REACTOR

The nuclear reactor is a chain-reacting system which
bears resemblance in operational principle to a coal fire,
with nuclear reactions being the source of heat rather
than chemical reactions. In a coal fire, some carbon
atoms are excited by thermal “starting” so that they
combine with oxygen (burn). The heat released in
this exothermic chemical reaction activates other carbon
atoms to do the same, thereby forming a chain reaction
without further need of “starting”. The fire grows in in-
tensity until an equilibrium level is reached, wherein heat
losses from the system limit the thermal power available
for further steps in the chain reacting process.
In a nuclear reactor, the counterpart to the carbon fuel

is the nuclear fuel (most commonly the fissionable isotope
of uranium, 92U

235), and neutrons serve as the commu-
nicative thermal energy counterpart. In 1939 Hahn and
Strassman discovered that neutrons react with uranium
nuclei to cause fission in which the heavy nucleus splits
into two smaller and not necessarily equal nuclei plus
“debris” such as neutrons, gamma-rays, electrons, etc.
The fragmentation can proceed in many different ways.
Typical reactions are:

n1 + 92U
235 → 35Br

87 + 57La
148 + n1

or

→ 36Kr
94 + 56Ba

139 + 3n1

Notice that the above reaction equations are written
as balanced equations in both numbers of nucleons and
charge. However, if you look in a table of precise mass
values, you will find for the nuclear masses of the entries
in the first reaction the values:

M(U235) = 235.11240
M(Br87) = 86.95722
M(La148) = 147.98930
These values imply a mass loss of 0.16588 mass units

in the reaction. Using the Einstein mass-energy equiva-
lence, this calculates to 155 MeV of energy which, accord-
ing to the energy conservation principle, must show up as
kinetic energy distributed among the reaction fragments.
This is a very large amount of energy when compared
with that of ordinary nuclear processes such as alpha,
beta or gamma decay (1–10 MeV), and especially when
compared to chemical reactions (∼5 eV).
A second notable feature of fission reactions is that

neutrons are released as debris. Shortly after the discov-
ery of fission careful measurements in several laboratories
proved that the average number of neutrons released per
fission is more than one. It was then apparent that under
appropriate circumstances these neutrons could initiate
fission of other U235 nuclei and that the physical basis
for a nuclear chain reaction exists. The possibilities for
practical nuclear power generation and bombs were im-
mediately recognized by experts all over the world, and
a race began. The first controlled nuclear chain reaction
was achieved in 1941 at the University of Chicago by a
team under the direction of Enrico Fermi, and the first
bomb was exploded in 1945.

ν, Per Thermal η, Per Thermal η, Per Fast
Nuclide Neutron Induced Fission Neutron Absorbed Neutron Absorbed

U233 2.50 2.27 2.60

U235 2.43 2.06 2.18

Pu239 2.90 2.10 2.74

TABLE I: Number of Neutrons Liberated per Neutron Cap-
ture in Fissile Material.

Table I lists the average numbers of neutrons released
in various fissile materials. In this table, the differences
between ν and η (defined therein) arises because neutrons
are sometimes captured without producing fissioning.
For technical reasons of efficiency and control most nu-

clear reacting systems operate so that the neutrons which
produce the fissioning are “slow”, i.e. have very low ki-
netic energy. On the other hand, the neutrons which
are released in the fission process are “fast” neutrons
with relatively high kinetic energy, on the average about
1.5 MeV. Thus they must be slowed down (or moderated)
to a low energy. This can be done by elastic scattering of



FIG. 1: Schematic Fission Cross-Section for U235.

the neutrons from light atoms in a cool moderator. Each
scattering reduces the energy of a neutron until its energy
approaches the mean energy of the moderator atoms in
accordance with the equipartition theorem of statistical
physics. Carbon in the form of graphite was used as the
moderator in Fermi’s first reactor. Light water (H2O) is
now commonly used (as in the MIT reactor). Analysis
shows that, on the average, one needs about 18 scatter-
ing events with hydrogen nuclei (protons) to reduce the
neutron energy from 1.5 MeV to a typical thermal energy
of 1/40 eV at which point further scattering events can
raise as well as lower the neutron energy. The thermal
equilibrium is characterized by the physical temperature
of the moderator (about 50◦C at MIT, but much higher
in a power-producing reactor).

The efficiency of neutrons in producing fission depends
upon the neutron energy and is conventionally described
in terms of the fission cross section, or effective target
area of the fissioning nucleus, expressed in barns (a pic-
turesque name for 10−24 cm2). The dependence of this
upon neutron energy for the case of U235 is shown in Fig-
ure which displays a nice distinction between commonly-
designated neutron groups: slow or thermal (< 0.1 eV),
resonance (0.1–1000 eV), and fast (> 10, 000 eV). Note
particularly the much higher fission cross section for ther-
mal neutrons. Neutron physics is sometimes studied in
regimes beyond the above classes, in particular as cold
or ultra-cold (≈10−7 eV). Ultra-cold neutrons (UCN) ex-
hibit very interesting properties. For example, they can-
not penetrate surfaces and can be contained in a “bottle”!

An important quantity for reactor design purposes is
the fission cross section at the thermal energy which is
attained by most of the neutrons after moderation. For a
moderator kept at temperature T (absolute Kelvin), the
thermal energy is kT and at room temperature this is
about 1/40 eV. The cross sections for fissionable nuclei
are listed in Table II.

Nuclide Fission Capture Capture/Fission

(barns) (barns) ratio

Th232 — 7.4 —

U233 527 54. 0.102

U235 577 106. 0.184

U238 — 2.7 —

Pu239 742 287. 0.387

TABLE II: Thermal Neutron Cross-Sections for Nuclear Ma-
terials.

Design Features of a Nuclear Reactor

In the preceding section, we have surveyed some of
the physical concepts and parameters that are of signif-
icance in thinking about a nuclear chain reaction. Of
course, this is far removed from answering the question,
“how to make it work?”. Many different reactor designs
have evolved, each one aimed at achieving certain ob-
jectives. Research reactors produce radiation, radionu-
clides or other products useful in scientific and medical
studies; power reactors produce energy for practical use;
production reactors use excess neutrons to transmute the

abundant non-fissionable isotope of uranium, U238 , into
fissionable plutonium, Pu239 for bombs.
Components of a reactor that are common to all de-

signs include:

1. Fuel elements. Either natural uranium or uranium
enriched in the isotope U235, usually in the form of
uranium oxide or alloyed with aluminum and sealed
in aluminum tubes or plates.

2. Moderator. Frequently light or heavy water, but in
some cases graphite or beryllium.

3. Thermal heat transfer system. Removes the heat
generated by conversion of the kinetic energy of the
fission fragments. The latter are entirely retained
in the fuel elements.

4. Control elements. Neutron absorbing elements
such as cadmium are used to control the neutron
flux density and hence the rate of the chain reaction
and power output of the reactor.

5. Surrounding radiation shield. Intense neutron and
gamma radiation, produced by the fission process
and the radioactive decay of fission fragments, must
be contained by shielding.

The simplest spatial configuration of these components
would be many small fuel elements positioned in a spatial
lattice and immersed in a liquid moderator which is cir-
culated through an external heat exchanger to dissipate
or utilize the heat generated by the process. To maintain
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FIG. 2: Experimental setup for time-of-flight spectroscopy at
the MIT Nuclear Reactor.

the desired power level thermometers and/or radiation
monitors would be connected to servo-mechanisms to ad-
just automatically the positions of cadmium control rods
inserted into the lattice. Details of the particular features
of the MIT Reactor will be provided to you at the time
of your briefing.

EXPERIMENTS

Part I: Study of the Maxwell-Boltzmann
Distribution of Neutrons in the Nuclear Reactor

In all of the present experimentation we shall use a
pulsed, collimated beam of neutrons emerging from the
reactor in a setup shown schematically in Figure 2. The
distribution in energy of the neutrons in the beam re-
flects the equilibrium spectrum of the moderated neu-
trons in the reactor. In accordance with the principles
of statistical physics, we anticipate that this spectrum
is the Maxwell-Boltzmann spectrum characterized by a
temperature that is the same as the physical temperature
of the moderating agent in the reactor (normal water in
the case of our reactor), providing complete moderation
of the neutrons has occurred. Thus we can think of the
neutrons in the reactor as constituting a neutron gas in
thermal equilibrium with the moderator, with a certain
density and temperature. We will examine the velocity
spectrum of the neutrons by letting some escape as a
collimated beam through a small opening in the reactor
shield.
We will measure the velocity spectrum by timing the

flight of individual neutrons over a laboratory distance
of about 1.5 meters. We do this by “chopping” the beam
as it emerges from the reactor to produce periodic short
bursts of neutron intensity. After traveling the flight dis-
tance the neutrons are detected with a small neutron
counting tube, and the occurrence times of the individ-
ual counting pulses relative to the starting time of the
burst are recorded with a multichannel scaling (MCS)
card.

axis
spin

neutron

L
flight distance

Chopper Wheel

slow
neutron

fast

BF  detector

fixed slit

from reactor
neutron beam

spin axis to beam = 53 mm
Chopper slit width = 0.95 mm

2.50 mm high
1.00 mm wide

FIG. 3: Schematic diagram of the time of flight spectrometer
showing the beam chopper and the BF3 detector.

The Neutron Chopper

The chopper is a slotted disk of neutron-absorbing cad-
mium which rotates about an axis above and parallel to
the neutron beam line, as illustrated in Figure 3. Cad-
mium is very absorptive to neutrons of energy less than
about 0.40 eV (speed of 8760 m/sec), and serves as a
good shutter for thermal neutrons. The cadmium disk
of thickness 1 mm is sandwiched between two aluminum
disks for mechanical stability. Around the periphery of
the disk assembly, eight radial slots have been cut in the
disk assembly. The width of each slot is 0.95 mm. Im-
mediately in front of the chopper disk (upstream) is a
fixed slit opening in neutron absorbing material (boron
containing plastic) of width 1.00 mm and height 2.5 mm.
This serves to define the beam size entering the chopper
assembly. The axis of rotation is located 53 mm above the
geometrical center of the defined neutron beam. A small
speed-controlled synchronous motor rotates the disk. Ev-
ery time a radial slit passes the fixed slit a burst of neu-
trons is admitted to the flight line. Since the slit widths
are nearly equal the time structure of intensity in this
burst (which may contain several hundred neutrons) is
triangular, with a full width at half maximum (FWHM)
determined by the slit width and rotational speed. You
should convince yourself of this feature. Also, consider
what it would be for the case of unequal slits.

The rotational speed of the synchronous driving motor
is fixed by the power line frequency and is seen as a digital
display of the rotational speed in RPM or the neutron
burst repetition rate in Hertz. This frequency will be
240 Hz throughout the experiment.

It is necessary to establish a reference time for the ori-
gin of each of the neutron bursts. This is done by the
periodic interruption of a light beam passing parallel to
the neutron beam line between a tiny photodiode and
photodetector which is positioned about 90◦ around the
disk from the neutron beam. The geometry is arranged
so that a light signal occurs a short time before each neu-
tron burst. The light signal sets the time origin of the
MCS used to measure the neutron flight time. Thus the



actual neutron burst origin time is slightly later than the
MCS origin time by a certain fixed delay which must be
determined as a part of the experiment.

The Neutron Detector

Small gas proportional counters are used as neutron
detectors. For this part of the experiment, the counter
of choice contains BF3 gas in a sealed aluminum tube
of diameter 0.5 inch and length 3 inches. High voltage
(about 1000 volts) is applied between the metal tube and
a fine center wire. The resulting electric field collects
the charges produced by gas ionization caused by the
energetic nuclei from the reaction 0n

1 + 5B
10 → 3Li

7 +

2He
4 . The B10 isotope forming 18.8% of natural boron

captures neutrons with a large cross section that varies as
1/v, where v is the neutron speed. Many nuclei, such as
H1 , Li6, He3, and Au197 exhibit this “1/v law” capture
of slow neutrons (compare the plot of the U235 fission
cross section in figure at the end of section ).

Our counter contains BF3 gas at a pressure of
40 cm Hg; a typical neutron passing along a diameter
will be detected with an efficiency of about 1%. It is
purposely selected to be “thin” (low efficiency) so that a
simple analytical correction can be applied in the analysis
of the spectral data. Electrical pulses from the counter
are amplified in a preamplifier and in a main-line ampli-
fier, selected by a single channel “window” analyzer, and
counted by a scaler. Thereafter they can be sent to an
oscilloscope for observation, or to a MCS for arrival time
sorting. The output pulses from the amplifier are about
5 µseconds in duration. Operating details concerning the
counter high-voltage, amplifier settings and MCS oper-
ating conditions are posted at the experiment location.

Thermal Spectrum Theory

The Maxwell-Boltzmann (M-B) distribution law de-
scribes the distribution in speed (or kinetic energy or
momentum) of atoms in a gas in a state of thermal equi-
librium. Neutrons within the reactor can be expected to
obey a similar distribution law, namely

n(v)dv =
4N√
π

(

v2

v3
0

)

exp

(

−v
2

v2
0

)

dv, (1)

where v is the neutron speed (m/sec), v0 is the most
probable speed (i.e. the peak of the speed spectrum), N
is volume density of all neutrons (neutrons/m3), n(v)dv
is the neutron density for those with speeds falling in the
speed interval between v and v + dv (see texts on gas
kinetic theory, e.g. Reference [5, 6]).

This can be recast in terms of other kinetic parameters

such as kinetic energy E for which we have

E =
1

2
mv2 and dE = mvdv, (2)

yielding

n(E)dE ∝
(

E

E0

)1/2

exp

(

− E

E0

)

dE, (3)

with

E0 =
1

2
mv2

0 = kT, (4)

where m is the neutron mass.
The corresponding flux density in the collimated beam,

i.e. the number of neutrons per unit area per unit time
with velocity between v and v+dv passing a given point,
is

j(v)dv = vn(v)dv

= J0v
3 exp

(

−v
2

v2
0

)

dv. (5)

As mentioned above, the neutron detector is a “thin”
counter for which the efficiency e varies with neutron
speed as 1/v. Thus

e = A(1/v), (6)

with A = some constant. If we now call j ′(v)dv the
number of detected neutrons per unit area of detector
per unit time with velocity between v and v + dv, then

j′(v)dv = Bv2 exp

(

−v
2

v2
0

)

dv, (7)

with B is a constant. Can you figure out the reason for
using a “thin” counter rather than using one with higher
efficiency of say 50%, aside from the fact that we don’t
need the higher efficiency because the measured intensity
is adequately high?
The quantity actually measured by the apparatus in

each event is the time interval between the fiducial signal
from the photodetector and the detection of a neutron
by the BF3 counter (rather than the velocity). The ac-
cumulated data in the MCS is the number Ni of neutrons
detected in the i-th MCS-time channel corresponding, af-
ter appropriate calibration and zero-time correction, to
a flight time ti . Since L = vt, we have

Ni = D

(

1

t4i

)

exp

(

− L2

v2
0t

2
i

)

∆t, (8)

where ∆t is the finite and constant width of the MCS-
time channels, and ti is a flight time within the i-th in-
terval, and D is a constant.
We note that

ln(t4iNi) = −
(

L

v0

)2(
1

ti

)2

+ constant, (9)



or, equivalently, that

ln

(

Ni

v4
i

)

= Q− v2
i

v2
0

, (10)

where Q is a constant. Thus a display of the quantity
(Ni/v

4
i ) against v

2
i on semi-log graph paper should be a

straight line with negative slope (1/v2
0). It will be conve-

nient to display the data in this way to check the validity
of the Maxwell-Boltzmann distribution and to evaluate
v0 and T .

Experiment Procedure—Part I

1. Examine the apparatus and, with the aid of an in-
structor, identify the components and their func-
tions.

2. Activate the chopper motor and wait until it settles
to the rotational speed corresponding to a neutron
burst frequency of 240 Hz.

3. Place the BF3 counter (already mounted in a small
shield box) at the location point very close to the
chopper and set the counter voltage and amplifier
conditions at the prescribed levels. Instructions for
this will be posted locally.

4. Open the shutter to admit the neutron beam to
the apparatus—a red warning light will be acti-
vated. As noted previously, this beam is contained
in a long square-shaped channel until it is finally
absorbed in a shield cage at the end of the flight
path. It is of high intensity and exposure of

any part of the body to it must be avoided.
In addition to the thermal neutrons used in this ex-
periment, there are also gamma-rays and unmod-
erated fast neutrons which are damaging to tissue.

5. Examine the neutron detection pulses from the am-
plifier on the oscilloscope screen, noting their time
width.

6. The Multi-Channel Scaler (MCS) that you will be
using is a board plugged into the PC. The presets
should be set as follows:

a) Dwell time 20 microseconds

b) Pass Length 128

c) Pass Count 432,000

Instructions for using the MCS software can be
found in the manual in the top desk drawer.

7. Set the MCS into operation and note the build-up
of neutron counts in early time channels of the MCS
time display. Since the flight distance is so small
(only about 5 cm), neutrons of different speed do
not have a chance to spread apart before detection.

Collect data over a recorded time interval, stop the
collection, and save the data to a file in your per-
sonal directory. Only a short collection time will
be needed for this, as you see the quick build-up on
the MCS display.

8. While you have the counter at the front position
just behind the chopper, you can measure the in-
tensity of the beam coming through the stopped,
open slit. From this intensity and the known geom-
etry of the collimator tube in the reactor shield, you
can calculate an approximate value for the neutron
flux inside the reactor. With the chopper stopped,
adjust its angular position to get the maximum in-
tensity as seen in the 5-second counting intervals on
the scaler digital display. Record a number of these
counts for averaging. Do the same with the chopper
oriented so the beam is obstructed by the cadmium
in the chopper. The difference between these aver-
age values divided by the detector efficiency gives
the thermal neutron intensity expressed in neutrons
per second. Using the formulae given in Appendix ,
along with the known geometrical factors, you can
calculate the neutron flux and the neutron density
inside the reactor.

9. Move the BF3 counter to the back position along
the flight channel. Again, note the build-up of neu-
tron counts on the MCS display. Neutrons are now
found in later time channels distributed over a time
spectrum. Collect data for a recorded time inter-
val. This will take about 30 minutes to get sta-
tistically meaningful numbers because the neutron
counts are now spread over many channels. (The
electronic cut-off of high channels is purposely in-
troduced to eliminate overlap from one burst to
another.)

10. Close the neutron beam shutter. Measure the dis-
tance from the cadmium in the chopper disk to the
counter tube center for both positions. Always take
these measurements in centimeters with an accu-
racy to about one millimeter. Record this measure-
ments along with rotational speed, the MCS chan-
nel width, and the collection time. Double check
your distance measurements, since an error here
will affect all of your later analysis.

Data Analysis

1) Plot your print-out data for the small distance case,
neutrons/channel vs. channel number, and determine the
center position (you can assess this with an uncertainty
of perhaps 0.1 channel using the steep sides of the peak)
and also the FWHM. (See Appendix .) Is the shape
what you expect, and does the FWHM agree with what



you calculate? Remember that the neutrons have had
little chance to spread out. On the other hand, the finite
flight time over your small distance has shifted this peak
by a small amount relative to the neutron burst origin
time. You can correct for this shift by making use of the
observed travel time of the peak in the MCS display for
neutrons going from L1 (the short flight distance) to L2

(the long flight distance). Thus the correction is

L1

(L2 − L1)
(C2p − C1p), (11)

and the neutron time origin channel C0 becomes

C0 = C1p −
L1

(L2 − L1)
(C2p − C1p). (12)

Here, C1p is the MCS channel of the center of the ap-
proximately triangular distribution obtained when the
detector is at the near position; C2p is the MCS channel
position for the peak of the distribution recorded when
the detector is at the far position which is at a distance
L2 and correspondingly for C1p. It is interesting to note
that the speed of the neutrons in the peak in the MCS
time distribution

Ni = C

(

1

t4i

)

exp

(

− L2

v2
0t

2
i

)

∆t, (13)

becomes
√
2v0 , as you can establish by setting its time

derivative to zero, thereby obtaining tpeak, and looking
at this dependence on L. This can be compared to the
peak in the velocity distribution which is v0.

Note that the channel spread about the peak centered at
C0 (in the data taken at the small distance position) is a
direct representation of the time resolution of the system.
All later measurements are smeared by this limiting time
resolution.

2) Plot a spectrum of your data as taken at the back
counter position. There are many points, but it is well
worth the effort. Identify on your graph the neutron
origin channel position C0—all flight times are now es-
tablished relative to this.

Draw a smooth average curve through the many points
over the full range on a large sheet of graph paper. We
expect that the spectrum will approach equal asymptotic
levels at the two extremes of the spectrum, and that this
is a background level by which all observed spectral in-
tensity values should be corrected. Are the deviations
of individual points from your smooth curve meaning-
ful on statistical grounds? Remember that the collection
of N statistically distributed events in a measurement
means that there is 68% probability that the value N
will fall within 〈N〉 of the true value as established by
many repetitive measurements.

Since the expected M-B spectrum approaches zero
asymptotically at both extremes of the spectrum (be-
cause of the t−4 dependence at the high channel (low
energy) end and the exponential dependence at the low
channel end), the residual or base level that is observed
represents a background intensity level arising from leak-
age neutron events not associated with opening or closing
the chopper. Thus all observed intensities should be cor-
rected by subtracting this background level. In assessing
this background level for your data, you should note that
t→ 0 for channels just above C0 so the intensity level for
channels just above C0 should represent the base level.
On the other hand, at the other extreme, near the elec-
tronic cut-off level of about channel 127, the M-B spec-
trum has not completely collapsed to zero and the ob-
served intensity may be somewhat higher that it would be
for even lower channels. We can correct for this residual
M-B intensity in high channels by noting that its value,
relative to the peak intensity depends upon v0. Previous
experimentation has determined v0, and calculation has
shown that the ratio of this residual intensity in chan-
nels above 120 to that at the peak is 0.013. Using this
ratio value, determine the background base value which
is most consistent with the observed intensity pattern at
both ends of the spectrum. Pay no attention to intensity
values corresponding to negative channel numbers (be-
low C0) since they are associated with transparency of
the Cd in the chopper and with other leakage neutrons.

3) Tabulate values read from your smooth curve at se-
lected channel positions—say every fifth channel. In se-
lecting values from your smooth curve, note that you
are making use of all the data points since they have
contributed to your establishment of the smooth curve.
Make data columns of Nobserved − Nbase level and corre-
sponding Cobserved channel − C0. Follow with calculated
values of the speed v using your measured flight distance
and the individual channel time. Carry a number of sig-
nificant figures that is consistent with the measurement
precision.

Finally, tabulate values of Ncorrected/v
4 and v2. Make a

semi-log graph covering about 3 log cycles of these quan-
tities. According to our M-B theory, these points should
fall on a straight line whose slope is 1/v2

0 . Graphical
trick: to make full use of 3-cycle log paper, adjust your
intensity data by an arbitrary multiplicative factor—this
will not affect the slope.

4) You will probably find that the high-velocity data
points (> 5000 m/sec) in this semi-log display fall above
a straight line fitted to the low-velocity data. Two effects
contribute to such discrepancies: (a) The finite duration
of the pulses of neutrons that emerge from the chopper
causes a smearing of the observed velocity distribution
so that it differs significantly from the true flight time
distribution (see if you can estimate the effect of this on



your data); (b) High energy neutrons generated in the fis-
sion process and encountering the relatively cold moder-
ator, are continually diffusing in “velocity space” toward
lower velocity with the diffusion driven by an excess at
high velocities over the equilibrium Maxwell-Boltzmann
distribution.

Deviations from linearity of the plot may also occur at
low velocities (< 1000 m/sec) for various reasons such
as the high absorption cross sections of reactor materials
for slow neutrons. It must be recognized, also, that the
background intensity makes up a larger portion of the
observed counting rates at the low and high-velocity ends
of the data.

In any event, when fitting a straight line to the data,
remember both effects and pay special attention to the
main center region of the range. Since your physical judg-
ment must establish the range of linearity, it is hardly
worthwhile to use a least-squares fitting of the points to
a straight line. Use your best judgment in this and es-
timate the uncertainty in the slope of the line. Don’t
hesitate to calculate values and plot additional points
beyond your initial sampling of your smoothed spectral
curve in assessing the best line fit. If you find gaps in
your selected point distribution, analyze additional in-
termediate ones which will help in recognizing the linear
range.

5) Evaluate the slope of your best straight line (be very
careful in this—students frequently have much trouble
with the slope of a line on semi-log display) and calculate
v0, E0 = 1/2mv

2
0 , and T from kT = 1/2mv2

0 , and justify
this relation. Recall in gases Ekinetic =

3
2mv̄

2. Does your
neutron temperature T agree with that of the moderator?
Does the peak position in the observed spectrum agree
with that expected from your fitted parameters? From
the uncertainty in the slope of the line, what are the
uncertainties in these quantities?

6) Calculate the neutron flux and neutron density in
the reactor from your data obtained in section step 7 and
the analysis in Appendix . If we think of these neutrons
as being confined in a walled container, what pressure
would they exert on the walls?

Part II: Bragg Diffraction of Neutrons and the
De Broglie Relation

In the early years of this century, physicists were faced
with the wave-particle dilemma in describing the prop-
erties of the electromagnetic field and how it interacts
with matter. Young’s interference experiments with vis-
ible light (1801), Hertz’s experiments with radio waves
(1887), and von Laue’s discovery of X-ray diffraction
(1912) showed wave interference and provided measures

of wavelength for electromagnetic radiation from radio
to X-rays. On the other hand, Planck’s theory of the
black-body spectrum (1901), and Einstein’s theory of the
photoelectric effect (1905) showed that electromagnetic
radiation is absorbed at a surface in discrete amounts of
energy (quanta) and not as a continuous flow. Bohr’s
theory of the hydrogen atom (1913) showed that elec-
tromagnetic energy is emitted in discrete quanta. And,
finally, Compton’s interpretation of his own experiments
on the incoherent scattering of X-rays (1923) showed that
X-rays of wavelength λ interact with free electrons like
particles with energy hc/λ and momentum h/λ. A com-
posite picture was thus formed in which electromagnetic
radiation is characterized by the seemingly contradictory
concepts of wave frequency and wavelength, and particle
momentum and energy.
Recognizing this interrelation for photons between

wave and dynamical properties, De Broglie suggested in
1924 (in his PhD thesis) that similar properties should
characterize all particles of matter. At that period, mat-
ter was considered to be made up of electrons and pro-
tons. This meant that electrons and protons (or any
composite of them like an atom, a baseball or the earth)
in motion should possess a wave character. De Broglie
proposed a relation between the wavelength (λ) and mo-
mentum (mv):

λ =
h

mv
, (14)

where h is Planck’s constant. This relation is the same as
for photons, with, however, the recognition that photon
momentum p = E/c (with the photon energy E = hν and
ν the wave frequency of the electromagnetic photon).
Although not taken too seriously at first (it is re-

ported that Einstein himself was incredulous initially),
De Broglie’s suggestion was given full acceptance with
the discovery of electron diffraction by G. P. Thomp-
son and by Davison and Germer in 1927. They drew
upon the fact that atoms in a crystal are positioned rel-
ative to each other in a very regular way, and that their
spacing is a few Angstroms (1Å = 10−10 m) in scale.
Their experiments on the reflection of electron beams
from metal crystals demonstrated that wave interference
effects were obtained with electrons of an energy such
that their De Broglie wavelength is comparable to the
separation of the crystal planes, a result completely anal-
ogous to that previously observed with X-ray photons
(which certainly were endowed with a wavelength) and
interpreted by Laue and Bragg. Since that time, further
confirmation of the wave-particle duality has come for
other types of particles (waves) such as alpha particles,
atoms, neutrons and mesons. We shall see this duality
in full display in Part II of this experiment, where we
shall again directly measure the velocity of a group of
neutrons and at the same time observe the diffraction of
these same neutrons by a crystal, thereby establishing
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FIG. 4: Schematic representation of a crystal with rows of
atoms extending into the page.

their De Broglie wavelength.
We shall first need to know some things about crystals

and the wave interference effects that may be observed
with them. As mentioned above, a crystal represents a
collection of many atoms bound together by inter-atomic
forces to form a three-dimensional solid (however, two-
dimensional cases and liquid crystals are known to exist).
In a perfect crystal, the atoms are positioned in a spatial
array (or lattice) with precision, this being determined
by the symmetry and balancing of inter-atomic forces on
each atom. With this regularity of position, illustrated
schematically in Figure 4, it is easy to envision the over-
all crystal as being made up of parallel sheets (or planes)
of atoms which can serve to provide wave interference
between the components of radiation scattered by indi-
vidual atoms. Almost any textbook on general or mod-
ern physics (e.g., reference [8]) will have an elementary
derivation of the conditions necessary for constructive in-
terference of radiation scattered from atoms in a crystal
plane. These conditions are expressed by Bragg’s Law,

nλ = 2d sin θB , (15)

where n = order of diffraction (1, 2, 3, . . .), λ is the wave-
length, d is the interplanar spacing, and θB , called the
Bragg angle, is the grazing angle of incidence and reflec-
tion. It is deceptively similar in appearance to the law de-
scribing constructive interference from a one-dimensional
set of scattering centers (e.g. a grating), and it is worth
pointing out the difference.
In the one-dimensional case, illustrated in Figure 5,

the approach angle θ1 may have any value, and the ex-
iting angle θ2 for constructive interference is then de-
fined by the interference equation with θ2 not necessarily
equal to θ1. For reasons not so obvious, this general-
ity is not present in three -dimensional diffraction where
θ1 = θ2 = θB . In fact, diffraction from a crystal always
occurs in symmetrical fashion from atom planes with
both incident and emergent angles being equal to θB .
(This subtle distinction is discussed in Optics, B. Rossi,
Addison Wesley, 1957, and in various texts on crystallog-
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FIG. 5: Schematic representation of a diffraction grating as a
one-dimensional set of scattering centers.
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FIG. 6: The three forms of cubic crystals.

raphy, e.g., X-Ray Crystallography, M. Wolfson, Cam-
bridge 1970.) A given set of atom planes of spacing d
will reflect radiation of wavelength λ with intensity con-
centrated in a narrow range of angles (typically within
10−5 radians) with a maximum at the Bragg angle θB
defined above. This is not true for the one-dimensional
grating where, for any incident angle θ1, diffraction max-
ima occur at angles θ2 given by the formula in the figure,
provided d > λ.
A crystal may be considered as being made up of an

infinite number of different atom plane layers, each set
with a different interplanar spacing and different orien-
tation. Bragg diffraction can occur from any of these
sets as long as the Bragg Law is satisfied. What we need
at this point is a shorthand method of classifying these
different sets of planes, which we now develop. Since
nature causes atoms to pack together in different ways
(but always in a given way for a given species of atoms
or molecules; a change of external conditions such as the
temperature, pressure, or magnetic field application can
invoke a change of structure, a phase transition), it is ap-
parent that many different forms of crystal structure may
be encountered. These are classified according to symme-
try characteristics: cubic, hexagonal, ortho-rhombic, etc.
Common to all forms is the concept of the unit cell which
represents the smallest collection of atoms (or molecules)
which, when repeated along the three axes, make up the
whole crystal. Thus cubic crystals have cubic unit cells
and the size of the unit cell a0 is set by one dimension.
However, cubic cells may contain any one of three differ-
ent atom configurations as shown in Figure 6.
For the general case, the unit cell can be defined by

three vectors a, b, and c directed parallel to the unit
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FIG. 7: Diagrams showing how Miller indices are used to
define crystal planes.

cell edges and of magnitude equal to the size in that
direction. Furthermore, we can identify the orientation
of any plane of atoms in the crystal by the intersections
of this plane with the three axes of the unit cell. It is a
great convenience to do this in terms of the Miller indices
h, k, and l (small integers) with a/h, b/k, c/l being the
intersection points of the plane with the respective axes,
as illustrated in Figure 7.
We label a particular set of atomic planes as being

(hkl) planes according to these Miller indices. A little
geometry will show, for the case of a cubic crystal, that
the interplanar spacing dhkl will be given simply by

dhkl =
a0

(h2 + k2 + l2)1/2
. (16)

In our experiment, we shall be using a metal crystal
of pure copper which has a face centered cubic struc-
ture (four unique atoms per unit cell) with unit cell size
a0 = 3.6147 Å. Note that this value of a0 may be cal-
culated from the measured density ρ = 8.939 g/cc, Avo-
gadro’s number 6.0221×1023 atoms per mole, the molec-
ular weight 63.57, and the number of atoms per unit cell.
Check that this is so. Also calculate interplanar spac-
ing values for planes (200), (220), and (111) which you
will be using in the experiment. You should identify, in
the above figure of cubic unit cells, just which atoms are
unique to the unit cell—there are four for face centered
cubic (how many are there for the other cells?). Inciden-
tally, among some common elements, Fe, Cr, Na, and Mo
crystallize as body centered cubic (bcc) and Cu, Al, Au,
and Pb as face centered cubic (fcc). No element is known
to exist in simple cubic form.
Before leaving our crystallographic considerations, we

should investigate whether there are restrictions on the
appearance of Bragg diffraction from the many (hkl) sets
of planes. To illustrate this for our fcc case, a view of
the unit cell normal to a face shows atoms and atom
planes as shown in Figure 8. There are sheets of atoms
separated by the fundamental distance d (002) = a0/2,
with common atomic density in all sheets. If we were
to attempt to observe (001) diffraction as prescribed by
Bragg’s Law, we would find reflected rays (A) and (C) to
be in phase, as would (B) and (D), but the two groups
would be out of phase with respect to each other, and
hence overall destructive interference would occur. Thus

( B )

( A ) 

( C )

( D )

d002
001

d

d

o

FIG. 8: Illustration of Bragg reflection from a fcc crystal in
which destructive interference between reflections from adja-
cent (001) planes occurs.
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FIG. 9: Schematic diagram of the neutron beam diffracted
from the copper crystal.

zero intensity in (001) diffraction is expected, but finite
intensity in (002) diffraction. Without going into detail,
the general rule for an fcc structure is that the

Miller indices must be either all even integers or

all odd integers in order for constructive inter-

ference to occur. Thus there will be no (100), (110),
(221) diffraction occurring, but there can be (020), (111),
(022), (311) for fcc. Other crystal structures would have
different selection rules. Miller indices can be taken neg-
ative as well as positive, and a negative index is written
as a bar over the index. Thus (111̄) would designate an
allowed set of planes in the fcc structure Bragg diffrac-
tion.

Experiment Arrangement and Procedure

We shall use the same neutron beam as in Part I. As
we have seen, it is a full spectrum beam with all neutron
speeds (or as De Broglie asserted, all wavelengths). How-
ever, before detecting it on its normal straight flight line,
we shall interrupt it with a diffracting crystal of copper.
After repositioning the detector, we can detect the Bragg
diffracted beam in the direction that makes an angle of
2θB with the incident beam, as shown in Figure 9.

The copper crystal will be positioned along the neu-
tron flight line, somewhat in front of the position where
you placed the detector for Part I spectrum measure-
ment. Notice that there is a fixed slit opening (of width
3.0 mm) just before (upstream from) the crystal position,
and this serves to further define the direction of neutron
ray trajectories (along with the fixed slit in front of the



FIG. 10: Illustration of the orientation of the crystal planes
in relation to the geometrical shape of the crystal.

chopper disk shown in Figure 3) that can hit the crys-
tal. It was there during your spectrum measurement,
but served no particular purpose, since we were inter-
ested only in flight distance to the detector and not the
direction of rays.
If a particular set of crystal planes (hkl) is oriented at

an angle θB from the incident beam direction, neutrons
with wavelengths in a narrow band will satisfy Bragg’s
Law and hence be diffracted at angles in a narrow range
around 2θB from the incident beam direction. We can de-
tect this diffracted beam by placing our detecting counter
at the appropriate angular position. In our experiment,
we shall select various orientation positions of the crystal
(thereby selecting θB) and simultaneously measure the
flight time of the diffracted neutrons which arrive at the
detector. This provides both the wavelength λ (from the
Bragg Law) and the velocity v of the diffracted neutrons.
By changing the crystal orientation (and the detector po-
sition), we can scan over a range of λ and v and test the
De Broglie relation in a very direct way.
1) The Crystal The copper crystal has been grown

and cut in the form of a small disk of diameter about
15 mm and thickness about 2.3 mm. Copper metal ex-
ists usually in polycrystalline form, i.e., it is made up
of many microscopic crystallites (perhaps about 1 µm in
size) oriented at random. Our single crystal has been pre-
pared in a special way (called the Bridgman method): the
metal was melted in a crucible of special shape, and the
temperature was very slowly reduced through the freez-
ing temperature with a controlled temperature gradient.
This permits a single crystal to grow to a size limited only
by the crucible dimensions (if the conditions are right!).
Our crystal disk has been cut from such a grain after es-
tablishment of the grain orientation by diffraction tech-
niques (neutrons, of course!). The flat faces of the disk
have been cut and surface polished to high precision—
they are parallel to (110) crystallographic planes within
1 arc minute. Looking down on the crystal disk, we see
the unit cell as illustrated in Figure 10.
In testing the De Broglie relation, we shall use diffrac-

tion from the (002) planes which are accurately perpen-
dicular to the (110) faces. Thus we shall be using the
disk in transmission orientation, i.e., the neutrons will

FIG. 11: Arrangement of the apparatus for alignment with a
laser.

pass symmetrically through the disk. Copper is rela-
tively transparent to neutron radiation with an absorp-
tion cross section of 3.69 barns for thermal radiation of
speed 2200 m/sec. You should calculate the intensity loss
this implies.
The crystal disk has been attached to a support plate

with our (002) planes vertical, and this in turn is sup-
ported by a goniometer, a device for controlling angular
orientation. A vernier on the goniometer angle scale per-
mits angular position setting to 0.1 degree around the
vertical axis. You will note that the goniometer-crystal
assembly is a unit package, which can be attached to the
neutron guide channel so that the crystal is automatically
positioned in the beam.
2) Pre-Orientation of Crystal With Laser Beam (Neu-

tron Beam Shutter Closed) In order to set the crystal
diffracting planes at selected Bragg angle positions, we
first need to establish the goniometer scale reading at
which the crystal planes are parallel to the incident neu-
tron direction. Having done this, the crystal can then
be turned and the change in goniometer angle reading
will give the angle of incidence of the neutron beam with
accuracy.
We shall use a highly collimated laser light beam to

do this with the assembly shown in Figure 11. A laser
source will be mounted at a right angle to the neutron
beam line at the far end of the flight channel. The light
beam will be reflected along the axis by a mirror and we
want to orient the light beam so that it coincides with
the neutron beam that will strike the crystal. By careful
positioning of the laser and the mirror, you can arrange
that the light beam passes through the centers of the two
defining fixed slits as well as through one of the slots in
the chopper wheel.

a) Adjust the mirror or the laser so that the light
beam passes through the center of the back fixed
slit—you can see the laser beam hitting the chopper
wheel.

b) Turn the chopper wheel so that the right-left side
slots on the wheel are symmetrically positioned rel-
ative to the channel—this brings the bottom chop-



per slot into approximate coincidence with the front
fixed slit.

c) Realign the mirror-laser so that the light beam
passes through the centers of both the back slit and
the bottom chopper slot.

d) Slide a slip of paper in front of the front fixed slit so
that you can see the beam passing through all three
slits, and refine the angular position of the wheel to
get a maximum light spot intensity on paper—you
now have made all three slits collinear.

e) Now further align the laser-mirror so that the light
beam passes through the centers of the back slit and
the bottom chopper slot. Do this with care, and
estimate how close in angular orientation you have
positioned the laser beam relative to the neutron
beam axis. Leave the laser beam undisturbed.

Following this laser beam alignment, the goniometer-
crystal assembly is put into position and locked with
screws. The crystal now interrupts the laser beam and
reflects it back to the laser source. By turning the crys-
tal with the fine goniometer control, the reflected spot is
moved on the face of the laser source. Adjust this un-
til the reflected spot is at the same horizontal position
as the source spot—a dirty microscope slide is waxed on
the front of the laser so that you can see the two spots.
In this way, you have arranged that the polished, reflect-
ing surface of the crystal (which is accurately parallel
to (110) planes) is perpendicular to the laser beam line
(or the neutron beam line). It follows that the internal
(002) planes are parallel to the neutron beam line. Read
and record the goniometer angle position with vernier in-
terpolation. Practice with the vernier—always with both
you and your partner checking each other. Estimate from
the sensitivity of the positioning the accuracy with which
you are establishing the zero angle position. All later an-
gle settings are now referred to this value.
3) The Detector Instead of using the low efficiency,

thin BF3 counter that was used in the Part I spectrum
measurement, it will be helpful to use a high efficiency
(about 90%) counter with He3 gas. This is similar in op-
eration to the BF3 counter, but it contains isotopic He

3

gas at high pressure, about 40 atmospheres. He3 is the
very rare and expensive isotope of elemental helium. As
with boron, He3 also exhibits a 1/v absorption cross sec-
tion for neutrons. The same counting circuit will be used,
but different counter voltage and amplifier gain setting
will be needed—these conditions will be posted locally.
4) Crystal Diffraction Measurements

a) Set the crystal orientation so that the (002) planes
have θB = 20◦ as closely as you can read the
vernier. Leave the chopper motor off and put the
chopper slot in the open position (you would have
arranged this in the laser beam prealignment).

b) Open the neutron beam shutter so that a steady
neutron beam falls on the crystal.

c) Without disturbing the crystal orientation, move
the counter in angle position around 2θ = 40◦—
there is a crude angle scale on the table and a pa-
per vernier scale on the counter box. With Bragg
diffraction occurring at the crystal, we expect a lo-
calized intensity peak at about 40◦ scattering angle.
Measure the intensity with short time counting in
the electronic scaler at different positions of the de-
tector using steps of 0.25◦. Plot this immediately,
and determine the center position. Remember that
the center position of a peak is best determined
from the steep side positions—the highest inten-
sity that you measure is not the best criterion for
this. (See Appendix .) Lock the detector at the
center position.

d) Set the chopper wheel in motion and stabilize at
the 240 Hz burst rate as before.

e) TIME SAVING HINT: Read Appendix B

and do transmission cross-section measure-

ments as part of the next step

f) Collect data in the MCS giving the flight time spec-
trum of the neutrons which are diffracted from the
(002) planes in the crystal. There should now be
a sharp peak at the flight times of the selected
monochromatic neutrons. You may also see a lower
intensity peak characteristic of λ/2 in second order
diffraction from the same planes. Collect enough
MCS data for print-out. If you see second order
peaks in the MCS display, collect enough data to
determine their flight time as well as for the first
order.

g) Repeat for other selected θB values: 30◦, 25◦,
20◦,and 15◦. In setting other θB positions, it is
worthwhile to redetermine the counter position as
in 4(c) above. An off-center detector will produce
an error in the measured speed relative to that ex-
pected from the Bragg angle of the crystal. You
expect the scattering angle to be close to 2θB in
each case. Remember that the θB value read on
the more accurate goniometer is the primary an-
gle quantity and the counter position is not of use
in the later analysis. You want only to have the
counter in the central part of the diffracted beam.
Once you have determined this central part for each
angle and measured the spectrum at that angle,
you should also take a second spectrum through
the boron absorber (pyrex beaker-bottom) for each
angle. You will use these data for checking the 1/v
dependence of the cross-section for boron in Part
II.



h) At the end of data runs, measure the flight path
distance (L1 + L2 in Figure 9) of counter center
from cadmium chopper wheel; it is different than
in Part I. Double-check this measurement.

i) Repeat the measurement of the neutron time origin
channel C0 by determining C1c as in section ), us-
ing the He3 counter since there is a subtle difference
in counter operation. In using this counter in the
high intensity beam, the amplifier gain must be re-
duced, and an attenuator of paraffin wax is placed
in the beam to avoid paralyzing the counter. Your
instructor will explain how this should be done.
See local instructions for amplifier setting. Use the
same small-distance correction value as in section )
for the BF3 counter—the neutrons that you mea-
sure have essentially the same flight time over this
small distance.

Analysis of Crystal Data Graph the time spectrum
data obtained at the various θB selections—only the
peaks plus their nearby background are of interest here,
including any small λ/2 ones. Notice that the channel
widths of these are essentially the same as your resolu-
tion width determined in Part I. Establish the centers of
these peaks (use the steep sides of the peak in this), and
correct for the neutron time origin C0 determined in (h)
above. Read Appendix notes on finding the center of a
peak and the uncertainty of this center position.

Calculate the wavelength and corresponding neutron
speed (with significant figures consistent with the mea-
surement precision) for the various monochromatic beam
observations. Tabulate your data and graph v vs. 1/λ
with scales including the origin. According to the
De Broglie relation, your data points should fall on a
straight line with slope h/m which passes through the
origin. On your graph, draw the expected line using ac-
cepted values for h and m. This is an ideal case for
applying a least-squares treatment of the line fitting (an-
chor the fitted line at v = 0 = 1/λ since the De Broglie
Law requires this).

Analyze the possible contributing errors that enter into
your observations and establish the uncertainty in the
slope of your linear fit. Is this consistent with the differ-
ence between your result and that expected from estab-
lished constants? Typical runs show agreement to 1.0%
or so.

Analyze the 2θ scans that you made in establishing
the centered detector position in the Bragg reflection.
Considering the ray geometry falling on the crystal and
the angular width of the detector opening, this can tell
you something about the perfection of the copper crys-
tal. Assume the single crystal contains microcrystallites
distributed over an angular range, what is the angular
range of perfection?
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FIG. 12: Plan view of the experimental setup for measuring
the attenuation of monoenergetic neutrons in a sample.

Part III: Additional Crystal Diffraction Observations
and Uses of Crystal Monochromated Neutrons

There are a number of other experiments that you
can perform with the simple one-axis spectrometer (more
elaborate, sophisticated spectrometers sometimes involve
three axes of scattering in research studies). You will
have time in the scheduling to do at least one of the fol-
lowing. The monochromatic diffracted beams from the
copper crystal are of low intensity (unlike the hot, direct
white beam), and are safe to experiment with.

Transmission of Slow Neutrons Through Materials

Most materials are relatively transparent to slow neu-
trons. This arises because neutrons carry no Coulom-
bic charge (experiments have shown this to be less than
10−22 electron charges!), and thus they don’t interact
with the charge distribution in atoms by means of the
long-range Coulombic interaction. They do interact with
the nuclei of atoms through the short-range nuclear force
interaction, and this is conveniently quantified by a nu-
clear scattering cross section (σS) and a nuclear absorp-
tion cross section (σA). Scattering cross sections do not
vary very much from nucleus to nucleus and have values
of a few barns (10−24 cm2). On the other hand, capture
or absorption cross sections vary widely depending upon
the distribution of nuclear energy levels and thus nuclear
resonance effects may be encountered. In illustration of
this, we may note that the absorption cross section of
carbon for thermal neutrons is only about 0.0034 barns,
whereas for some exotic rare-earth nuclei this becomes
as large as several million barns. Absorption cross sec-
tions invariably are sensitive to neutron energy (the 1/v
law mentioned earlier is a mild example of this) and res-
onance behavior is not uncommon.
You can study some of these cross sections by using the

monochromatic, Bragg diffracted beam from the copper
crystal and establishing the transmission (T ) of a piece
of material for this beam, as illustrated in Figure 12.
By definition,

T =
I (intensity passed through the sample)

I0 (intensity incident on the sample)
. (17)



This can be shown to be

T =
I

I0
= exp

[

−
∑

i

MiσiT

]

(18)

with the index i symbolizing different nuclear species in
a composite sample, σiT the transmission cross section
(the sum of both σS and σA ) per nucleus of the i-th
species, and

M = areal density of nuclei

= number of nuclei/cm2 sample

= volume density of nuclei · sample thickness.

Plate samples of Fe, Al, Cd, and boron-containing
Pyrex glass are available for transmission cross section
study. For Fe and Al, the transmission is dominated by
the scattering process (hence it is relatively insensitive to
neutron energy), whereas for Cd and B, absorption dom-
inates with significant dependence upon neutron energy.
You will want generally to spend longer periods collecting
intensity data through the sample than without...see Ap-
pendix notes on transmission measurements. Study all
samples at fixed wavelength corresponding to θB = 20◦

and, as well, the boron sample at several wavelengths
(energies).
The intensities to be used in obtaining T are best es-

tablished from the MCS flight time spectral print-out. By
summing the intensity in all channels over the monochro-
matic peak (corrected for background of course), you ob-
tain the integrated intensity in the Bragg reflection. Nor-
malize these to a common data-collection time interval
in getting T . With the Pyrex plate, the strong absorp-
tion cross section of B dominates, and you can establish
the 1/v law for this by measuring the transmission over
a range of neutron velocities. Established values for the
cross sections can be found in Appendix . Compare these
with what you determine from experiment. Perhaps you
have something else to place in the neutron beam whose
transparency to neutrons you would like to assess. For
instance, a thin plate of plastic (containing lots of hydro-
gen) will attenuate the neutron beam about as much as
the thick iron plate!

Sensing of Bragg Diffraction by Other Crystal Planes

In Part II above, you have seen Bragg diffraction by
internal (002) planes which are perpendicular to the ma-
jor (110) faces of the Cu crystal disk. There are of course
many other sets of planes in the crystal that may be used
to satisfy Bragg diffraction. You can reorient the crystal
disk by turning the goniometer setting through an an-
gle of exactly 90◦ from your laser beam setting, thereby
bringing the (110) faces into coincidence with the neu-
tron beam axis. A further turn will select a Bragg angle

FIG. 13: Reorientation of the crystal to study diffraction from
the (220) planes.

for diffraction by the (220) planes (remember that (110)
diffraction is forbidden), and from the flight time spec-
trum yielding v and λ, you can evaluate d(220) and see if
this is consistent with what is expected.

In a similar manner, you can pick up the (111) planes
for diffraction—see earlier crystal sketches to identify
where these are located for orientation.
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UNCERTAINTY IN LOCATION OF A
DATA-PEAK CENTER

Call Ni the number of counts in channel Ci, Np the
number of counts per channel at the peak (from a fitted
curve, not necessarily the maximum number observed),
and B the average number of counts per channel at
the base level (average background on both sides of the
peak). The Poisson fluctuation in Ni is, of course,

√
Ni

. To determine the center of the peak, locate the center
channel at the fractional peak intensity levels (above B
of course) of 3/4, 1/2, 1/4, and additional positions as
desired. The mean value of these center positions is a
good measure of the peak center. If the peak is sym-
metrical and the statistics are very good (i.e. the counts
per channel are very large), then all of these center posi-
tions should agree, and this procedure gives the center-
of-gravity of the peak with as many neutrons to the left
as to the right. If the peak is asymmetrical, you can show
that taking the center position at the 1/2 intensity level
is a good approximation to the center-of-gravity position.
It is exact for a flat-topped asymmetrical trapezoid.

Estimation of the Uncertainty in the Peak Center

Simple Estimate

Evaluate the uncertainty in your observed Nleft values
(in the steep portion of the curve on the left side), esti-
mate ∆N1/2 left (at 1/2 intensity level on the left side)
and translate this into ∆C1/2 left using the slope. Do the
same on the right side. Since

Ccenter =
1

2
(C1/2 left + C1/2 right) (19)

it follows that

∆Ccenter =
1

2

(

(∆C1/2 left)
2 + (C1/2 right)

2
)1/2

. (20)

Better Estimate

Add all the Ni to get
∑

Ni = N , the total number
of neutrons you observed in the peak corrected for an
equal number of background values. This is a measure
of the peak area. Representing the area under the peak
as (height)× (width) = H ·W , and ∆(H ·W ) =

√
N we

find

∆(H ·W )
H ·W =

√
N

N
=

[

(

∆H

H

)2

+

(

∆W

W

)2
]1/2

. (21)

We will get a maximum fractional uncertainty in width
∆W if we assume there is no uncertainty in height, for
which

∆W

W
=

√
N

N
. (22)

But

W = C1/2 right − C1/2 left, (23)

and

Ccenter =
1

2
(C1/2 right + C1/2 left) (24)

so that

∆Ccenter =
1

2
∆W =

W

2
√
N
. (25)

This is an underestimate.
On the other hand, if we distribute the fractional un-

certainty equally between height and width (this is the
best we can do),

∆W

W
=

√
2

2

√
N

N
(26)

and

∆Ccenter =

√
2

2

W√
N
. (27)

This is the best estimate of the standard deviation of the
peak center value.



TRANSMISSION CROSS-SECTION
MEASUREMENT

IIo

FIG. 14: Schematic diagram of an attenuation measurement.

As illustrated schematically in Figure 14, one mea-
sures the diminution in the beam intensity caused by
the insertion of a given absorber between the beam and
the detector. The data consist of the total numbers of
neutrons detected per unit time, N0 and N , integrated
over the time-of flight spectrum, with correction for back-
ground (baseline), and with and without the sample in
the monochromatic neutron beam. One then calculates
the transmission T and finally the effective cross sectional
area s of the scattering-absorption center according to the
relation

T =
I

I0
=

N

N0
= e−Mσ (28)

Question (1): What is the uncertainty ∆σ in the σ
value?
Answer: From the theory of propagating errors we

have the equation

(

∆T

T

)2

=

(

∆N

N

)2

+

(

∆N0

N0

)2

, (29)

i.e. the fractional error in T is the square root of the sum
of the squares of the fractional errors in the the inten-
sity values. Since ∆N =

√
N for a statistically random

collection of N events, it follows that

∆T

T
= −M∆σ =

(

1

N
+
1

N0

)1/2

. (30)

Question (2): If we want to spend a total collection
time t0 distributed between sample collection time ts and
incident beam collection time tB , what is the optimum
distribution of collection time so as to minimize ∆T and
∆σ?

Answer: N0 = αtB and N = Tαts , where α is the
collection rate of incident beam intensity and ts = t0−tB
. It follows that

∆T

T
=

(

1

Tαts
+

1

αtB

)1/2

. (31)

For minimization of ∆T , we want

d(∆T )

dtB
= 0. (32)

This is satisfied when

1

T (t0 − tB)2
− 1

t2B
= 0 (33)

(check this out) which, when solved for tB , yields the
expressions

tB = t0

√
T − T

1− T
and ts = t0 − tB = t0

1

1 +
√
T
(34)

and the ratio of collection times

ts/tB = T−1/2. (35)

Thus for high T (i.e. T ≈ 1) we want equal collec-
tion times. On the other hand, for small T , we want to
distribute the time so that more time is spent collecting
neutrons through the sample. For example, if T = 0.1
for a sample, you will attain highest precision in the cal-
culated value for σ if the sample collection time is about
three times longer than the open beam collection time.
Of course, increasing the total collection time t0 also im-
proves the precision. In estimating how you should best
distribute the collection time, you can get a preliminary
estimate of T for a sample by looking at the rate of in-
tensity build-up on the MCS scope and comparing this
with that obtained with the open beam.
A good sequence procedure for studying the different

samples at fixed θB = 20
◦ position is: (1) Open beam, (2)

Al, (3) Fe, (4) B, (5) Cd, and (6) Open beam. Hopefully
your start-end “Open beam” results are the same and
you can average them. Time all collection runs so that
they can be normalized.
In placing samples along the beam line, remember that

we do not want to count any of the scattered intensity.
This means that we want scattering samples to be well
away from the detector so that the detector solid angle
as seen from the sample is small compared to total 4π
steradians.

CALCULATION OF NEUTRON FLUX AND
NEUTRON DENSITY IN REACTOR

The neutron density n (neutrons/cc irrespective of
speed or direction of travel) and the neutron flux φ0 = nv



FIG. 15: Plot of the ratio of collection times against trans-
mission.

(neutrons/cm2sec) inside the reactor may be calculated
from your intensity measurement obtained in Section
item 7. We can model this problem as being similar to
that found in many textbooks of statistical mechanics or
thermodynamics (in particular see Sections 7.9–7.12 in
Reference [5], Reif).

Consider a gas of density n in thermal equilibrium in-
side a container surrounded by vacuum. A small hole
is present in the container wall so that gas atoms of all
speeds traveling in all directions escape out through the
hole. An additional collimating hole is placed at a large
distance L from the container wall along a line perpen-
dicular to the container wall so that a collimated beam
of atoms of all speeds will pass through the collimating
hole and be detected by a detector placed behind the
hole. Thus following Reif eq. 7.11.9, the collimated cur-
rent I (atoms/second) passing through the collimating
hole would be expressed as

I = A

∫

vx>0

v3f(v)dv

∫ θ0

0

sin θ cos θdθ

∫ 2π

0

dφ

= πAθ2
0

∫ ∞

0

v3f(v)dv

=
1

4
Aθ2

0 nv̄

= A
a

4πL2
nv̄, (36)

where as in Reif, v̄ is the average speed of the Maxwell-
Boltzmann speed distribution. The average speed is re-

lated to our most probable speed v0 (in Section ) as

v̄ =
2√
π
v0 (37)

which you have evaluated in the Maxwell-Boltzmann
spectrum analysis.
For our neutron case, neutrons are delivered to a low

efficiency detector (e = 0.010 averaged over the spec-
trum) behind the chopper area (a = 2.4 mm2) by a long,
converging, tapered collimator tube. The dimensions of
this collimator tube are such that each point of the exit
area sees a source area of 2.0 cm2 on the front surface of
the oversize insert tube extending through the D2O re-
flector to the center line below the reactor volume. The
distance from the exit area (the chopper slit) to the front
surface source is 310 cm. Using these numerical param-
eters and your measured intensity you can calculate nv̄
(commonly called the reactor flux) and n. It is to be
recognized that these values are approximate (within a
small factor of order unity) because our assembly does
not match the features of the model exactly. We do not
have a sharp containment wall for the neutrons and the
void volume of the insert tube can perturb the local flux.
This flux value would scale with the reactor operating
power level.

CROSS-SECTIONS FOR NEUTRON
TRANSMISSION



FIG. 16: Cross-Sections as a function of energy for B, Cd, Fe, and Al.


