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This experiment is an exercise in optical spectroscopy in a study of the spectra of “hydrogenic”
atoms, i.e. atoms with one “optical” electron outside a closed shell of other electrons. Measurement
of the Balmer lines of atomic hydrogen and the fine structure of sodium lines; determination of the
mass of the deuteron from the isotope shift. A reflection grating spectrograph is used to study the
Balmer lines of hydrogen and the more complex hydrogenic spectrum of sodium, using the mercury
spectrum as the wavelength calibrator. The measured Balmer wavelengths are compared with the
quantum theory of the hydrogen spectrum, and a value of the Rydberg is derived. The transitions
responsible for the sodium spectrum are identified, and the regularities in the fine structure and
adherence to the selection rules are observed. A research grade monochromator is used to measure
the isotope shift between the Balmer lines of hydrogen and deuterium, and the ratio of the deuteron
mass to the proton mass is derived from the data.

PREPARATORY QUESTIONS

1. Construct as complete an energy level diagram of
atomic hydrogen as you can, and show the transi-
tions that give rise to the Balmer lines. (Inciden-
tally, just exactly what is a spectral “line”?)

2. Read sections 2.1–2.7, 6.2.1 and 6.2.4 in the
Richardson Grating Laboratory’s Diffraction Grat-
ing Handbook 4th Edition available at www.

gratinglab.com and define the following terms:
grating equation, diffraction orders, angular dis-
persion, linear dispersion, resolving power, spectral
resolution, bandpass, focal length, f/#, and free-
spectral range.

3. Suppose perfectly monochromatic light of wave-
length 5000 Å enters a reflection grating spectro-
graph (see description of the instrument below)
with the slit width set at 10.0 µm, and suppose the
beam fully illuminates the concave grating which is
a 3 cm x 3 cm square with 1200 lines mm−1. Make a
plot with properly scaled axes of the light intensity
versus angular displacement in the focal plane of
the spectrograph in the first order diffracted image
of the slit. Show quantitatively the salient features
of the multiple slit diffraction pattern. (see Hecht
1998 Section 10.2.3)

4. Throughout this experiment the tabulated wave-
lengths of the mercury spectrum will be used as
the calibration reference. Suppose, however, you
had to start from scratch with no reference wave-
lengths. How would you establish an absolute scale
of wavelengths?

5. Predict the isotope shift in wavelength (i.e., the
difference in wavelength ∆λ = λH − λD) of the
first 3 Balmer lines of hydrogen and deuterium.

INTRODUCTION

The study of the optical spectra of hydrogen and other
atoms having a single “optically active” electron in a
spherically symmetric potential was specially important
in the development of modern physics because of the sim-
plicity of the spectra and the clarity with which their
features could be understood in terms of the developing
theories of quantum electrodynamics and atomic struc-
ture. The purpose of this experiment is to acquaint you
with some of these features and with some of the meth-
ods of optical spectroscopy through an investigation of
the spectra of hydrogen, deuterium, and the alkali met-
als.

Bohr’s theory of the optical spectrum of hydrogen,
published in 1913, opened the door to the modern theory
of atomic structure. In 1912 Bohr had come to Ruther-
ford’s Laboratory at Manchester University where the
concept of the atomic nucleus had been invented the pre-
vious year by Rutherford in his theory of the scattering
of alpha particles by thin metal foils. Bohr immediately
began to wrestle with the problem of how electrons in or-
bit about a nucleus can constitute a stable system when
the classical laws of electromagnetism imply they must
radiate their orbital energy and spiral into the nucleus.
Bohr concluded that new, non-classical physical princi-
ples must govern atomic phenomena. By the summer
of 1912 he arrived at his central idea that some form of
quantization restricts the orbits of electrons inside atoms.
He had in mind the quantum idea introduced by Planck
in 1900 in his theory of the spectrum of blackbody ra-
diation and invoked by Einstein in 1905 to explain the
photoelectric effect. Then somebody brought to Bohr’s
attention the simple regularities of the hydrogen spec-
trum, expressed in the formula discovered by Balmer in
1885. Afterward he said, “As soon as I saw Balmer’s
formula the whole thing was immediately clear to me”
(Rhodes 1986).

The Balmer spectrum of atomic hydrogen is readily
produced by an electrical discharge in molecular hydro-



gen (H2) at low pressure. The resulting collisions of
mildly energetic electrons with hydrogen molecules cause
dissociations of the molecules and excitations of the re-
sulting atoms to states which decay in transitions that
yield the Balmer lines in the visible region of the spec-
trum, as well as the Lyman lines in the ultraviolet, and
other series of lines in the infrared. Measurement of
the Balmer lines, verification of the Balmer/Bohr
formula for their wavelengths, and determination
of the Rydberg constant are the first objectives
of this experiment.

Interesting variations on the theme of the hydrogen
spectrum are found in the spectra of other single-electron
atoms such as deuterium, tritium, singly ionized helium,
doubly ionized lithium, all the way up to 25-times ionized
iron. One expects the spectra of these atoms to be simi-
lar to that of hydrogen except for the effects of changes in
the reduced mass, the nuclear charge, and the hyperfine
interactions between the electronic and nuclear magnetic
moments. In the laboratory it is difficult to produce a
sufficient density of excited, multiply-ionized helium or
lithium to yield a detectable spectrum of their single-
electron ion species. As for hydrogen-like iron, it has only
been seen in the radiation from solar flares, neutron stars
in accreting binary systems, and the hot intergalactic gas
in clusters of galaxies. But the effect on the spectrum of
a change in the reduced mass of the nucleus-electron sys-
tem is readily observed in deuterium. Measurement of
this “isotope” shift in the Balmer lines and deter-
mination of the ratio of the mass of the deuteron
to the mass of the proton is another objective of
this experiment.

Another kind of “hydrogenic” spectrum is produced by
atoms with one electron outside of “closed” shells. Ex-
amples are the alkali metals, singly-ionized alkaline earth
metals, doubly-ionized elements in the third column of
the periodic chart, etc. In such an atom or ion a single
“optical” electron moves in the spherically symmetric po-
tential of the nucleus and the closed shells of the inner
electrons, and the eigenstates and energy eigenvalues of
the atom can be calculated, in principle, as perturbed
solutions of the Schrödinger equation for a hydrogen-like
atom with a perturbation potential that represents the
distortion of the simple 1/r potential of a point nucleus by
the inner electrons. One effect of this shielding is to en-
hance the splitting of the levels with angular momentum
quantum numbers L > 0 due to the spin-orbit interac-
tion. Measurements of the doublet separations provide
clues to the identity of the states involved in the transi-
tions that give rise to the lines. A third objective of
this experiment is the measurement of the dou-
blet separations of the spectral lines of sodium
and the identification of the quantum transitions
responsible for the lines.

Most of the theoretical background you need for under-
standing the atomic spectra to be measured in this exper-

iment is the Appendices and in Chapter 2 of Melissinos
(1966). More thorough treatments can be found in your
texts for 8.04 and 8.05. Another useful and classic ref-
erence is Introduction to Atomic Spectra by C. F. White
(1934). Here we will concentrate on describing the fea-
tures of the equipment and procedures peculiar to the
setups in Junior Lab.

EXPERIMENTAL APPARATUS

Two different spectroscopic instruments will be used
in this investigation. The first is a commercially avail-
able 1/8 m reflection grating spectrograph (Thermo
Oriel MS-125) with which you can record broad spec-
tra at moderate resolution (2.2Å) using a 2048 linear-
element charged coupled device (CCD) array (Thermo
Oriel Linespec). The second instrument is a research
grade high-resolution (0.03Å) scanning monochroma-
tor (Jobin Yvon 1250M) with a maximum resolving ca-
pacity Rmax = λ/∆λ ≈ 104. It will be used to measure
the isotope shift between the Balmer lines of hydrogen
and deuterium as well as the energy splittings due to
the interaction between the electron spin and it’s orbital
angular momentum (~L · ~S coupling).

Both instruments utilize what is knowns as a Czerny-
Turner mount. In this configuration, light from a source
is focused onto an input slit through which it expands
to fill a concave spherical mirror at a distance equal to
the focal length of the instrument. The collimated light
then is reflected onto a plane reflection grating (held fixed
in the spectrograph and rotated in the monochromator)
and from there the dispersed light is reflected to a second
spherical concave mirror. This final mirror refocuses the
light at the position of the exit aperture (spectrograph)
or slit (monochromator) where the photons are detected
and integrated.

THE GRATING SPECTROGRAPH

The grating spectrograph is illustrated in Figure 1. It
has an interchangable slit assembly (10µm, 100µm, and
1000µm slit widths are available) followed by a concave
spherical mirror which collimates the light onto a plane
reflection grating with 1200 grooves mm−1 and which is
30mm x 30mm square. The dispersed image of the slit
is then refocused by the second concave spherical mirror
onto a CCD array of 2048 pixels, each of which is 14 µm
wide by 200 µm high. It’s focal length f is 120mm and it
has a low F/number = 3.7 and thus relatively good light
gathering capacity (for a diffuse source, the throughput
flux goes as φ ∝ 1

F/#2 ). You can examine the interior

of the instrument by removing the 5 screws to the light-
tight lid and prying it open with a dime or screwdriver. If
you wish to replace the 1200 groove mm−1 grating



with one of greater or lesser groove density, please
ask an instructor for assistance. The grating is
expensive and its surface is vulnerable to damage.
Do not touch the grating surface with your fingers
or with the edge of the grating cover. Use latex
gloves to keep the oils from your skin from getting
on the grating surface.

Mount the 100µm slit with the shiny side towards
the light source, in the spectrograph entrance aperture.
For greater or lesser resolution, 10µm and 1000µm slits
are available on the optical table near the spectrograph.
Mount the mercury discharge tube in the black power
supply and place it ∼ 10 inches away from the input slit.
It should emit strongly in the violet-purple portion of the
visible spectrum when fully warmed up. Adjust the field
lens so that an image of the source is focused on the en-
trance slit. A trick for peaking up the alignment is to set
the software to continuous scan and then maximize the
spectral line intensities by adjusting the x-y translator
holding the field lens. Adjust the spectrograph microme-
ter so that the strong green and yellow mercury lines will
be centered on the CCD array. For a 1200 lpmm grating,
the micrometer directly indicates the wavelength (nm)
which will be centered on the array. For other grating
densities, you must scale the micrometer reading by the
ratio of the new grating density to 1200.

The Linespec software, shown in Fig 3, which con-
trols the CCD interface runs only in Windows 98 so
the computer must be booted into this OS. Run “Line-
spec” software from the PC desktop. After the intro-
ductory animation, the software will display three differ-
ent graphs, “Reference”, “Background”, and “Sample”
which are used for different types of spectroscopy beyond
the scope of this lab. Select the “Reference” window by
double clicking on it and from the drop down menus, con-
figure the CCD head’s integration time, sweep method
and spectrum type (i.e. “Reference”). The full text of
the software users guide is available from the software
help menu and is also available in hard copy on the desk
next to the PC. Please do not remove these manuals from
the laboratory!

MERCURY CALIBRATION SPECTRUM

Acquire calibration data sets of the mercury spectrum,
with and without the 1” circular UV glass safety fil-
ter (Thermo Oriel 6057). Explore the effects of input
slit width, grating line density, and integration time on
throughput, spectral resolution, and spectral bandpass.
The acquired spectrum will probably show a profusion
of lines - many more than the prominent yellow, green,
blue and purple lines of the famous mercury spectrum.
Several of the lines are, in fact, ultraviolet lines in the
second-order spectrum, superimposed on the visible lines
of the first-order spectrum. Your first job is to identify
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FIG. 1: Optical configuration of the MS125 Spectrograph in a
Czerny-Turner mount. The plane grating provides dispersion
and the concave mirrors provide focusing. Aberrations caused
by the mirrors include astigmatism and spherical aberration.
The grating measures 30mm x 30mm square and the focal
length of the first spherical concave mirror is 125mm. The
output aperture is 25mm wide and is coupled to a linear CCD
with 2048 elements, each 14µm high x 200µ wide.
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FIG. 2: The Linespec software interface to the Oriel MS125
Spectrograph.

all the lines with the aid of the mercury spectrum table
in the CRC handbook. Later you will use the mercury
spectrum as your calibrator for measurements of the hy-
drogen and sodium spectra.

Identify the lines by means of a bootstrap operation in
which you first latch onto several of the most prominent
lines, establish a tentative wavelength-position relation,
and then see if the other fainter lines fall in place. The
yellow doublet (5769.60 Å and 5789.66 Å) the green line
(5460.74 Å) and the purple line (4358.33 Å) are particu-



larly useful landmarks within the mercury spectrum. It
will help to make a plot of wavelength versus position.
Look out for second order UV lines superposed on the
first order visible spectrum (e.g. a 2500 Å line in second
order would fall at exactly the same position as a 5000
Å line in first order). When you get it right, a plot of
spectral wavelength position versus micrometer reading
for all of the observed spectral lines should be very linear.

The Linespec software permits a software based wave-
length calibration when 3 or more spectral lines have
been identified. Once calibrated, you can change the
x-axis units from pixel number to wavelength (nm),
wavenumber (cm−1) or eV. Note that once you have
made a tentative polynomial fit, you can use the fitted
formula to find the expected position of a line of specified
wavelength, or the wavelength of a line at a specified po-
sition. This makes identification of the fainter lines easy,
once you have established an accurate overall calibration.

Label as many of the transitions as you can with the aid
of Figure 2.13 of Melissinos (in the figure caption “hydro-
gen” should be “mercury”). Note in particular the lines
due to the interesting transitions 63D → 61P for which
∆S=1, and the 2536.5 Å line which is due to decay of the
first excited state that is involved in the Franck-Hertz
experiment. Check the validity of the dipole radiation
selection rules.

Determine the number of lines mm−1 in the grating by
measuring the linear separation of two identified lines of
known wavelength on the acquired spectrum and apply-
ing the grating equation (see Appendix A).

HYDROGEN SPECTRUM – THE BALMER SERIES

The goals of this part of the experiment are:

1. to record the hydrogen spectrum at low and high
resolutions together with a mercury calibration
spectrum;

2. to identify and measure the wavelengths of the
Balmer lines using a calibration based on mercury;

3. to compare the measured wavelengths with the
Balmer formula, namely

1

λ
= RH

(

1

n2f
−

1

n2i

)

(1)

where nf = 1,2,3,... and ni > nf . nf = 2 corre-
sponds to the Balmer series in the visible while nf
= 1 corresponds to the Lyman series in the UV.

4. to determine the value of the Rydberg constant,
RH = 109,500 cm−1

Acquire a series of hydrogen spectra with superim-
posed mercury calibration spectra, experimenting with
resolution changes and integration times. Take care not
to disturb the instrument between the hydrogen exposure
and the mercury calibration exposure. Identify and mea-
sure as many of the Balmer lines as you can, comparing
the wavelengths with those predicted by Equation 1. One
way to do this is to compute a value of λ0 for each of your
measured Balmer lines, using in each case the appropri-
ate values of nf and ni. From these data, determine a
value and error for the Rydberg constant. You will prob-
ably observe other fainter features in the spectrum of the
hydrogen discharge tube. Try to identify them.

SODIUM SPECTRUM– FINE STRUCTURE

The goals of this part of the experiment are:

1. to obtain a calibrated spectrum of sodium;

2. to measure the wavelengths of the lines and to mea-
sure their doublet separations;

3. to identify the transitions that give rise to the ob-
served lines;

4. to determine the maximum energy of excitation of
the sodium in the lamp.

The distortion of the 1/r field of the nucleus by the in-
ner electrons has a substantial effect on the fine structure
splittings of the l > 0 states that arise from the interac-
tion between the magnetic moments associated with the
spin and orbital angular moments of the optical electron.
Where the fine structure splitting in hydrogen is very
small and difficult to detect (0.08 Å in Hβ), it is readily
observed and measured in the alkali atoms. It decreases
with n and l approximately as 1/[n3l(1 + l)], and so is
most prominent in the P states. The splitting of the
levels gives rise to a corresponding “doublet” structure
of the spectral lines, with the most conspicuous effects
occurring in the lines due to transitions to and from the
P (l = 1) states. Doublets due to transitions that begin
or end at a common state have identical energy separa-
tions. In the early days these separations provided im-
portant clues for identifying the transitions and deducing
the level structure from observed spectra. See Melissinos
for an energy level digram for sodium.

Obtain various sodium spectra of varying integration
times with a superposed short mercury calibration spec-
trum, both with and without the UV filter. Determine
the wavelengths of all the features of the spectrum.

Identify as many of the sodium lines as you can to-
gether with the initial and final atomic states of the tran-
sitions. Group them according to common final states
and within each group compare the wavelengths with



those expected from energy levels given by the Rydberg
formula

E = E∞ −
hcR

(m+ µ)2
(2)

where m is an integer, and E and µ are constants.
Determine the fine-structure splittings of the 2P lev-

els involved in the transitions responsible for the various
doublets. Check whether the doublets originating from
and terminating at the same 2P level have the same sep-
aration (in wave numbers). Determine the ratio of the
doublet separations of the 3P and 4P levels, and compare
with the semi-empirical rule that the ratio is proportional
to 1/n3. Approach these measurements as an exercise in
experimental accuracy and error estimation, and their
interpretation as a challenge to your understanding of
atomic structure.

You may find there are lines you cannot identify using
only the sodium lines listed in the CRC Tables. Try to
identify them, i.e. figure out what other element(s) may
be in the lamp.

Measuring Isotopic Shifts int he Balmer Lines

In this part of the experiment you will determine the
ratio of the deuteron mass to the proton mass by mea-
suring the isotope shifts of the Balmer lines. Most of the
differences in the energy levels of the hydrogen isotopes
(hydrogen, deuterium, and tritium) arise from the differ-
ences in the reduced mass that occurs in the simple Bohr
theory that explains the Balmer formula. (The differ-
ences due to interactions involving the nuclear magnetic
moments are very much smaller in magnitude and not
detectable with our instruments). With a little algebra
the ratio of the deuteron mass to the proton mass can be
expressed in terms of the wavelength λ of a Balmer line
and its shift ∆λ between hydrogen and deuterium.

The measurement is performed with a high resolution
scanning monochromator, a schematic diagram of which
is shown in Fig. 4.

The monochromator has been painstakingly aligned.
Please do not alter the arrangement of the optical com-
ponents between the entrance and exit slits. You may
adjust the other parts of the equipment, i.e. the slits
themselves and the input optics which couple the light
source to the input slit. If you suspect misalignment of
the internal parts of the monochromator, ask for help.

HIGH-RESOLUTION MONOCHROMATOR

The monochromator is interfaced to a PC running Mi-
crosoft Windows and National Instruments LabVIEW
software over a GPIB connection. A schematic of the
instrument is shown in Figure 4.

The basic steps for using the instrument follow:

1. At the end of your session, return the
monochromator’s grating to the zero posi-
tion before shutting off the motor controller
unit. Failure to do so will frustrate the cali-
bration of the next group.

2. Turn on the mercury discharge lamp and place it
as close as possible to the input slit. It takes a few
minutes for the discharge to stabilize.

3. Remove the small lid on the top of the monochro-
mator to verify groove density of the installed grat-
ings. The turret holds two gratings, either of which
may be selected in software: Grating position ‘0’
has 2400 groves mm−1 at a blaze wavelength of
300nm while grating position ‘1’ has 300 grooves
mm−1 with a blaze wavelength of 600nm.

It is recommended that you start with the coarse
300 groove mm−1 grating in order to survey the
broadest portion of the spectrum and explore the
operation of the instrument before making your fi-
nal measurements.

4. Turn on the Ministep Driver Unit (MSD-2) using
the power switch on the back panel. You should
hear a small clunk as the gear motor is engaged.
Power cycling once or twice is sometimes necessary.

5. Boot the PC into Windows 2000, login as ‘student’.
The login process automatically loads LabVIEW
and the monochromator control program shwon in
Figure 3 After the program is loaded, run the code
by clicking on the white arrow in the upper left
corner of the window. The main drop down menu
bar contains various operations for controlling the
monochromator. The first thing you should do is
‘Establish GPIB Communication’. If communica-
tion is established between the MSD-2 and the PC,
you will see the numbers ‘3.6’ appear in the up-
per corners of the start-up window matrix. If after
about 10 seconds the VI times out with no changes,
try power cycling the MSD-2, and then retry estab-
lishing GPIB communication.

6. Select the desired turret position (‘0’ or ‘1’) and
then select ‘Change Turret Position’ from the drop
down menu bar. Wait for the menu bar to revert
back to ‘Waiting for next command‘ before pro-
ceeding. You should execute this step even if the
display ‘reads’ the correct position, as it needs to re-
trieve information about the grating’s groove den-
sity.

7. Examine the mechanical counter on the side of
the monochromator to see that it reads exactly
0.0. This counter can be used to determine
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FIG. 3: The LabVIEW software interface to the Jobin-Yvon
1250M monochromator. Note that the user should always
enter spectral units of Åwhile the ‘counter’ indicator will dis-
play the mechanical counter positions necessary to scan this
portion of the spectrum. The limits of the instrument are 0
to 15,000 in mechanical counter units.

the current wavelength setting according to λ =

counter × installedgratingdensity(lpmm)
1200lpmm If not, select

‘Move grating to zero position’ from the menu bar.

8. Replace the lid with 4 screws above the turret grat-
ing assembly.

9. Double check that the top of the monochro-
mator is covered before turning on the high
voltage to the photomultiplier tube as am-
bient light levels can damage a PMT biased
at high voltages. Set the high voltage to +950
VDC.

10. The input and output slits are controlled by mi-
crometers. They can be set from 3 µm to 3mm.
Set the width of both slits initially to be 1mm. Do
not attempt to adjust the micrometers to a
width < 3µm. This can damage the sensitive
slits! The height of the input slit is controlled by
a sliding blade and should be set initially at 2mm.

11. The light ‘acceptance cone’ of the instrument is set
by the size of the grating (110x100mm) and the
distance from it to the input slit. For this instru-
ment, the f-number = 11. If you find that you are
light limited, try increasing the integration time or
using a short focal length lens to form an image of
the lamp at the entrance slit.

Your first task is to examine the instruments’ cal-
ibration. Plot the reading provided by the mechani-
cal counter against wavelength to guide your subsequent
work and reduce confusion as to where you are in the

FIG. 4: Schematic of the Junior Lab high resolution
monochromator.

spectral range. The mercury spectrum you obtained with
the Thermo Oriel (low-resolution) grating spectrograph
and the CRC table of mercury wavelengths should be
used to aid in your identification of the lines detected by
this higher resolution instrument.

The wavelength range of the monochromator is 0-
15,000 units as displayed by the mechanical counter. The
gratings are rotated by a spring-loaded lever set against
the grating mount which is attached to a turret inside
the instrument. Please do not attempt to change
the turrets yourself, since a slip may damage the
very expensive gratings.

Mount the mercury tube at a position such that the
image cast by the field lens falls on the entrance slit of the
spectrograph. With the entrance slit wide open at ∼1-
3mm check that light is coming through the slit. When
this condition is achieved, dispersed images of the slit
(i.e. the spectral lines) should be formed in the plane
of the exit slit. As the grating is rotated, the slit images
will pass over the slit, causing the photomultiplier to reg-
ister the presence of “spectral lines” at various angular
orientations of the grating as indicated on the mechani-
cal counter. When you find a bright line, reduce the slit
width to ∼100 µm.

Once you have established the calibration, mount the
H-D discharge tube, check that the image of the tube is
focused on the entrance slit. Search for the Hβ line(s)
at the position expected from the calibration. When you
find the line you should be able to observe the presence
of the isotope-shifted line very nearby. Repeat for all the
Balmer lines you can identify.



ANALYSIS

Compute the value of md/mp and an error estimate
from the measured separations of the hydrogen and deu-
terium Balmer lines, using the mercury calibration data.
Compare the results with the known ratio of the atomic
weights of deuterium and hydrogen.

SUGGESTED THEORETICAL TOPICS

1. Derivation of the grating equation.

2. Bohr theory of the hydrogen atom and the isotope
shift.

3. Schrödinger theory of the hydrogen atom.

4. Fine structure.

5. The correspondence principle.

[1] P. R. Bevington & D. K. Robinson 1992, Data Reduction
and Error Analysis for the Physical Sciences, 2nd Edition,
McGraw Hill.

[2] M. Born, M. 1969, Atomic Physics (Blackie & Sons Ltd).
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Optics (McGraw-Hill).

[4] A. C. Melissinos 1966, Experiments in Modern Physics
(Academic Press).

[5] R. Rhodes 1986, The Making of the Atomic Bomb (Simon
and Schuster).

[6] B. Rossi 1965, Optics (Addison-Wesley).
[7] C. F. White 1934, Introduction to Atomic Spectra
(McGraw-Hill).



APPENDICES

GRATING PHYSICS

Figures 1 and 4 show the arrangement of optical com-
ponents in both the spectrograph and monochromator.
Note that the “source” for both these systems is a narrow
slit upon which an external light source is focused. To un-
derstand the optics of any spectrograph or monochroma-
tor it is essential to realize that a narrow spectral “line”
is actually a monochromatic image of the slit. Widen or
lengthen the slit and you widen or lengthen the resulting
spectral line. The width of a line depends on the width
of the slit, the sharpness of the focus, and the intrinsic
spectral width of the line, and the number of reflecting
grooves of the grating that contribute to the total ampli-
tude of the optical disturbance at the focal plane.

To understand the physics of both the these instru-
ments, envision spherical monochromatic light waves (i.e.
“Huygens wavelets”) diverging from any given point at
the slit and which are reflected by the collimating mir-
ror into plane waves traveling toward the grating. Re-
flections from the grooves in the gratings form cylindri-
cal wavelets which interfere constructively only in certain
narrow ranges of directions so as to comprise, in effect,
a set of plane waves each traveling in one of those direc-
tions. In the spectrograph, a second mirror acts to focus
the incident plane waves upon the CCD array while in
the monochromator it is the same mirror now acting as a
camera mirror which focuses the incident plane waves to
a diffracted image of the original slit at the focal plane
of the monochromator where it then passes through an
exit slit and onto the photocathode of a sensitive photo-
multiplier tube.

In both cases, the spectrum appears as monochromatic
slit images spread out in the direction of dispersion of the
grating. Also in both instruments, the bandpass spec-
trum is adjusted by rotating the grating about a verti-
cal axis. They differ essentially in that the spectrograph
captures all of the information simultaneously while the
monochromator needs to be mechanically scanned over
the entire bandpass region of interest to acquire the same
information content.

The gratings used in both instruments are plane re-
flection gratings. In the spectrograph, the default grat-
ing (Oriel 77411) is a ruled grating with 1200 lines mm−1

and is blazed at 350nm (12.2◦). The bandpass is ∼170nm
and the ruled area is 30mm × 30mm.

The most general form of the plane reflection grating is
shown in Figure 5. Each “tread” or “riser” of the stair-
case reflects a narrow rectangular piece of an incident
plane wave, and this piece spreads about the specular
reflection direction according to the principles of Fraun-
hofer diffraction. The resulting cylindrical wavelets may
be thought of as combining at some distance to form
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FIG. 5: Reflection Grating Geometry: (a) A beam of
monochromatic light of wavelength λ is incident on a grat-
ing and diffracted along several discrete paths. (b) For pla-
nar wavefronts, The terms in the path difference, d sinα and
dsinβ, are shown. (From Thermo RGL Handbook)

diffracted plane waves with maximum intensities in di-
rections such that the differences in path length along
the reflected rays from successive grooves is an integral
number of wavelengths. This condition is expressed by
the grating equation

mλ = d(sinα+ sinβ) (3)

where α and β are the angles between the grating nor-
mal GN and the directions of incidence and reflection,
respectively, d is the distance between grooves, and m is
an integer called the “order” of the interference.

The angular dispersion produced by this grating is de-
fined by the differential relation

dβ

dλ
=

1

dλ/dβ
=

m

d cosβ
=

sinα+ sinβ

λ cosβ
(4)

For a given diffracted wavelength λ in order m (corre-
sponding to an angle of diffraction β), it is convenient to
characterize the recirocal linear dispersion or plate factor
P , usually measured in nm mm−1

P =
d cosβ

mf
(5)

where f is the effective focal length of the spectrograph
(125mm for the Oriel MS125).

In the monochromator however, the grating is used in
a Littrow Configuration where α = β, and under these
conditions Equation 3 simplifies to

mλ = 2d sinβ (6)

Furthermore, Equation 4 becomes

D =
dβ

dλ
=

2

λ
tanβ (7)

When | β | increases from 10◦ to 63◦ in Littrow use, the
angular dispersion increases by a factor of ten, regardless



of the spectral order or wavelength under consideration.
Once β has been determined, the choice must be made
whether a fine-pitch grating (small d) should be used in
a low order or a coarse-pitch grating (large d) such as an
echelle grating should be used in a higher order. In this
experiment, the former solution was chosen to provide a
much larger free spectral range (see below).

At 4358 Å in first order (corresponding to β = 31.5◦

by Equation 6), the grating in our monochromator has
dispersion of 2.8 × 10−4 radians Å−1 using Equation 7.
With a focusing mirror of focal length 1250mm follow-
ing the grating, the linear dispersion would be 0.35 mm
Å−1, or about 20 times that of the Oriel MS125 grating
spectrograph (∼ 0.017 mm Å−1).

The grating used in the Hydrogenic Spectroscopy ex-
periment is ruled with 2400 lines mm−1 (d=4167 Å).
From Equation 6, light at 4358 Å will be refracted in
first order at β = 31.5◦ in first order and at 63.0◦ in 2nd
order. Light emitted at this latter angle will miss the
focusing mirror and thus we are dealing with essentially
just 1st order diffraction.

Finally, from Equation 6 we find that the difference
between two wavelengths diffracted at the same angle in
successive orders, called the free spectral range, is given
by the equation

λ1 +∆λ =
m+ 1

m
λ1 (8)

from which

Fλ = ∆λ =
λ1
m

(9)

THE BOHR MODEL APPLIED TO THE VISIBLE

SPECTRUM OF HYDROGEN

The hydrogen atom consists of a heavy proton of
charge e and a much lighter mp/me = 1860 electron of
charge −e that circles around it, held in orbit by the
mutual attraction of opposite charges. During the latter
half of the 19th century, scientists made many detailed
measurements of the emission lines of atomic hydrogen.
Many attempts were made to interpret their positions in
the spectrum but none were successful until 1885 when
Joannes Balmer noted that their wavelengths could be
represented very simply by

λ = 3645.6n2(
1

n2
− 4)nm (10)

In 1913, Niels Bohr proposed that electrons move in or-
bits whose angular momentum is quantized according to:

mvr = nh̄ (11)

where h̄ = 1.055 x 10−27 erg s (6.58 x 10−22 MeV s). He
also suggested that electrons can make transitions only

between these orbits and when doing so will emit (or
absorb) radiation with frequency:

ν =
Ei − Ef

h
(12)

where h = 2πh̄ and Ei,f are the energies of the initial
and final states.

Using these two quantization statements and assuming
the special case of circular orbits, we may determine the
electron energies by balancing the Coulomb attractive
force with the centrifugal (repulsive) force:

mv2

r
=
Ze2

r2
(13)

Combining Equations 11 and 13 yields:

v =
Ze2

nh̄
(14)

and

r =
n2h̄2

meZe2
(15)

If we now introduce the f ine-structure constant α = e2

h̄c =
1

137 , these can be expressed as

v =
n2h̄

αZmec
(16)

and

r =
n2h̄

αZmec
= a0 = 5.29Å forHydrogen (17)

The total energy of the atomic system (kinetic and po-
tential) is given by:

E =
1

2
mv2 −

Ze2

r
=
Z2α2(mec

2)

2n2
=

13.6eV

n2
(18)

where α = 1/137 and mec
2 = 511keV is the rest-mass of

the electron. Figure 6 shows a cartoon of the Bohr atom
and it’s predicted transitions.

ISOTOPIC FINE STRUCTURE:

HYDROGEN-DEUTERIUM SHIFT

To account for the finite mass of a real hydrogen nu-
cleus of mass Mn and electron of mass Me as depicted in
Figure 7 we must replace the mass of the electron me in
Equation 18 by the reduced mass µ where 1

µ = 1
me

+ 1
mn

The energy levels of Equation 18 now become

E =
13.6eV

n2
·

1

1 +Me/Mn
(19)

This results in a wavelength shift of 1 part in 3680 for
each atomic transition (e.g. 1.32 Å for the n=4 to n=2
4861 Å line.
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FIG. 6: . An illustration of the Bohr model of the hydrogen
atom showing the Lyman (nf = 1, Ultraviolet), Balmer (nf =
2, Visible) and Paschen (nf = 3, Infrared) series. From [? ]

SOLVING THE SCHRÖDINGER EQUATION

FOR THE HYDROGEN ATOM

One can also derive the energy levels of the hydrogen
atom using the t ime-independent Schrödinger equation.
The basic equation of nonrelativistic quantum mechanics
can be written in the form:

−
h̄2

2µ
∇2Ψ+ VΨ = EΨ (20)

or

HΨ = EΨ (21)

where

H0 =
p2

2µ
+
e2

r
(22)

is the Hamiltonian of the system and represents the to-
tal (kinetic plus potential) energy of the system and

E = Z2α2µc2

2
1
n2 are the eigenvectors of the Hamiltonian

(and which are equivalent to the Bohr Energies in Equa-
tion 18). The detailed solution to Equation 21 is pre-
sented in many textbooks, e.g. see [? ? ? ]. Here we
present a summary of the most important steps.

For the particular case of the spherical Coulomb poten-
tial in the hydrogen atom, we describe the wavefunction
in spherical polar coordinates and separate the angular
dependence from its radial dependence:

Ψ(r, θ, φ) = R(r)Θ(θ)Φ(φ) = R(r)Y (θ, φ) (23)

            ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

FIG. 7: Revolution around the common center of mass. Since
the nucleus is not infinitely heavy, it too moves very slightly.
The problem can be simplified by changing the coordinates
to the center of momentum reference frame in which the elec-
tron’s mass is replaced by it’s reduced mass. From [? ].

The solutions of this separable equation are listed in
Appendix . Here it is more illuminating to describe their
general form:

Φml(φ) = eimlφ (24)

Θlml
(θ) = sin|ml| cos θ polynomialinθ (25)

Rnl(r) = e−(constant)r/nrl polynomialinr (26)

with the full normalized hydrogen wave functions given
by [? ]:

ψnlm =

√

(
2

na
)3

(n− l − 1)!

2n[(n+ l)!]3
e−r/na(

2r

na
)lL2l+1

n−l−1(
2r

na
)Y m

l (θ, φ)

(27)

HYDROGEN FINE STRUCTURE

CORRECTIONS

We can however introduce corrections (perturbations)
to the Coulomb potential which allow us to more accu-
rately describe the hydrogen spectrum. Fine structure
perturbations to the Hamiltonian given in Equation 22
which change the energies by order α4mc2. These in-
clude:

1. relativistic correction due to the velocity of the elec-
tron, vc ≈ α = 1

137 . The relativistic kinetic energy



is:

√

m2c4 + p2c2−mc2 = mc2 +
p2

2m
−

p4

8m3c2
+ . . . , (28)

where we’ve assumed pc ¿ mc2 (i.e. v ¿ c) and
expanded the LHS in powers of the momentum ~p.

Thus Hr = −
p4

8m3c2 . In 1st order perturbation the-
ory, the correction to En is given by the expectation
value of H ′ in the unperturbed state.

E1
r = −

1

8m3c2
(29)

See [? ] for details but after the dust clears:

E1
r = −

E2
n

2mc2
[

4n

l + 1/2
− 3] (30)

2. spin-orbin coupling between the intrinsic electron
spin and the magnetic field in its vicinity caused by
it’s orbital motion about the nucleus. Recall that
the energy of a magnetic dipole in a magnetic field
is given by E = −µ · ~B =⇒ HSO = − 1

2gµ ·
~B where

g = 2.00232 is the “Lande g-factor” for the electron
spin and the 1/2 corrects for Thomas precession.
Quantum Mechanically, this couling (also called LS
Coupling) is given by:

HSO =
1

2m2c2
1

r

dV (r)

dr
~S · ~L (31)

The total angular momentum ( ~J) is the sum of that
due to the electron’s orbital motion about the nu-
cleus (~L) and the intrinsic angular momentum of

the electron due to it’s spin (~S). They are added
according to:

J = L+ S (32)

J · J = L · L+ S · S + 2S · L (33)

S · L =
J · J − L · L− S · S

2
(34)

and finally, using the allowable values for these
quantities:

S · L =

√

j(j + 1) + . . .

2
(35)

The perturbing Hamiltonian may now be written as:

HFS = H0 +HSO +Hr (36)

After plenty of algebra and integrals, one arrives at the
following result:

En,j = −
13.6eV

n2
[1 +

α2

n2
· (

n

j + 1/2
−

3

4
)] (37)

which includes all of the known structure in the Hydro-
gen, see Figure 8. Not discussed here is the “Lamb-shift”
which splits the 2S1/2 and 2P1/2 states and which is on
the order of α5 = 10−6eV . An understanding of the
Lamb-shift requires quantum field theory [? ].
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FIG. 8: A comparison of the hydrogen energy levels predicted
by Bohr theory and fine structure corrections for the relativis-
tic motion of the electron and the spin-orbil coupling effect.
ν̄ ≡ 1

λ
= E

hc
cm−1. From reference [? ].

HYDROGEN ATOM WAVE EQUATIONS

This separation is successful and results in an angular
wave equation :

ÃL2Y m
l (θ, φ) = h̄2l(l + 1)Y m

l (θ, φ) (38)

with solutions given by spherical harmonics Y m
l (θ, φ),

specified by the quantum numbers l and ml with ml =
0,±1,±2, . . . ,±l. The eigenvectors for this equation are
√

l(l + 1)h̄.
The other separable part is the radial wave equa-

tion:

d2(rR)

dr2
−

2µ

h̄2
V rR =

−2µErR

h̄2
(39)

replace this with griffiths 4.53
where the potential is now given by:

V =
−Ze2

r
+
l(l + 1)h̄2

2µr2
(40)

The new effective potential contains a so-called centrifu-
gal term that tends to throw the particle outward.



The radial wave equation has solutions Rn,l(r) given
by:

Rnl = ρlLnl(ρ)e
−ρ/2 (41)

with n = 1, 2, . . . and l = 0, 1, 2, . . . , n − 1. The variable
ρ is proportional to the radius r:

ρ =
2Z

n
×

µ

me
×

r

a0
(42)

where a0 is the Bohr radius from Equation 17. The factor
L(ρ) is called an associated Laguerre polynomial.
The solution of this equation results in En identical to
those found by Bohr (though without his assumption of
circular orbits).

From [? ], the first few normalized hydrogen wave
functions are:

(43)

EQUIPMENT LIST

Item Model Contact

Spectrograph MS125 oriel.com/down/pdf/77400.pdf

1” UV Filter 6057 oriel.com
1” PCX Lenses Various thorlabs.com
Monochromator 1250M jobinyvon.com
Photomultiplier Tube R928 usa.hamamatsu.com/hcpdf/R928.pdf

H-D Spectral Lamps Custom electrotechnicalproduct.com
Spectral Lamps Various edmundscientific.com
Sodium Lamp ??? ???
LabVIEW Version 6.1 ni.com


