
Poisson Statistics

MIT Department of Physics

In this experiment you will explore the statistics of random events both by physical measurements
and by computer simulations. The random events used in this study will be pulses from a scintillation
detector exposed to gamma rays from a radioactive source. The techniques of this experiment
are important for two reasons. Complicated theoretical predictions often only can be calculated
on computers, so comparing experimental measurements to a computer simulation is essential for
comparing theory with experiment. The ability to measure experimentally properties of statistical
distributions is necessary in almost any test of modern physics.

PREPARATORY PROBLEMS

1. Describe how a scintillation counter works, starting
from the entrance of an energetic charged particle
or photon, and ending with an electrical pulse at
the output of the photomultiplier.

2. Suppose the mean counting rate of a certain detec-
tor of random events is 3 counts per second. What
is the probability of obtaining zero counts in a one-
second counting interval? What is the most likely
interval between successive pulses?

3. Given the formula for the Poisson distribution
(Equation 2), prove each of the following:

• < x >= µ

• < x2 >= µ(µ+ 1)

• < (x− µ)2 >= µ

where < x > signifies the mean value of x.

4. Plot the frequency distribution of counts when the
average counts per interval is 1.

5. Puzzler: Some experiments have painfully slow
counting rates that try the experimenter’s soul and
make him or her question the performance of even
the most reliable equipment. Suppose you are run-
ning an experiment that yields no counts in 23
hours and two counts in the 24th hour. Give a
quantitative answer to the question, “What is the
likelihood that the equipment is malfunctioning?”

THEORY OF POISSON STATISTICS

A sequence of independent random events is one in
which the occurrence of any event has no effect on the
occurrence of any other. One example is simple radioac-
tive decay such as the emission of 663 KeV photons by
a sample of 137Cs. In contrast, the fissions of nuclei in a
critical mass of 235U are correlated events in a “chain re-
action” in which the outcome of each event, the number
of neutrons released, affects the outcome of subsequent
events.

A continuous random process is said to be “steady
state with mean rate µ” if

lim
T→∞

(

X

T

)

= µ (1)

where X is the number of events accumulated in time T .
How can one judge whether a certain process does, in-

deed, have a rate that is steady on time scales of the
experiment itself? The only way is to make repeated
measurements of the number of counts xi in time inter-
vals ti and determine whether there is a trend in the
successive values of xi/ti. Since these ratios are certain
to fluctuate, the question arises as to whether the ob-
served fluctuations are within reasonable bounds for a
fixed rate. Clearly, one needs to know the probability
distribution of the numbers of counts in a fixed interval
of time if the process does indeed have a steady rate.
That distribution is known as the Poisson distribution
and is defined by the equation:

Pp(x;µ) =
µxe−µ

x!
(2)

which is the probability of recording n counts (always an
integer) when µ (generally not an integer) is the expected
number, the mean rate times the counting time interval.
It is simple to show that the standard deviation of the
Poisson distribution is simply

√
µ, that is, the square

root of the mean. Derivations of the Poisson distribu-
tion and its standard deviation are given by Bevington
& Robinson and Melissinos.

EXPERIMENTS

In the first part of this experiment you will set up a
scintillation counter, expose it to gamma rays from a ra-
dioactive source, and record the frequency distribution
of the numbers of counts in equal intervals of time. This
will be repeated for four situations with widely differ-
ent mean count rates, approximately 1, 5, 10, and 100
counts per second. The experimental distributions and
their standard deviations will be compared with the the-
oretical distributions and their standard deviations.



Later, you will generate Poisson distributions by
Monte Carlo simulations on a Junior Lab PC and will
also compare them with the ones produced by nature in
your counting measurements.

Measure Poisson Statistics

Set up the scintillation counter as shown in Figure 1.
Expose the detector to the gamma rays from a 137Cs
or 60Co laboratory calibration source (a 1/2′′ × 5′′ plas-
tic rod with the source embedded in the colored end).
The voltage applied to the photomultiplier should be ≤
1050 volts. The output of the photomultiplier is fed to
the “INPUT” connector on charge-sensitive preamplifier.
Use the oscilloscope to record the voltage waveform taken
from the output of the preamplifier and draw it in your
lab notebook. Note especially the rise and decay time of
the signal as well as the peak amplitude and polarity.

The output of the preamplifier is then connected to
the “INPUT” connector on the back or front of the
EG&G 575A amplifier. The amplified signal should be
taken from the “UNI OUT” connector on the front of
the amplifier, and fed to the “POS IN(A)” connector on
the EG&G 776 Counter & Timer. Adjust the settings as
follows:

EG&G 113 INPUT 0 pF
EG&G 575A FINE GAIN 2.5

COARSE GAIN 2
INPUT POS

EG&G 776 DISPLAY COUNTS(A)
PRESET(B) m=3

n=1
DISCRIMINATOR(A) 0.1 V

Note: Throughout Junior Lab, you should pay close at-

tention to the polarities of applied and detected voltages.

Incorrectly setting the polarity on an oscilloscope trigger

can be very frustrating!!!.

Examine the output of the amplifier on the oscil-
loscope (sweep speed ∼ 1µsec/cm, vertical amplitude
∼ 1 volt/cm) to confirm the proper performance of the
measurement chain. Adjust the gain of the amplifier to
produce signal pulses of ∼ +3 volts. If you trigger the
scope on the rising edge of the pulses and set the trigger
level to ∼ +3 volts, you should see a signal which starts
on the left-hand side of the scope display at ∼ 3 volts,
rises to a maximum of about ∼ 5 volts, goes negative and
finally levels off at zero. If you also set the discriminator
on the counter to 3 volts, there should be an approxi-
mate one-to-one correspondence between pulses counted
and pulses displayed. Ask for assistance on this step if
you are unfamiliar with the operation of an oscilloscope.

Incidently, even without a ‘check source’ nearby, you
should see signals due to “cosmic-rays” at the rate of
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FIG. 1: The setup for measuring the number of counts from
a random process (radioactive decay) in a given time interval.
An oscilloscope is used to monitor the proper functioning of
the system.

≈ 1cm−2min−1

Prepare tables in your lab notebook for record-

ing the count data in neat and compact form.

You can control the counting rate by adjusting the dis-
tance of the source from the scintillator, by varying the
high voltage supplied to the photomultiplier, varying the
gain of the amplifier, or changing the threshold level of
the discriminator. Arrange things to yield three different
mean count rates of approximately 1 sec−1, 10 sec−1, and
100 sec−1.
At each of these approximate rates, record the counts

for 100 repeated one-second intervals directly into your
lab notebook.

Analysis

The following analysis requires the use of repetitive
arithmetic on the collected data set. You should use ei-
ther Matlab or any other preferred tool on Athena.

a) For each of the three runs calculate and plot the
cumulative average, rc(j), of the rate as a function
of the sequence number, j, of the count. By “cu-
mulative average” is meant the quantity

rc(j) =

∑i=j
i=1 xi

∑i=j
i=1 ti

. (3)

where xi is the number of counts detected in time
ti. For a process which is truly steady with mean
rate µ, rc(j) should converge to µ in the asymptotic
limit. Arrange the ordinate scale on the plot so
that the largest positive and negative fluctuations
fill the available vertical space. Include error bars
to demonstrate convergence.
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FIG. 2: A frequency distribution of observed numbers of
counts. The renormalized Poisson distribution for the ob-
served mean value is also plotted.

b) Calculate the mean and standard deviation of each
of the three 100-trial distributions. Make a plot of
the “number of counts” on the horizontal axis and
data points for the “frequency” of occurrence for
each bin on the vertical axis. Be sure to include
error bars.

c) Using the mean rate just determined, calculate and
plot data with errors (Fig. 2) and the Poisson fre-
quency distribution (renormalized by multiplying
by the total number of readings) on the same axes.
For the observed distribution with the lowest mean
rate, take the highest deviation from that mean and
test whether you might be justified in concluding
that the counter was malfunctioning. (Remember
that there were 100 opportunities for such a devia-
tion to occur.)

d) For large values of µ you can use the Gaussian ap-
proximation to the Poisson formula as given by the
relation

lim
µ→∞

p(x;µ) =
1

√
2πµ

e−(x−µ)2/2µ. (4)

Compare the Poisson and Gaussian distributions
for µ = 10.

Poisson Statistics Demonstration by Computer

There are two options for generating synthetic poisson
data sets, one on the Windows PC’s using LabVIEW and
one under Athena using Matlab.

Windows Activate the program called ‘Poisson Statis-
tics’ on a Junior Lab PC (downloadable from the Junior
Lab Server in the software folder).

Athena Add the Junior Lab Locker by typing ‘setup
8.13’ at the Athena prompt. Within Matlab on Athena,
type ‘addpath /mit/8.13/matlab’. There are two Mat-
lab scripts entitled ‘poisson.m’ and ‘poissonsim.m’. For
information on how to use either one, type ‘help pois-
sonsim’ from within Matlab. For example type ‘poisson-
sim(3,20)’ which will generate a 20 sample population
with a mean of 3. The blue curve represents the theoret-
ical poisson distribution while the red dots represent the
simulated sample population. The ’poissonsim’ function
will output two vectors: the frequency of each rate (i.e.
the counts in each bin shown in the graph) and the count
rates for all of the trials.
The following instructions apply to either method.
Generate 1000-trial distributions for a mean, µ = 1,

10, 100 and 1000.
Next, generate ten 100-trial distributions for each of

the three mean counts you obtained in the experimental
section using the scintillation counters. Record the mean
values and standard deviations for each set of 10 distri-
butions. Compare the Monte Carlo-generated Poisson
distributions with the experimental ones you obtained
with the scintillation counter. The mean of the standard
deviations should converge (within some statistical error)
to the square root of the mean that is input to the Pois-
son generator. Determine the error on µ and σ from the
scatter of the ten distributions.
For whichever poisson simulator you’ve used, inspect

the code. In the LabVIEW code, for µ < 88 it works ac-
cording to a general scheme for Monte Carlo simulations
which employs a generator of random numbers with a
uniform distribution between 0 and 1 and yields a ran-
dom variable with a specified distribution. The theory of
these schemes is presented in the Appendix.

[1] P. R. Bevington & D. K. Robinson. 1992, Data Reduc-

tion and Error Analysis for the Physical Sciences, (2nd
edition), McGraw Hill.

[2] A. Melissinos. 1966, Experiments in Modern Physics, Aca-
demic Press.

SUGGESTED THEORETICAL TOPICS

1. The Poisson distribution.

2. The Gaussian approximation to the Poisson distri-
bution P (m,n) for mÀ 10.

3. The differential distribution in the time lag between
successive random pulses that occur at a fixed av-
erage rate.



MONTE CARLO GENERATION OF A RANDOM

VARIABLE WITH A SPECIFIED PROBABILITY

DISTRIBUTION

Suppose we have a source of random numbers with a
uniform distribution from 0 to 1. If we represent the uni-
form distribution by q(y), so that q(y′)dy′ is the prob-
ability that the random number y lies between y′ and
y′ + dy′, then obviously q(y′) = 1. The problem is how
to convert a given random number y from this uniform
distribution into a random variable x with a specified dis-
tribution p(x′) such that p(x′)dx′ is the probability that
the variable x will turn up with a value in the infinites-
imal interval between x′ and x′ + dx′. We must find a
relation between the distributions of y and x such that
p(x′)dx′ = q(y′)dy′ = dy′.
To do this we compute, analytically if possible but oth-

erwise numerically, the integral

P (x) =

∫ x

−∞

p(x′)dx′ (5)

which is the probability that the random variable will
turn up with a value in the interval between −∞ and x.
From this definition is follows that

lim
x→∞

(P (x)) = 1 (6)

since the probability that the random variable will turn
up with some value is unity. Given the random number y,
we set y = P (x) and solve for x. To find the distribution
of the resulting value of x we differentiate this expression,
using the rule for differentiating a definite integral with
respect to its upper limit, and obtain dy = dP (x) =
p(x)dx. Thus the distribution of x selected in this way is
identical to the one specified.
Figure 3 shows how this works graphically. From the

figure it is evident that a horizontal line at a random
position yi on the y-axis is more likely to intersect the
P (x) function where it is steeper than elsewhere; i.e.,
where the differential probability is larger than elsewhere.
The Poisson probability, being a discontinuous func-

tion, is handled in a similar way, but with a summation
rather than an integral. Given a value of µ <88 and a
random number y, the Poisson Simulator find the small-
est value of x for which P (x;µ) > y, where P is defined
by the formula

Pp(x;µ) =

x′=x
∑

x′=0

p(x′;µ) (7)

in which p(x′;µ) is the Poisson probability specified
above. That value of x is the desired Poisson variate.

If µ ≥ 87 the (LabVIEW) Poisson Simulator switches
to the Gaussian approximation, calling a subroutine
GAUSS which generates a random number with a Gaus-
sian distribution and σ =

√
µ. The GAUSS algorithm is
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FIG. 3: Illustration of Monte Carlo selection of a random
variable with a specified differential probability distribution
is shown above. yi is a random number between 0 and 1. xi

is the value of the variable for which the integral probability
distribution equals yi.

based on the fact that the distribution of the sum of 12
uniformly distributed random numbers is approximately
Gaussian with a mean of 6 and a standard deviation of
1 (see if you can prove this). The rest of the simulator
program plots the frequency distribution and calculates
the mean and standard deviation.

In the Matlab version, the algorithm is described in
more detail in the code.

EQUIPMENT LIST

Item Description Website

Tektronix 2225 50 MHz Analog Oscilloscope www.agilent.com
Canberra 802-3 Scintillation Counter www.canberra.com
Canberra 805 Scintillation Counter Pream www.canberra.com
Canberra 3002D High voltage power supply www.canberra.com
Ortec 575A NIM Amplifier www.ortec-online.com
Ortec 776 NIM Timer/Counter www.ortec-online.com


