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The magnetic splitting of spectral lines. A scanning Fabry-Perot interferometer is used to measure
the Zeeman effect in mercury and neon. The results are compared with the expectations derived
from the vector model for the addition of atomic and nuclear angular momenta. A value of the ratio
e/m of the electron is derived from the data.

PREPARATORY PROBLEMS

1. Draw a diagram that shows the effect of a weak
magnetic field on the otherwise degenerate sub-
states involved in the transitions which produce the
green line (5461 Å) and the yellow doublet (5770
Åand 5791 Å) of mercury.

2. Derive the Landé g-factors for the states involved
in the production of these lines.

3. What would the Zeeman effect be on the 5461 Åline
if the gyromagnetic ratio of the electron were 1 in-
stead of 2.001?

4. Derive equation 7 in this lab guide. Also derive
equation 10 from equation 9.

5. Estimate the Doppler width of the 5461 Åline from
the mercury lamp and compare it with the expected
Zeeman splittings. Assume the temperature of the
emitting vapor is 500 K.

6. Derive a formula for e/m in terms of the measured
separations of identified peaks in the interferogram
of the Zeeman pattern, the distance between the
plates of the interferometer, the strength of the
magnetic field, and various physical constants.

INTRODUCTION

Since Faraday’s discovery in 1848 of magnetically in-
duced circular birefringence (the Faraday Effect), the
search for effects of electric and magnetic fields on optical
phenomena has been pursued with more and more pow-
erful methods of spectroscopy and stronger and stronger
fields. In 1862, in his last experimental work, Fara-
day himself used the most powerful magnet and best
prism spectroscope available in an unsuccessful attempt
to detect an effect of a magnetic field on the spectral
lines emitted by sodium vapor in a Bunsen burner flame.
Three decades later Pieter Zeeman in Leyden, unaware
of Faraday’s earlier attempt, was induced “by reasons of
minor importance” to try to detect a magnetically in-
duced change in the light of a sodium flame. He too

failed. However, as Zeeman describes it in his discov-
ery paper of 1896 his attention was subsequently drawn
to Maxwell’s sketch of Faraday’s life in which Faraday’s
last experiment is mentioned. Zeeman wrote “If a Fara-
day thought of the possibility of the above mentioned
relation, perhaps it might be yet worth while to try the
experiment again with the excellent auxiliaries of spec-
troscopy of the present time.” Using a grating ruled on
the marvelous engine of Rowland at Johns Hopkins he
observed a broadening of the spectral lines emitted by
sodium vapor heated in a flame between the poles of a
powerful Ruhmkorff magnet which produced a field of 10
kilogauss. Zeeman proposed a theoretical interpretation
based on Lorentz’s idea that “in all bodies small electri-
cally charged particles with a definite mass are present.”
Given this concept, the rest of the interpretation is, from
a modern point of view, hardly more than a dimensional
analysis. Nevertheless this early theory of the “normal”
Zeeman effect showed how to interpret the observed line
broadening as a measure of e/m, the charge to mass ra-
tio of the electron. The idea was that the frequency of
a spectral line emitted by an atom is the frequency of
a harmonic vibration of an electron in the atom. Any
such vibration can be resolved into two components, one
along some particular direction which we take to be the
direction of the z axis, and the other in the xy plane.
The xy component, in turn, can be represented as the
sum of two components of constant amplitude rotating
in opposite directions about the z axis. With each such
circular component of motion one can associate a central
restraining force given by

F = mrω2 (1)

where ω is the angular frequency and r is the radius of
the circular motion. If a magnetic field of magnitude
B is now imposed in the z direction, the central force
will be either increased or decreased by a perturbing (i.e
small compared to F ) Lorentz force of magnitude Beωr

c

(cgs units), resulting in a changed frequency of circular
motion given by the equation

mr(ω +∆ω)2 = F ± Beωr

c
(2)

or

mr[ω2 + 2ω∆ω + (∆ω)2] = mrω2 ± Beωr

c
(3)



Neglecting the (ω)2 term, one obtains the simple expres-
sion

ω +∆ω = ω ± Be

2mc
(4)

for the frequencies of light viewed along the direction
of the field (as viewed through a hole bored through the
magnet pole piece). In directions perpendicular to the
field, one sees both these shifted frequencies and the un-
shifted frequency of the components of vibration along
the z axis which, being parallel to the field, is unaf-
fected. With the resolution available to Zeeman the in-
dividual frequency-shifted lines were unresolved. How-
ever, Lorentz pointed out to Zeeman that the edges of the
broadened lines observed parallel to the field, supposedly
being light radiated by charges in right and left circular
motions, should exhibit circular polarization in opposite
senses with respect to one another. With a quarter wave
plate and Nicol prism polarizer Zeeman confirmed the
prediction. And by rough estimation of ∆ω and knowl-
edge of B he obtained a value of 107 emu for e/m .

Within a few months of Zeeman’s publication mag-
netically split lines were spectroscopically resolved and
found in many cases to consist of more than the “normal”
Zeeman triplet, and to have frequency shifts other than
± Be
2mc . The “anomalous” Zeeman effect, which proved

to be the rule and not the exception, defied explanation
until the advent of quantum mechanics and the discovery
of spin.

A modern understanding of the Zeeman effect can be
approached on several levels. The vector model, which
you should master before starting the experiment, is ex-
plained in Melissinos (1966) and in various texts on quan-
tum mechanics and atomic structure listed in the refer-
ences. It provides a useful image of the atomic machinery
involved in the Zeeman effect and yields accurate predic-
tions of the Zeeman effect in atoms whose excited states
can be described according to the LS coupling scheme
(Russell-Saunders coupling). Information about the mer-
cury spectrum in general and the Zeeman effect on the
green and yellow lines of mercury can also be found in
Melissinos. (Beware of errors in Melissinos’ description
of the hyperfine structure of the mercury lines.) Specially
useful references are the classic work on atomic spectra
by White (1934), and a book by Steinfeld (1986). Ad-
ditional background material on the quantum theory of
the Zeeman effect and to the physical optics of the in-
terferometer can be found in various texts, in particular
those listed in the references at the end of this lab guide.

EXPERIMENTAL ARRANGEMENT

In this experiment you will measure the weak-field Zee-
man effect on the green and yellow lines of mercury and

pole piece
magnet
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FIG. 1: Schematic diagram of the optical arrangement for
recording the intensity at the center of the Fabry-Perot inter-
ferogram. The focal length of the collimating field lens is 33
±0.5 cm and the focal length of the telescope is 43.5 ±0.5 cm.
The optical height of the Fabry-Perot is 12.2 ± 0.2 cm.

the green line of neon by means of a Fabry-Perot interfer-
ometer. This device provides the high spectral resolution
necessary for the detection and measurement of the small
fractional changes in wavelength caused by “weak” mag-
netic fields of several thousands of gauss. The results
reveal some of the important properties of angular mo-
menta, spin, and the dipole selection rules, as well as an
accurate value of e/m from an interpretation of the data
based on the vector model for the quantum mechanical
addition of angular momentum. In addition, with suf-
ficient care in the adjustment of the apparatus you can
detect and measure the hyperfine structure of the green
line of the odd isotopes of mercury due to the interactions
between the electronic and nuclear magnetic moments,
and the spread in wavelength of the lines of the even iso-
topes due to the differences in the number of neutrons in
their nuclei.

The optical arrangement is illustrated in Figure 1.
Light emitted by a low-pressures mercury vapor lamp
passes through a narrow-band interference filter, an op-
tional Polaroid filter, a field lens, the Fabry-Perot inter-
ferometer, and a telescope. When properly aligned this
system produces at the focal plane of the telescope objec-
tive lens interference fringes in the form of circular rings
concentric with the axis. A 45◦ front-aluminized mirror
with a small hole in the aluminization centered on the
focal plane reflects most of the ring pattern for viewing
through the eyepiece, while allowing the light at the cen-
ter “bulls eye” of the ring pattern to pass through to the
photomultiplier. During a spectrum scan the separation
of the Fabry-Perot plates is varied by two or three wave-
lengths by application of a saw-tooth voltage with an
amplitude of several hundred volts to three piezoelectric
crystals on which one of the plates is mounted. As the
separation decreases (increases) the rings in the image
plane expand (contract). A plot of the intensity of light
passing through the hole located at the center of the ring
pattern against the magnitude of the saw-tooth voltage
is, in effect, an ultra-high resolution spectrum over a very
narrow range of frequencies.

Figure 2 shows the electronic arrangement for record-
ing the central intensity as a function of the voltage ap-
plied to the piezoelectric crystal. The photomultiplier
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FIG. 2: Schematic diagram of the electronic arrangement for
recording the interferogram in the form of a plot of the central
intensity versus the separation of the Fabry-Perot plates.

output is fed directly to the Y input of an oscilloscope.
A signal equal to to the voltage (÷ 100) applied to the
piezoelectric crystals is fed from the interferometer con-
troller to the X input of the digital oscilloscope.

PROCEDURE

1. Align the interferometer The Burleigh Fabry-
Perot interferometer is a delicate instrument capa-
ble of providing spectrum measurements of extraor-
dinary resolution and precision. Please treat it with
the utmost care. In particular, do not press the
mirrors together by turning the micrometer
screws below 0 as you may crack the sap-
phire blocks on which the micrometer crews
press. If you encounter any problems or are un-
certain how to adjust the interferometer, call for
assistance.

Mount the mercury-filled Geisler tube in the sock-
ets of the high-voltage supply, position the capil-
lary section between the pole pieces, and turn it
on. Adjust the collimating lens (plano-convex, fo-
cal length = 33±0.5cm) and the position and orien-
tation of the interferometer so that the light falls on
the input mirror and the view through the Fabry-
Perot mirrors looking toward the lamp is fully il-
luminated. Put the interference filter for the 5461
Å green line of mercury in the beam. Set the
two positioning micrometers on scale readings of
2000 µm where the smallest division on the mi-
crometer shaft corresponds to 250 µm. (Do not
move the left mirror.) Make the mirrors paral-
lel by adjusting the bottom micrometer (which has
no scale) and top right micrometer while viewing
the light coming through the Fabry-Perot mirrors.
When the mirrors are nearly parallel you will see
many narrow circular fringes. Fine adjustment will

produce comparatively large, sharp circular fringes
concentric with the center of your field of view and
separated by dark gaps with fainter and narrower
rings. When the mirrors are perfectly parallel the
circular fringes are sharp and do not change in di-
ameter as you move your eye back-and-forth, and
up-and-down.

2. Align the telescope Check that the mirror
mounted inside the telescope under the eyepiece
is inclined at an angle of 45◦ so that it reflects
the light from the telescope lens into the eyepiece.
Adjust this angle using the silver screw from the
bottom of the assembly. Focus the eyepiece on the
tiny aperture (a ragged laser-drilled hole in the alu-
minization near the center of the mirror). Then
point the telescope at a distant object and focus it
by adjusting the slide tube.

Place the telescope so that the light emerging from
the interferometer enters the objective lens (focal
length = 43.5±0.5cm). (Leave sufficient room be-
tween the telescope and the interferometer to in-
sert your head for direct viewing of the interference
fringes). Adjust the orientation of the telescope so
that the circular fringes seen through the eyepiece
are concentric with the tiny aperture in the 45◦

mirror. (The broad rings are successive orders of
interference of the light from the even isotopes of
mercury: the breadth of the line is due to the ef-
fect of the spread in mass of the isotopes. The faint,
narrow rings between the broad ones are the hyper-
fine lines of the odd isotopes, separated slightly in
wavelength from the others as a result of the inter-
action between the nuclear and electronic magnetic
moments.)

3. Adjust the fabry-perot controller Turn on the
controller and explore its operation with the help of
the diagram in Figure 7 and the instrument man-
ual. The function of the controller is to supply
a sawtooth voltage to each of three piezoelectric
crystals on which the input (left) Fabry-Perot mir-
ror is mounted. The duration and amplitude of the
sawtooth voltages are controlled by the correspond-
ingly labeled knobs. The ramp bias knob controls
the voltage level of the midpoint of the scan voltage
applied to all three crystals; the three bias controls
on the left adjust the mean voltages applied to each
crystal. The trim controls adjust the slopes of the
sawtooth voltages to compensate for any differences
that may exist in the electromechanical properties
of the crystals. Start with each of the trim controls
in their most counterclockwise position.

With the ramp amplitude turned to zero, set the
three bias controls and the three trim controls to
near their middle values (∼ 250 V). Application of
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FIG. 3: Diagram of the front panel of the interferometer
controller. Note that the knobs are friction-coupled to their
shafts so that they turn past the zero and maximum positions
without harm.

the bias voltages to the piezoelectric crystal mounts
of the input mirror will disturb the parallelism. So,
once again, view the fringes directly with your eye
close to the output mirror of the interferometer and
make the mirrors parallel by adjusting the bottom
and top right micrometers. Now view the fringe
pattern through the telescope and tweak the bias
controls for maximum sharpness. Adjust the tele-
scope orientation so that the aperture hole is ex-
actly at the bull’s eye of the circular fringe pattern.
You can shift the fringe pattern by adjusting the
ramp bias control.

4. Acquire the spectrum Put the photomultiplier
in its place at the end of the telescope and turn
up the Photomultiplier high voltage to ≈ −1400 v.
Feed the signal from the PM to the PAR ampli-
fier with the LF roll off control set to DC, and the
HF roll off set to a value that satisfactorily reduces
the vertical jitter due to electronic noise without
suppressing the fine features of the spectrum. Dis-
play the output on the y-axis of the digital oscil-
loscope with the scan signal from the Fabry-Perot
controller connected to the X-display. Adjust the
scan amplitude so that the piezoelectric drive is
activated. Select a bias sweep amplitude and rep-
etition rate that produces a pleasing display of the
variation of light intensity at the bullseye of the in-
terferometer pattern over a range of two or three
free spectral ranges. Adjust the three bias controls
to maximize the amplitudes of the peaks.

Observe the pattern and identify the hyperfine lines
with the help of the plot copied from the American
Institute of Physics Handbook and posted on the
wall.

5. Determine the offset of the micrometer scale
The position of the fixed left mirror mount has
been set so that zero readings of the micrometers
correspond to a small positive mirror separation
which we call the offset, D0. Accurate knowledge
of this offset is obviously required so that microm-

eter readings can be converted into actual mirror
separations according to the equation

D = D0 + r (5)

where r is the micrometer reading (we will assume
that the micrometers are accurately manufactured
so that one turn equals 250 µm and the smallest
scale division on the barrels is 500 µm). The offset
can be determined without mechanically measur-
ing the separation of the mirrors, which is difficult
at best and would likely damage the reflective sur-
faces of the mirrors. (Again, do not move the
left mirror.) To see how to measure the offset,
consider two close spectral lines with wavelengths
λ1 and λ2 such that

λ2 − λ1 <<
λ2 + λ1
2

(6)

(In practice one can use two of the narrow hyper-
fine lines of mercury 5461 Å, preferably the two
brightest hyperfine lines on either side of the cen-
tral broad line which is composed of the unresolved
isotope-shifted lines of the mercury isotopes with
even numbers of nucleons and protons in their nu-
clei). Call r1 and r2 the micrometer readings for
two settings of the movable mirror (e.g. r1=2.0mm
and r2= 4.0mm). Suppose the separation between
the interference maxima of the two lines in a given
order is ∆1 at the r1 and ∆2 at the r2 setting. The
separations can be measured on the digital oscillo-
scope with the time-base cursor t1. A straight line
fitted to a plot of ∆ against r will intercept the
r- axis at d0. To achieve confidence and good ac-
curacy in this measurement on which the accuracy
of the final results depends, it is wise measure ∆
several times (>= 5) at each of several micrometer
settings, say 0.0, 2.0, and 4.0mm.

6. Determine the optimum mirror separation
for measurement of the zeeman splittings
Calculate the separation between the Fabry-Perot
mirrors which will provide a “free spectral range”
suitable for the desired measurements. What you
want to avoid is having the extreme red-shifted Zee-
man components of a given line in one order of
interference overlap the extreme blue-shifted com-
ponents of the line in the next order when the field
is at maximum strength. Estimate the total width
of the Zeeman pattern that you expect at the max-
imum attainable field strength. Calculate the mir-
ror separation which will give you the necessary free
spectral range to accommodate this width. Allow-
ing for the micrometer offset determined above, set
the desired mirror separation.
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FIG. 4: Schematic plot of the separation against the microm-
eter reading in the determination of the of the micrometer
offset D0.

7. Trial Runs The magnet is capable of producing
a field of ∼9.4kG at a current of 50A. Please do
not exceed this current level!. As a result of
such high currents, the magnet coils must be cooled
during operation. Turn on the magnet water sup-
ply (faucet on the right rear wall of the room) and
listen for the ‘click’ of the safety interlock being de-
activated. Now turn on the power supply (located
under the table), making sure that the current level
is at the lowest possible setting. Observe the fringe
pattern through the telescope as you increase the
magnet current. Note the behavior of the hyperfine
lines. Test the effect on the fringe pattern of insert-
ing a Polaroid filter in the optical path between the
source lamp and the Fabry-Perot. Rotate the Po-
laroid and figure out what is happening. (You can
determine the transmission axis of the Polaroid fil-
ter by observing light reflected at small angles of
grazing incidence from any non-metallic glossy sur-
face like that of the table in the next room.)

When everything is properly adjusted, with the
bull’s eye of the interference pattern centered on
the hole in the 45◦ mirror and with the bull’s eye
intensity signal displayed on the oscilloscope, a pat-
tern similar to that in Figures 5 and 7 with R ≈ 0.9
should be seen.

MEASUREMENTS

QUANTITIES YOU WILL DETERMINE

1. The Zeeman splittings of the green and yellow lines
of mercury and the green line (5400 Å) of neon.

2. The Land g-factors for the levels involved in mer-
cury lines.

3. The value of e/m for the electron.

4. The hyperfine structure of the mercury 5461 Åline.
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FIG. 5: Sample interferogram of the 5461 Åline of mercury.
Magnet current = 50A ∼0.94T. The amplifier gain = 1000
and the PMT bias = -900 VDC. The units of the x-axis are
seconds and of the y-axis are volts.

5. The isotope shift (effect of nuclear mass) of the 5461
Ålines of the even isotopes of mercury.

Zeeman effect on the green line of mercury

Using the Hall probe magnetometer explore and
record, as a function of the supply current, the inten-
sity of the field between the pole pieces of the magnet in
the region that will be occupied by the mercury vapor
and up against the centers of the faces of the pole pieces.
(Check the Hall magnetometer zero setting by inserting
the probe into the magnetically shielded cavity provided,
and check the calibration with the 5 kilogauss standard
magnet, also provided.)
Readjust the interferometer, and measure the Zeeman

splittings. A convenient way to measure the Zeeman
splittings is to record the digital reading of the ramp
bias required to move the various interference rings seen
in the telescope to a chosen fiducial position marked by
a dirt spot on the 45◦ mirror at the focal plane of the
telescope. To do this first stop the scanning action by
turning the ramp amplitude to zero. Then select a dirt
spot on the mirror at some as your fiducial marker. Ad-
just the ramp bias control so the spot is on the center line
of an interference ring of a particular reference spectrum
line, and record the bias reading. Repeat for the other
rings of the same order of interference for the spectrum
lines whose wavelength shift relative to the reference line
you wish to measure. Also record the bias readings for
interference rings in several adjacent orders to establish
the calibration scale and to provide redundant data from
which the random measurement errors can be evaluated.
Print out the digital oscilloscope screen on the attached
printer and add it to you notebook.



ISOTOPE AND HYPERFINE STRUCTURE OF

THE 5461 Å LINE

At zero field tweak up the performance of the interfer-
ometer with the bias controls to sharpen up as much as
you can the hyperfine components of the green line which
appear as the faint, sharper rings between the bright,
broad rings of the unresolved emission from the even iso-
topes. Increase the gain of the oscilloscope Y amplifier to
make the hyperfine peaks large enough to be accurately
measurable. Download the digital oscilloscope capture
of the interferogram directly from within Matlab. Here
again you can obtain the necessary measurements using
the ramp bias control. Beware of confusing interference
rings of different orders.

THE YELLOW DOUBLET LINES OF MERCURY

To observe the mercury yellow lines remove the green
interference filter from the optical path and insert the yel-
low interference filter mounted in the heavy brass cylin-
der into the output hole of the interferometer. Note that
there will now be two sets of interference rings present
since the filter passes both of the yellow lines. With luck
the two sets of rings may be conveniently spaced so that
their Zeeman patterns do not overlap at moderate fields.
If not, you will have to change the spacing of the mirrors
slightly.

Measure the structure and splitting of both compo-
nents of the mercury yellow doublet. This will require
special care because of possible overlapping of the two
interference patterns at high field values. Note the slight
difference in the Zeeman patterns of the 5769.6 Å and
5461 Å lines. How do they differ and why?

THE GREEN LINE OF NEON

The energy level structure of neon is much more com-
plicated than that of mercury, and the interpretation of
the Zeeman patterns of its spectrum is more difficult. In
the ground state the outer 6 electrons are in a closed
2p shell. The transitions that give rise to the spectacular
visible spectrum of ordinary neon discharge tubes are be-
tween excited states in which one electron has been raised
from one of the 2p orbitals. The excited states consist
of various configurations of that electron and of the 5
electrons remaining in the 2p shell. It turns out that the
interactions between the orbit and spin moments of the
excited electron and the remaining 2p electrons cannot
be described by the LS coupling approximation (Russell-
Saunders coupling), but rather as jj coupling, which does
not lend itself to a simple vector-model calculation of the
g-factors. The purpose of this part of the experiment is

therefore limited to measuring the pattern of one par-
ticularly prominent and accessible line of the neon spec-
trum (the relatively intense green line at 5401 Å), and to
comparing the splitting with the simple classical Zeeman
triplet.
It happens that the 5401 Å line is transmitted by

the same green filter used to isolate the 5461 Å line of
mercury. To observe it, restore the green interference
filter and replace the mercury lamp between the magnet
pole pieces with the small neon lamp. The latter has
its own separate power supply and no need for cooling.
The transmitted intensity of this neon line is rather faint
because it lies close to the edge of the filter’s transmission
band. Considerable skill will be required to obtain a
useful measure of its Zeeman pattern.

ANALYSIS

To check the results of your ramp bias measurements
of the Zeeman splittings you can measure the separations
between the peaks of the interferograms utilizing Matlab
and fitting the peak locations. Be sure to measure
the separation between the same Zeeman compo-
nents in adjacent orders, i.e. the distance in inter-
ferogram corresponding to the free spectral range. From
these quantities and the separation of the mirrors of the
Fabry-Perot interferometer, compute the effective disper-
sion of the spectroscope, i.e. the shift in wave number
per unit distance on the photographs.

1. Tabulate all the measured frequency shifts in units
of wave numbers ∆f

c
= ∆ 1

λ
per kilogauss, e.g.

(0.1234± 0.012)cm−1kgauss−1.

2. Construct energy level diagrams of the mercury
transitions and identify the observed Zeeman com-
ponent frequencies with the various allowed transi-
tions between the magnetic substates.

3. Measure the hyperfine lines, and identify them
with the help of the discussion by Steinfeld (1986).
(Some of the illustrations and diagrams in Melissi-
nos on this topic are in error.)

4. Measure the full width at half maximum of a strong
hyperfine line to obtain a measure of the effec-
tive resolution of the spectrometry. Measure the
FWHM of the bright, unresolved composite line of
the even isotopes. Derive from these data a mea-
sure of the spread in wavelengths of the even iso-
tope lines due to the differences in their nuclear
masses. Can you think of a way to make an order
of magnitude theoretical prediction of this spread?

5. Compute the Landè g-factors for the upper and
lower states involved in the various transitions (Hg



5461 Å, Hg 5770-5790 Å and the magnetic mo-
ments of each of the levels in units of the Bohr
magneton.

6. If everything makes sense, i.e. all the measured
shifts of the π and σ components are consistent
with expectations derived from the vector model
and selection rules, then determine a best value for
e/m for the entire data set.

7. Finally, compare the neon splitting with the clas-
sical triplet splitting. You may want to search the
literature for a theoretical analysis of the neon spec-
trum and its Zeeman splittings.

8. Estimate the random and systematic errors asso-
ciated with each of your final quantitative conclu-
sions.

POSSIBLE THEORETICAL TOPICS

1. The vector model and the Landè g-factor.

2. Hyperfine structure.

3. The isotope shift.

4. Theory of multi-wave interference in the Fabry-
Perot interferometer.
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APPENDIX A: THEORY OF THE

FABRY-PEROT INTERFEROMETER

A Fabry-Perot interferometer consists of two precisely
parallel glass plates with optically flat and highly reflec-
tive surfaces facing one another, as illustrated in Figure 6.
To use it as a spectrometer one must have, in addition,
a lens to focus parallel rays to a point in its image plane
and a magnifying eyepiece for examining the intensity
pattern of light in the focal plane, i.e. a telescope.
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FIG. 6: Geometrical optics of the Fabry-Perot interferometer.
Only one of many multiply reflected paths is shown.

Consider a ray of light of wavelength λ emitted by an
excited mercury atom at S and making an angle θ with
the axis, is incident on the Fabry-Perot from the left at
the point A. It will be partially transmitted at each of
the two Fabry-Perot mirror surfaces, and will arrive at
P after passing through the telescope lens. The portion
of the ray reflected at B will be reflected again at C and
partially transmitted at E. It will enter the telescope lens
parallel to the original ray and will be focussed to the
same point P after having traversed an additional dis-
tance 2Dcosθ. If this additional distance is an integer
number of wavelengths, i.e.,

2Dcosθ = mλ (7)

then the two rays (and all the additional multiply re-
flected rays) will interfere constructively when brought
to the focus at P. Constructive interference among all
the multiply reflected rays passing through the interfer-
ometer at an angle θ to the axis will produce a circle
of interference maxima in the focal plane, i.e., a bright
ring of the mth order of interference. If the separation
of the plates is increased, then the angular radius of the
mth order ring will expand so that the decrease in cosθ
compensates for the increase in D.
Suppose you want to measure the difference δλ be-

tween two wavelengths very close together, e.g., the wave-
length shift between two lines in a Zeeman pattern. Sup-
pose, further, that the average wavelength λ of the two



lines is already known to good accuracy. Viewing the
light emerging from the interferometer with your naked
eye or through a telescope focused on infinity, you will
see two concentric sets of interference rings, correspond-
ing to the two wavelengths. Suppose the mth order ring
of wavelength λ1 coincides with a fiducial mark fixed in
the focal plane (e.g. a dirt spot on the 45◦ mirror in
the Junior Lab setup). Call δD the change in mirror
separation required to bring the mth order ring of wave-
length λ1 + δλ into coincidence with the fiducial mark.
According to equation 7

δD =
mδλ

2cosθ
(8)

Call ∆D the change in mirror separation required to
bring the m + 1 ring of wavelength λ1 into coincidence
with the same fiducial mark. In this case

∆D =
λ1
2cosθ

(9)

Combining equation 7, equation 8, and equation 9 and
setting cos θ = 1 (an accurate approximation since θ <<
1) we obtain

δλ = λ
λ

2D

δD

∆D
(10)

which is an expression for the desired wavelength dif-
ference in terms of the known wavelength λ, the mirror
separation D and the ratio of the changes in separation
of the mirrors. In practice the changes can be measured
as differences in the digital readings of the bias meter on
the Burleigh controller. Since the latter are proportional
to the actual changes in mirror separation, the ratio of
the meter differences is equal to the ratio of the actual
separation changes.
From equation 10 one can see that if δλ = λ λ

2D = λ
m
,

then δD = ∆D , i.e., the mirror movement required to
shift the ring pattern from the mth order ring of wave-
length λ to the mth order ring of wavelength λ + δλ
would be the same as the movement required to shift
the mth order ring of λ to the mth+1 order of the same
wavelength. The quantity λ

m
is called the free spectral

range of the instrument for a particular separation of the
mirrors. It represents the difference between two wave-
lengths such that the mth interference maximum of the
larger wavelength coincides with the (m + 1) maximum
of the smaller wavelength, i.e. (m+1)λ = m(λ+ λ

m
). To

avoid confusion as to which interference order a given fea-
ture of a complex line may belong, it is generally wise to
adopt a mirror separation that gives a free spectral range
larger than the wavelength difference to be measured.
The effectiveness of a Fabry-Perot interferometer for

high-resolution spectroscopy depends critically on the re-
flectivity of its mirrors - the higher the reflectivity the

sharper, or narrower, the lines. To quantify this relation
one must consider the combined effects of the reflection
coefficient and additional path length on the contribution
that each transmitted beam makes to the total complex
amplitude of the optical disturbance at P. If we call r the
amplitude reflection coefficient, then the factor by which
the amplitude of the ray emerging at E is reduced rela-
tive to the direct ray is r2. In addition the ray is retarded
in phase by the angle

α =
2πD

λ
cosθ (11)

Similarly, the nth multiply reflected ray will arrive at
P attenuated by the factor (r2)n and retarded in phase
by nα. If the amplitude at P of the wave arriving by the
direct path is Aej(ωt+φ), then the total amplitude at P is
the complex quantity

Atot = Aej(ωt+φ)

(

1+r2e−jα+

[

r2e−jα
]2

+

[

r2e−jα
]3

+. . .

)

(12)
This is a geometric series of which the sum is

Atot =
Aej(ωt±φ)

1− r2e−jα
(13)

The intensity at P is proportional to the square of the
magnitude of Atot which we obtain by multiplying Atot

by its complex conjugate. The ratio of this intensity to
the intensity at the center where θ = 0 is then

I

I0
=

(1−R)2

1− 2Rcosα+R2
(14)

where we have replaced r2 by R, the intensity reflec-
tivity of the surfaces. At any fixed wavelength and plate
separation, α depends only on the position of P in the
focal plane of the telescope lens and not on the position
of S. Thus the ratio of the sum of the contributions to
the intensity at P from all the incoherent atomic sources
in the lamp to the sum at the center of the focused ring
pattern is given by equation 14 which is, therefore, the
general formula for the intensity in the focal plane.
The maxima of the intensity occur where α

2π =
2D
λ
cosθ = m, where m is an integer called the order of

the interference. Changes in the value of α
2π are related

to changes in D,λ, and θ by the differential relation

δ
( α

2π

)

=
2cosθ

λ
δD − 2Dcosθ

λ2
δλ− 2Dsinθ

λ
δθ (15)

At the center (bull’s eye) of the interference ring pat-
tern, where cosθ = 1, the order of interference can be



changed fromm tom+1 either by increasingD by ∆D =
λ/2 or by decreasing λ by ∆λ = λ λ

2D = λ
m
. As mentioned

previously, quantity ∆λ is called the free spectral range.
It is the maximum width of the Zeeman pattern of a
given order of interference that can be displayed without
overlapping the patterns of the adjacent orders. To ex-
press the free spectral range in terms of wave numbers
(reciprocal wavelength) one uses the relation

| ∆(1
λ
) |≈ 1

λ2
∆λ =

1

2D
(16)

In a typical setup D ≈ 0.25cm, λ ≈ 5000 Å, m ≈
10,000, and the free spectral range in wave numbers is
1
2D = 2.0 cm−1.
To see what equation 14 tells about how the inten-

sity depends on very small displacements of the plates
and on very small changes of the wavelength, we de-
fine two dimensionless parameters f and g such that
D = (1 + f)m0λ0/2 and λ = (1 + g)λ0. The parameter f
measures the change in separation of the plates in units
of λ0

2 and is of the order of
1
m0
. We will be interested in

the effects of very small changes in wavelength for which
typical values of g are also of the order 1

m0
so that 1

1+g

can be approximated to high accuracy by (1−g). In prac-
tical setups θ < 1◦ so that we can replace cosθ by the

approximation 1 − θ2

2 . Substituting the expressions for
D and λ with these approximations in equation 14 and
dropping the terms of negligible smallness, we obtain

I

I0
=

(1−R)2

1− 2Rcos
[

πm0(1 + f)(1− g)(1− θ2

2 )
]

+R2

(17)
Figure 7 is a plot of the intensity versus angle in the in-

terferograms formed by a Fabry-Perot with m0 = 24, 818
and R = 0.8, illuminated by light with two wavelengths,
λ1 = 5461Å and λ2 = λ1(1 + 5x10

−6). The four sets of
curves are for four different values of the plate separation.
The dashed lines are the separate intensity curves for the
two wavelengths, and the solid line is their sum. Fig-
ure 8 shows the summed intensities versus angle for the
same Fabry-Perot and wavelengths, but for four different
reflectivities.
Figure 9 shows plots of the intensity at the center of

the interferogram θ = 0 as functions of the plate sepa-
ration for four reflectivities. This is the form of the in-
terferogram/spectrogram you will record in the present
experiment.
The intensity function has maxima in the focal plane

on concentric circles to which are focused rays leaving the
Fabry-Perot at angles θ such that 2D

λ
cosθ = m, where m

is an integer. Since we are dealing with small angles we

again use the approximation cosθ ≈ 1− θ2

2 . If
2D
λ
= m0,

themth maximum will lie at the angles θm =
√

2(m0−m)
m0

.
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FIG. 7: Plot of intensity against angle in theoretical interfero-
grams of two wavelengths differing in wavelength by 5 parts in
a million produced by a Fabry-Perot with 2D0

λ0
= 24,818, and

reflectivity R=0.8. The four plots are for four successively
larger plate separations, the first differing from the fourth by
3

8
.
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FIG. 8: Plot of intensity against angle in interferograms of
light containing two wavelengths, for various reflectivities.

We now ask “By how much must the phase factor
α = 4πD

λ
cosθ change to decrease the intensity from a

maximum value to half maximum?”. Remembering that
at a maximum the phase factor is an integral multiple of
2π, and using the identity cos(2πn + δα) = cos(δα), we
have from equation 14 the relation

(1−R)2

1− 2Rcos(δα) +R2
=
1

2
(18)

from which we obtain

cos(δα) = 1− (1−R)2

2R
(19)

or, to a good approximation

δα =
1−R√

R
(20)

If we measure the intensity at θ = 0 as a function of
the separation, then the change in D to the half intensity
point is
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FIG. 9: Plot of intensity at the center of the interferogram
(the bull’s eye) against the separation of the Fabry-Perot mir-
rors for various reflectivities.

δD =
λ

4π

1−R√
R

(21)

The change in D between successive maxima is λ
2 .

Thus the resolution of the interferometer, defined as the
ratio of these quantities and called the finesse, is

finesse =
2π
√
R

1−R
(22)

EQUIPMENT LIST: ZEEMAN EFFECT

Model Description Source

Telescope f =43.5 cm Home-built
6cm lens f =33.0 cm thorlabs.com

MG 05-LHR-911 HeNe Laser mellesgriot.com

Burleigh FP Interferometer burleigh.com

Burleigh RC-44 Ramp Generator burleigh.com

Ortec 5564 Power Supply 0-3kV ortec-online.com

37695 Power Supply Industrial Coils
37695 Electromagnet Industrial Coils

PMT Home-built
Oriel 25010 Linear Polarizer oriel.com

Thorlabs Optics thorlabs.com

Walker MG-4D Gaussmeter walkerscientific.com

Walker HP145R Hall Effect Probe walkerscientific.com

RFL 16580 Zero-Gauss Chamber maginst.com

Oriel 54361 Filter 5400Å oriel.com

Oriel 56561 Filter 5461Å oriel.com

Oriel 56571 Filter 5770Å oriel.com


