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ABSTRACT

An experiment has been performed that demonstrates the speed limit c and the phenomenon of

time dilation predicted by special relativity. This was done by first measuring the mean velocity

(vµ) of cosmic ray muons and their lifetime at rest (τµ), and showing that the classical prediction of

the range (vµτµ) is much smaller than the observed muon ranges. The speed of cosmic-ray muons

was determined by measuring the difference in the median time of flights between plastic scintillator

paddles. Additionally, the mean lifetime of cosmic-ray muons at rest was determined by measuring

the interval between start-stop electrical signals generated as these particles were brought to rest in

a block of plastic scintillator. The experimentally determined values of the mean life, 2.19±0.02 µs,

and their mean speed, 0.92±0.01 c, are in good agreement with the accepted values.
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I. INTRODUCTION

This paper is a full report on the junior lab experi-
ment: Speed and Decay of Cosmic Ray Muons. In this
experiment, we study two of the consequences of special
relativity: 1) the existence of a speed limit on particles
by a measurement of the speed of cosmic-ray muons, and
2) time dilation by comparing the mean life of muons at
rest with their inferred lifetime in motion (vµ ≈ 0.994c).

This report has been partitioned into sections accord-
ingly, each discussing a specific aspect of the experiment.
When appropriate, sections have been divided to discuss
the two distinct experiments involved, the speed distri-
bution of cosmic-ray muons and the decay of muons at
rest. Section II and section III discuss the theoretical
background relevant to the experiment. Section II de-
rives the relativistic kinematic effects of time dilation and
Lorentz contraction from the Lorentz transformations.
Additionally, the relativistic expression for the velocity is
compared with that predicted by Newtonian mechanics.
Section III discusses the phenomenon of muon produc-
tion by cosmic rays and those aspects of the mechanics of
muon decay relevant to this experiment. The reader un-
familiar with special relativity should refer to Appendix
A where the basic terms are introduced and the Lorentz
transformations are derived from the postulates of rel-
ativity. The experimental apparatus and details of its
operation are discussed in section IV. Section V presents
our experimental results and a discussion of the sources
of systematic error.

II. RELATIVISTIC KINEMATICS

A. The Universal Speed Limit

The speed limit c can be deduced from Lorentz trans-
formations as well as from Einstein’s equation for the
total energy of a body:

E = γm0c
2 (1)

where γ = (1−v2/c2)−1/2 is the Lorentz factor and m0 is
the rest mass. Thus, the total energy E of a body is then
simply the sum of its rest mass energy and it’s kinetic
energy (K).

E = m0c
2 +K (2)

Using the the relativistic expression for momentum (p =
γm0v) the total energy can be written as,

E2 = (m0c
2)2 + (cp)2 (3)

(The reader is referred to [5] for a formal derivation). The
velocity of particle can be derived using the expression
for the relativistic momentum and Eq.(3).

v =
c

√

1 +
(

m0c
p

)2
(4)

The velocity vs. the kinetic energy of a muon
(m0c

2=105.7 MeV) has been plotted below (Fig. 1). No-
tice that while the classical velocity approaches infinity
as the kinetic energy approaches infinity, the relativistic
velocity Eq.(4) is asymptotic to c in the limit of infinite
kinetic energy.
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FIG. 1. There is no speed limit in Newtonian mechanics
(dot-dash line) while c (dashed line) is the ultimate speed
limit predicted by special relativity (solid line) (β = v/c).

In this experiment the cosmic-ray muons have ki-
netic energies on the order of 1 GeV. Our results on
the measurement of the speed distribution of cosmic-ray
muons, (section V), confirmed that the classically pre-
dicted speed of 4.3 c was invalid at these high energies
[1].

B. Time Dilation

One of the consequences of special relativity is that
moving clocks run slower. When dealing with relativ-
ity one needs to be careful about the words used to de-
scribe physical phenomena. Suppose a particle physicist
in S(lab frame), sees the birth (Event 1) and death (Event
2) of a muon moving at 0.994 c. The physicist measures
the time interval (t2− t1) between these events using two
different stationary clocks positioned accordingly at x1

and x2. Let’s imagine that this scientist possesses ex-
tremely advanced technology and uses a relativistically
fast craft (capable of matching the speed of the muon)
to carry a single clock on board (positioned at x′0) to
measure the time interval (t′2 − t

′
1) corresponding to the
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FIG. 2. Moving clocks run slow. The particle physicist
in frame S sees a single moving clock (Clock A′ fixed at x′0
in frame S′). He/she has positioned two different clocks at
x1 and x2 to measure the time (t2 − t1) it takes the muon to
travel this distance in frame S. When the clocks are compared
t2 − t1 > t′2 − t′1.

lifetime of the muon in S′(rest frame). When the par-
ticle physicist compares the time interval measured by
the single moving clock with the time difference recorded
on the two stationary clocks, the former is consistently
shorter (Refer to Fig. 2). How can this be explained in
the context of special relativity?

Consider, the Lorentz transformation describing these
events:

t1 = γ
(

t′1 +
vx0

c2

)

(Event 1) (5)

t2 = γ
(

t′2 +
vx0

c2

)

(Event 2) (6)

(7)

Subtracting these two equations:

t2 − t1 = γ(t′2 − t
′
1)

Replacing the time variables with the conventional sym-
bols used, we arrive at the equations for time dilation:

τ = γτ0 (8)

τ0 is known as the rest time.
In conclusion, a consequence of special relativity is that

the lifetime of the muon is shortest as measured in the
rest frame of the particle and always longer when mea-
sured from all other frames.

In 1941, M.I.T. physicists B. Rossi and D. B. Hall
studied this time dilation phenomenon using cosmic-ray
muons [2]. The M.I.T. Education Development Center
also made a filmed version of their experiment in 1963
[3]. Some of their data appears in the table below.

TABLE I. Muon Decay At Rest

Elapsed time (µs) No. of muons surviving

0 568
1 373
2 229
3 145
4 99
5 62
6 36
7 17
8 6

In the remake of this classic experiment, a count rate
of 563 muons/hour was recorded at an altitude of 2000
m above sea level. Typical cosmic-ray muons traveling
at a speed ≈ c would reach sea level in 6.5 µs. From
this data, one would expect to find 25 counts/hr at sea
level. However, when the muon count rate was measured
at sea level it turned out to be 400 counts/hour! The
data would imply that this result would be correct if the
muons had been traveling for 0.7 µs except muons can
only travel 210 m in this period of time. The answer
must be the relativistic dilation of time, i.e. the lifetime
τ of a cosmic-ray muon in motion (as measured in the lab
frame) is a factor of about 9 larger than it’s rest lifetime
τ0.

(τ0
τ

)2

= 1−
v2

c2

1

81
= 1−

v2

c2

Solving for v,

v ≈ 0.994c

C. Lorentz Contraction

The first postulate of relativity states that there is no
preferred inertial frame in physics. In the previous sec-
tion, the Lorentz transformations were used to explain
why the lifetime of the muon in motion as measured in
the lab frame was longer than it’s rest lifetime. However,
the previous situation was examined from the frame of
reference of the particle physicist. It seems like the first
postulate has been discarded.

We now proceed to examine the same situation from
the point of view of the muon as the observer in S (lab
frame). In S, the planet Earth heads toward the muon
at a relative velocity of 0.994c. The muon measures the
separation (l) between itself (x1) and Earth (x2) at the
same time t0,

x′1 = γ(x1 − vt0) (9)

x′2 = γ(x2 − vt0) (10)
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Proceeding in a similar fashion as in the previous section,

x′2 − x
′
1 = γ(x2 − x1)

Replacing our position variables with the conventional
symbols used (l0 = x′2 − x

′
1 and l = x2 − x1, we arrive at

the equation for the Lorentz contraction:

l =
l0
γ

(11)

l0 is often called the rest length.
Thus, another consequence of special relativity is that

lengths are longest as measured in the rest frame of the
“rod”. Conversely “rods” appear to contract when they
are in motion.

The principle of relativity should now be evident as it
pertains to the phenomena at hand. While the particle
physicist measured the dilated lifetime of the muon in
motion as it traversed the rest-frame distance between
the Earth and itself, the reciprocal event occurred in the
lab frame of the muon. The Earth traveled a contracted
distance during the muons rest lifetime.

III. COSMIC RAY MUON PRODUCTION AND

DECAY

A. Muon Production by Cosmic Rays

Cosmic rays consist of positive ions, mainly protons
with energies in the range of 1012 to 1018 eV. The
isotropic nature of these rays implies that they are not
solar in origin. Fermi’s hypothesis to explain the origin
of these rays began with the assumption that interstellar
space is filled with ionized gases which tend to stream
creating locally inhomogenous magnetic fields of weak
strengths. A proton which collides head-on with such a
region of inhomogeneity can gain energy by a ratio (v/c).
Upon a sufficient number of such collisions, the magnetic
fields will excite the proton to energies normally seen in
cosmic rays. These primary cosmic ray particles interact
with atmospheric nuclei prouducing showers of particles
which can be divided into hard and soft components. The
distinction is based on their ability to penetrate matter
at the surface of the earth. The muon was first proposed
by Yukawa as a quantum of the field acting as an inter-
mediary of the nucear force, similar to the role played by
the photon in electromagnetic interactions. Taking into
account the extremely small range of the nuclear force,
Yukawa calculated the mass of this particle to be around
200me. In 1937, Neddermayer and Anderson discovered
a particle with mass intermediate between that of a pro-
ton and an electron, while investigating the constituents
of the hard component of cosmic rays. More accurate
measurements of the mass of this particle put the value
at 206.76me.

The hard component consists of muons while the soft
component consists of photons, electrons and positrons.

FIG. 3. The intensities of the various components of cosmic
rays (from Satio Hayakawa, Cosmic Ray Physics)

The soft component is created due to strong interactions
between a primary cosmic-ray particle and a nucleus.
This reaction produces neutral pions and charged pions.
The neutral pions then decay into photons which results
in a particle shower due to pair production, Compton
scattering and bremsstrahlung.

p+14 N → π0 → γ → e+ + e−

Charged pions decay into muons and neutrinos producing
the hard component.

p+16 O → n+ π+

π+ → µ+ + νµ

π− → µ− + ν̄µ

This process is the most common source of atmospheric
muons although muons can also be produced by other
decays like,

Σ± → µ± + νµ + n

Λ→ µ− + ν̄µ + p

K → µ+ νµ

B. Muon decay

Muons are unstable particles with a mean life of
2.21 ± 0.01 µs. Free muons decay into electrons and
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neutral particles. The electron spectrum is a continuum
ranging from 9 MeV to around 50 MeV. This implies that
at least two other particles are required to conserve en-
ergy and momentum. The actual reaction is found to be

µ± → e± + νµ + ν̄e

Of the two neutrinos, one is of the kind found in beta
decay and the other is seen in pion decay. There are two
choices of the neutrino pair. For instance, the neutrino
pair for the decay of µ− could be an electron antineu-
trino and a muon neutrino, or a muon antineutrino and
an electron neutrino. The choice of an electron antineu-
trino and a muon neutrino is preferred since it associates
the electron with the electron antineutrino as in beta de-
cay. This decay reaction is of significance as none of the
interacting particles are subject to strong interactions.

An important feature of this decay is the non-
conservation of parity. Defining the Parity operator as,

P̂Ψ(x, y, z) = Ψ(−x,−y,−z) (12)

So the parity operator can be thought of as a inversion
about the x-y plane, followed by a mirror reflection. We
recognise two special cases,

P̂Ψ = +Ψ(even parity)

P̂Ψ = −Ψ(odd parity) (13)

The law of conservation of parity states that an iso-
lated system with a well-defined parity will continue to
have the same parity. This implies that any process
that occurs in nature can also occur in a “mirror-image”
world. The strong and electromagnetic interactions con-
serve parity.

Based on a suggestion by Lee and Yang, Garwin et
al. showed that the emission of the positron and the
neutrinos from a muon polarized with its spin aniparallel
to the direction on motion, violates the conservation of
parity since the positrons tend to travel parallel to the
direction of the spin.

IV. EXPERIMENTS

A. Speed distribution of Cosmic-ray muons

A “direct” time-of-flight measurement of the speed of
cosmic-ray muons was performed by measuring the ar-
rival time of electrical pulses using two different scin-
tillation detector separations (top 35.7±2 cm and bottom
338±2 cm). Measurements with two different separations
were necessary because the delay time arising from the
electronics cannot be ascertained by measurements with
a single configuration. This point is discussed in further
detail in section V. The top scintillation paddle is fixed
near the ceiling of the room and the middle paddle is

scintillation paddle (middle)

CFD1

CFD2

scintillation paddle (top)

Delay (t)

start pulse

stop pulse

MCA TAC

ADC

HV1

PM1

PM2

HV2

t = 70 ns

FIG. 4. Experimental arrangement for the speed distribu-
tion of cosmic ray muons

mounted on a platform whose height can be manually
adjusted. NOTE: A bottom paddle was part of the ex-
perimental setup but was never used to collect data; it
has not been included in Fig. 4. The parallel scintillation
paddles (40 cm by 60 cm) have been rotated by 90◦ with
respect to each other about their vertical axis.

Cosmic-ray muons traversing a paddle will generate
scintillations which are collected by an optical funnel
which leads into the photomultiplier (PM). The PMs then
generate electrical pulses proportional to the intensity of
optical photons which reach it. The top detector gener-
ates a start pulse which initiates the time-to-amplitude
converter (TAC). The middle detector generates a stop
pulse which terminates the TAC, after suitable delay with
additional coaxial cable. The reason the stop pulse is de-
layed is subtle. Consider that the cosmic-ray muons tra-
verse the scintillation paddles from all directions. With
a small enough paddle separation it is possible that the
travel time between the paddles is on the order of scin-
tillation diffusing to the PM. Thus, without delaying the
stop pulse, it is possible to have the stop pulse reach
the TAC before the start pulse. The TAC generates a
positive output pulse proportional to the time interval
between the start and stop pulses which is recorded by
a multichannel analyzer (MCA). A time calibrator (TC)
capable of generating a series of precisely separated neg-
ative pulses was used to determine the time interval cor-
responding to a given channel interval (∆chi = α∆ti,
where α is a proportionality constant). Refer to Fig. 4

B. Decay of Muons at Rest

To obtain a measure of time dilation, the mean life of
muons at rest are compared with the inferred limit of the
lifetime of muons in motion using the measurements of
muon velocities and the known variation of muon flux
with altitude. A plastic scintillator is used to bring the
muons to rest. A muon arrival and subsequent decay is
detected by a coincidence requirement. From Bethe’s for-
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FIG. 5. Apparatus for detection of muon decay

mula (eq: C11), it can be seen that a muon loses around
50 MeV before it comes to rest having travelled a dis-
tance of around 10 cm. The electrons which are pro-
duced by the decay have energies around 20 MeV. Two
photomultiplier tubes are used to eliminate the flood of
gamma rays produced by these two events. An optimal
discriminator level is required to avoid a large count of
accidental coincidences between random pulses when the
discriminator level is too low, and a low rate of decay
events when the discriminator level is too high. A dis-
criminator level of 0.8/sec was chosen. The schematic
of the apparatus is shown. (Fig. 5) The pulses from
the photomultiplier tubes are first fed into a pair of con-
stant fraction discriminators (CFD). The outputs of the
CFDs form inputs to the coincidence circuit. The de-
layed START pulse and the STOP pulse are then fed
into the time-to-amplitude converter (TAC) and finally
read on the MCA. The START pulse must be delayed
to ensure that the STOP input is no longer activated
when the pulse gets to the START input. Else, the TAC
would never accept this input. This delay has the effect
of shifting the actual time corresponding to each channel
in the multi-channel analyzer (MCA) to the left by an
appropriate interval. This does not affect the shape of
the spectrum. A delay cable of length 10 m. was chosen
which corresponds to a delay of around 3 ns.

C. Details of the Apparatus

1. Scintillation detectors

Organic scintillation counters were used to detect the
muon decay events. Organic materials are better suited
than inorganic crystals for this particular experiment
both because of their smaller decay times and the large
volumes involved. The scintillation process is a molec-
ular phenomena in contrast to inorganic crystals. The
intermolecular bonding primarily arises due to Van Der
Waal’s forces and the luminescence arises from the de-
excitation of a molecule from its first excited electronic
state. The molecule also shows various closely spaced vi-
brational levels in addition to the electronic levels. So,

the absorption spectrum for an organic scintillator ma-
terial shows several absorption peaks corresponding to
transitions from various vibrational levels to the first ex-
cited state. The luminescence emission spectrum shows
the same characteristics except at longer wavelengths.
A typical luminescence emission spectrum for an organic
detector is shown. (The material was excited by ultravi-
oleet light in this instance). Organic crystals also have
high efficiencies (photons emitted per photons absorbed)
of the order of 0.9 to 1.0(anthracene).

FIG. 6. Luminesence emission spectrum for a organic crys-
tal (stilbene)

2. Coincidence circuit

A vital part of the circuitry is the coincidence circuit.
This is mainly used for time of flight measurements and
low-background counting. The principle here is that the
pulse from one detector is used to trigger the gate, allow-
ing the pulse from another detector to pass through, as
long as the latter is within a set time. Bruno Rossi im-
plemented a coincidence circuit for the first time, when
he performed this experiment in 1943. He also invented
the time-to-amplitude converter (TAC) used in this ex-
periment. A simple implementation of such a coincidence
circuit is shown.
The background rate limited by this circuit can be ob-
tained as follows:
If the rates at the two detectors are n1 and n2 respec-
tively, then, the gate will be “open” for a fraction n1∆τ
of the total analyzing time, where ∆τ is the gate time.
Then, the observed accidental rate will be n1n2∆τ . The
gate time should be set to an appropriate value such that
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FIG. 7. A simple implementation of a coincidence circuit

the signal to noise ratio is low (< 0.01) without decreas-
ing the count rate very much. ie:

R0

n1n2∆τ
À 1 (14)

where R0 is the actual rate of events.

V. RESULTS AND DISCUSSION

A. Speed distribution of cosmic-ray muons
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FIG. 8. Arrival time profile of electrical pulses in two differ-
ent scintillation detector configurations. Detector separation
(Top) 35.7 cm (Bottom) 338.0 cm

The data collected by the MCA integrated over several
25-channel intervals is shown in Fig. 8. Take note of the
increase in the median arrival time Fig. 8(bottom) of the
electrical pulses corresponding to the increased separa-
tion of the detectors. The peak has a finite width because

of the momentum spectrum of cosmic-ray muons at sea
level (refer to Appendix B) and because of the different
path lengths traversed across the scintillation paddles by
the muons.

The mean velocity 〈v〉 of the the cosmic-ray muons was
extrapolated from the arrival time of the electrical pulses
as follows. Each data point on the MCA (chi = αti)
corresponds to the arrival time of the electrical pulses
and contains the following information

ti = t0 +
di
vi

+ δti (15)

where t0 is a delay-time constant for the apparatus (HV,
TAC, etc) and di is the slant distance traveled between
the scintillation detectors by the ith muon at the veloc-
ity vi. The final term δti is the systematic error inherent
to the experimental apparatus. The largest contribution
to the systematic errors is the variations in scintillation
light travel time from the point of origin to the PM. In
the analysis that follows, we assume that the TAC and
MCA make negligible contributions to the systematic er-
ror. Thus we continue working with the tis instead of
chis. The quantity of interest is the difference of the
mean value of the arrival time of the pulses in the top
〈tt〉 and bottom 〈tb〉 configurations.

〈tt〉 = t0 +

〈

dt
vt

〉

+ 〈δtt〉 (16)

〈tb〉 = t0 +

〈

db
vb

〉

+ 〈δtb〉 (17)

Subtracting these two equations,

〈tt〉 − 〈tb〉 =
〈d〉

〈v〉

Here we have made the assumption that 1) 〈d/v〉 =
〈d〉/〈v〉 and 2)〈δtt〉−〈δtb〉 = 0. Thus, the equation below
expresses only the random error in 〈v〉

〈v〉 =
〈d〉

〈tt〉 − 〈tb〉
(18)

The mean slant distances (〈dt〉 and 〈db〉) This calculation
is discussed in detail in the following subsection.

The mean velocity of the cosmic-ray muons was de-
termined to be 0.92±0.01 c which is in good agreement
with the accepted value of 0.98 c. Refer to Appendix B
for a calculation of the accepted value from the differ-
ential momentum spectrum of cosmic-ray muons at sea
level.

B. Calculation of the Mean Slant Distance

The mean slant distances (〈dt〉 and 〈db〉) were calcu-
lated by integrating over all possible paths traversible by
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the muons between the scintillations paddles with two
different separations (dt = 35.7 cm and db = 338 cm).

The integral below was evaluated using Mathematica:

〈dt,b〉 =
1

N

30
∫

−30

dx

20
∫

−20

dy

20
∫

−20

dx′
30
∫

−30

dy′R cos2 φ (19)

NOTE: The limits of integration reflect the 90◦ orienta-
tion (about the z-axis) of the top paddle with respect to
the middle paddle. R is the distance between a point on
the top scintillation paddle (x′, y′, z′ = dt,b) and a point
on the middle scintillation paddle (x, y, z = 0),

R =
√

(x− x′)2 + (y − y′)2 + d2
t,b

the integral has been weighted with cos2 φ due to empiri-
cal fits of the intensity of muons at sea level as a function
of zenith angle (φ) [4]

cos2 φ =
d2
t,b

(x− x′)2 + (y − y′)2 + d2
t,b

and N is a normalization constant equal to:

N =

30
∫

−30

dx

20
∫

−20

dy

20
∫

−20

dx′
30
∫

−30

dy′cos2φ

The mean slant distances were determined to be 〈dt〉 =
43.7 cm and 〈db〉 = 339.3 cm.

C. Decay of Muons at Rest

The exponential decay curve that was seen on the
MCA is shown. (Fig. 9) The decay curve was fit us-
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FIG. 9. Mean Life of muons at rest

ing the model

η(t) = aet/τm + b (20)

where τm is the mean lifetime of free muons, a and b
are parameters which depend on the total counts per
channel and the background counts per channel respec-
tively. A curvefit obtained by least squares following the
Levenberg-Marquardt algorithm gave the following fit

η(t) = 870.5e0.4554t (21)

with a χ2 of 30 which is much smaller than the total num-
ber of counts (4570).This gives the value for the mean
life to be 2.19 ± 0.02 µs which is well correlated with
the established value of 2.21± 0.01 µs. The background
counts are negligible because of (i) the short duration
of the experiment (≈ 12hr) and (ii) the very low value
of the discriminator rate. The theoretical value of the
background counts per channel ρb can be calculated as,

ρb ≈ ρ2
d(∆τ)T (22)

≈ (0.8)2(0.64× 10−6)(12× 3600)

≈ 0.02 counts/ch

where ρd is the discriminator level, ∆τ is the width of the
channel and T is the total analyzing time. This value is
in correlation with the data where the decay curve is seen
to converge asymptotically to zero.
The measured value is expected to be slightly smaller be-
cause of the fact that µ− particles comprise about 45 % of
the muon flux. The µ− particles have a reduced mean life
compared to µ+ particles because of the finite probabil-
ity with which a µ− particle can be captured into atomic
orbitals and subsequently interact with nuclei. Accurate
measurements have put the value of the ratio of the pos-

itive muon to negative muon flux,
j
µ+

j
µ−

at 1.251 ± 0.003,

and the lifetime of a negative muon in at atomic orbital
at around 1.5µs.

There are other factors which contribute to an increase
in the background rate such as

1. The muon flux peaks in intensity around 1 GeV.
This means that most of the muons trigger the
START pulse but pass through the scintillator
without coming to rest.

2. The decay electrons may not have enough energy
to trigger the discriminator. They may also escape
from the scintillator before they deposit enough en-
ergy to trigger the discriminator.

These factors would not introduce a systematic error as
they do not affect the shape of the spectrum. More so in
this case where the background rate is negligible.
Exact time-base calibration and better values of the an-
alyzing rate to discriminator rate ratio could yield better
results.
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APPENDIX A: DERIVATION OF THE LORENTZ

TRANSFORMATIONS

It was Albert Einstein’s concern that Maxwell’s equa-
tions were not invariant under the Galilean transforma-
tions that lead him to formulate The Special Theory of
Relativity. The correct inertial frame transformations,
those of H. A. Lorentz, can be deduced from the two pos-
tulates of relativity: 1) the laws of physics are the same
in all inertial systems. 2) The speed of light in free space
has the same value c in all inertial systems.

In general, a group of inertial frame transformation
equations connect an event in one inertial frame S char-
acterized by a set of space-time coordinates (x, y, z, t) to
the same event in another inertial frame S ′ described
by (x′, y′, z′, t′) . To simplify the algebra, we arbitrar-
ily chose the relative velocity of S to S ′ to be along the
common x-x′ axis. Our goal is to derive a functional
relationship of the form x′=x′(x, y, z, t), y′=y′(y, x, z, t),
z′=z′(x, y, z, t) and t′=t′(x, y, z, t). First, we argue that
the uniformity of space-time requires that these equa-
tions have certain symmetries. The transformation equa-
tions should have a linear dependence on the variables,
(x, y, z, t). In their most general form, the transformation
equations are [5]:

x′ = α11x+ α12y + α13z + α14t (A1a)

y′ = α21x+ α22y + α23z + α24t (A1b)

z′ = α31x+ α32y + α33z + α34t (A1c)

t′ = α41x+ α42y + α43z + α44t (A1d)

The following arguments should convince the reader
that if these equations were anything but linear then we
would violate the first postulate of relativity and the uni-
formity of space-time. Consider the following gedanken
experiment in which the endpoints of a rod of unit length1

in S have coordinates (1, 0, 0, t) and (2, 0, 0, t). Fur-
thermore, suppose that the equations above now have
a quadratic dependence, i.e. replace the variables in
Eq.(A1a)-(A1d) as follows x → x2, y → y2, z → z2, t →
t2. The length in S′, x′1−x

′
0 = α11(x

2
1−x

2
0). In this case,

the length in S′ is 3α11. Instead, suppose the endpoints
of the rod are located at (2, 0, 0, t) and (3, 0, 0, t). Now,

1The measurement of a length is the difference in the posi-
tion between two events, in this case both endpoints of the
rod measured simultaneously in S.

the length in S′ is 5α11. The rod’s length is a function of
it’s position in space! Thus, if our inertial frame trans-
formation equations are nonlinear the first postulate of
special relativity would be violated.2

Because the relative velocity of S ′ with respect S is
along the common x′-x, there is nothing to uniquely dis-
tinguish the other axes. In order to preserve the isotropic
nature of space-time, we conclude that y′ = y and z′ = z.
(I refer the reader to [6] for a more rigorous proof). Addi-
tionally, by this same symmetry, t′ must be independent
of y and z. To reiterate, the following coefficients have
been determined: α21 = α23 = α24 = α31 = α32 =
α34 = 0. Now consider a particle at rest at the origin of
S′, (0, 0, 0, t′). In frame S, the particle must move along
the x-axis with speed v, (vt, 0, 0, t). Using Eq. (A1a):

0 = α11vt+ α12y + α13z + α14t

0 = (α11v + α14)t+ α12y + α13z

Equating like coefficients:

α14 = −α11v

α12 = α13 = 0

Thus far, our original equations Eq.(A1a-A1d) have
simplified to:

x′ = α11(x− vt) (A2a)

y′ = y (A2b)

z′ = z (A2c)

t′ = α41x+ α44t (A2d)

Another gedanken experiment is needed to arrive at the
two missing coefficients. A light beam is emitted along
the positive x-x′ axis. By the second postulate, the light
travels at the same velocity in both frames:

x = ct

x′ = ct′

Substituting these expressions into Eq.(A1a) and it’s in-
verse transformation3:

ct′ = α11(c− v)t

ct = α11(c+ v)t′

Eliminating t and t′ between these equations:

c2 = α2
11(c

2 − v2)

Solving for α11 and letting γ = α11 so to stay with
convention:

2Arguments similar to those used for position can also be
used to show that a nonlinear time dependence would violate
the uniformity of space-time.

3I have made use of an inverse transformation; Eq.(A2a)
with the following substitution: x′ → x, y′ → y, z′ →, t′ → t,
and v → −v
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γ =
1

√

1− v2

c2

(A3)

Using Eq.(A2a) and it’s inverse transformation:

x′ = γ(x− vt) (A4a)

x = γ(x′ + vt′) (A4b)

It’s a simple matter to derive the time transformation
Eq.(A2d) using Eq.(A4a-A4b) and elementary algebraic
manipulations:

t′ = γ
(

t−
vx

c2

)

In conclusion, starting with the most general form of
the inertial frame transformations and then using the
postulates of relativity, we have derived the Lorentz

Transformations:

x′ = γ(x− vt) (A5a)

y′ = y (A5b)

z′ = z (A5c)

t′ = γ
(

t−
vx

c2

)

(A5d)

Furthermore, to abide by convention, let S be the lab
frame of the observer and S ′ be the rest frame of the
event.

APPENDIX B: MOMENTUM SPECTRUM OF

COSMIC-RAY MUONS

FIG. 10. Intensity of cosmic-ray muons at (A) 1000 m, (B)
sea level and (C) sea level at 68◦.

The accepted value of the mean velocity 〈v〉 of cosmic-
ray muons at seal level was calculated by numerical inte-
gration of the quantity:

FIG. 11. Integral over a Gaussian pillbox

〈v〉 =

∞
∫

0

vI(p)dp

∞
∫

0

I(p)dp

(B1)

where v is given by Eq.(4) and I(p) is the differential
momentum spectrum of muons at sea level.

APPENDIX C: ENERGY LOSS OF CHARGED

PARTICLES IN A MEDIUM

Charged particles travelling through a medium can
lose energy by ionization or excitation of the atoms in
the medium due to inelastic collisions with electrons, or
Rutherford scattering with the nuclei. The most signifi-
cant of these processes is ionization. Heavy particles like
protons, alpha particles and muons behave in a different
manner compared to light particles like electrons. Heavy
particles lose energy in a continuous manner by ioniza-
tion until their kinetic energy approaches zero. It is only
after this stage that they decay or interact with the nu-
clei. So, these particles can be associated with a definite
range which varies from medium to medium. Electrons,
on the other hand, undergo drastic accelerations due to
their high e/m ratio producing a shower of photons in
the process. To obtain an expression for the rate of en-
ergy loss of a charged particle in a medium, consider a
particle of mass of charge ze travelling through a medium
with N electrons per unit volume. Assume that the ve-
locity of the particle is so large that the electrons can be
considered to be at rest relative to the particle. In this
scenario, the momentum imparted to the electrons will
be in a direction perpendicular to the trajectory of the
charged particle. Calling this momentum ∆p⊥, we have,

∆p⊥ =

∫ ∞

−∞

eε⊥dt =

∫ ∞

−∞

eε⊥
dx

v

= ze2
∫ ∞

−∞

1

r2
cosΘ

dx

v
(C1)

The integral can be calculated using Gauss’s theorem,
Refer to Fig.11

Φ =

∫

ε(2πb)dx = 4πze (C2)
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∆p⊥ =
e

v

(

4πze

2πb

)

=
2ze2

bv
(C3)

So, the energy transferred to the electron,

δE =
(∆p⊥)

2

2m
=

2

m

(

ze2

bv

)2

(C4)

The energy loss per unit length is then

−
∂E

∂x
= 2πN

∫

b
(∆p⊥)

2

m
db (C5)

= 4πN
z2e4

mv2

∫ bmax

bmin

db

b
(C6)

= 4πN
z2e4

mv2
log

(

bmax

bmin

)

(C7)

The above expression is also called the “stopping
power” of the medium. The values for bmin and bmax

are not 0 and infinity as there are physical limits which
impose restrictions on their allowed values. The restric-
tion on bmax is imposed by the adiabatic principle of
quantum mechanics which states that a transition be-
tween two states of a system cannot be brought about
by a time dependant perturbation if the time scale of
the perturbation is comparable to the period of the sys-
tem. The time dependant perturbation in this case is
the coulombic interaction between the charged particle
and the electron, and its time scale is given by the time
for which the charged particle is in the vicinity of the
electron, ie. δt = b/v. With relativistic corrections, this
becomes

bmax ≤
v

ν̄(1− β2)1/2
(C8)

The lower limit on bmin comes from the fact that an
electron’s position cannot be localized to within a length
given by its De Broglie wavelength. Therefore,

bmin ≥

(

h̄

p

)

(1− β2)1/2 (C9)

With these values of bmin and bmax, the expression for
the rate of energy loss becomes,

−
∂E

∂x
=

4πz2e4

mv2
N

[

log

(

mv2

h̄ν̄(1− β2)

)]

(C10)

A more sophisticated analysis by Hans Bethe gives the
expression,

−
∂E

∂x
=

4πz2e4

mv2
N

[

−β2 + log

(

mv2

I(1− β2)

)]

(C11)

where I = h̄ν̄ is the ionization energy of the medium.
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