

Mešanje pri nevtralnih mezonih D

Marko Starič Institut Jožef Stefan

10. marec 2008 Ponedeljkov fizikalni kolokvij

- Uvod
- Eksperiment Belle
- Nekaj teorije
- Merske metode
- Opis štirih meritev
- Interpretacija rezultatov
- Zaključek

Zgodovina

odkritje K^0 : 1950 (Caletch) mešanje pri K^0 : 1956 (Columbia)	→ <mark>kvark</mark> c 6 let
odkritje B_d^0 : 1983 (CESR) mešanje pri B_d^0 : 1987 (Desy)	→ <mark>kvark</mark> t 4 leta
odkritje B_s^0 : 1992 (LEP) mešanje pri B_s^0 : 2006 (Fermilab)	→ ?? 14 let
odkritje D^0 : 1976 (SLAC) mešanje pri D^0 : 2007 (KEK, SLAC)	→ ?? 31 let

Eksperiment Belle

- KEK, Tsukuba, Japonska
- ♦ KEKB: asimetrični e^+e^- trkalnik pri energiji $\Upsilon(4s)$ ("B-tovarna") $e^+(3.5GeV) \rightarrow \leftarrow e^-(8GeV)$
- Kontinuiran vbrizg elektronov in pozitronov
- Luminoznost: $\mathcal{L} = 1.7 \cdot 10^{34} / cm^2 / s$
- Integrirana luminoznost: $\int \mathcal{L}dt = 775 f b^{-1}$

Mešanje mezonov _____

• Lastna stanja okusa \neq masna lastna stanja (masi m_1, m_2 , širini Γ_1, Γ_2)

$$|D^0_{1,2}\rangle = p|D^0\rangle \pm q|\bar{D^0}\rangle$$

- ♦ $p/q \neq 1 \Rightarrow$ kršitev simetrije CP
- Časovni razvoj podan z rešitvijo časovno odvisne Schrodingerjeve enačbe

$$i\frac{\partial}{\partial t} \binom{|D^0\rangle}{|\bar{D}^0\rangle} = (\hat{M} - i\frac{\hat{\Gamma}}{2}) \binom{|D^0\rangle}{|\bar{D}^0\rangle}$$

kjer sta \hat{M} in $\hat{\Gamma}$ dve hermitski matriki

Rešitev:

$$|D^{0}(t)\rangle = e^{-(\Gamma/2 + im)t} \left[\cosh(\frac{y + ix}{2}\Gamma t)|D^{0}\rangle + \frac{q}{p}\sinh(\frac{y + ix}{2}\Gamma t)|\bar{D^{0}}\rangle\right]$$

$$|\bar{D^0}(t)\rangle = e^{-(\Gamma/2 + im)t} \left[\frac{p}{q}\sinh(\frac{y + ix}{2}\Gamma t)|D^0\rangle + \cosh(\frac{y + ix}{2}\Gamma t)|\bar{D^0}\rangle\right]$$

Parametra mešanja:

$$x = \frac{\Delta m}{\Gamma}$$
 $y = \frac{\Delta \Gamma}{2\Gamma}$

Kateri kvarki prispevajo? ____

 $\begin{aligned} |D^{0}(t)\rangle &= e^{-(\Gamma/2+im)t} [\cosh(\frac{y+ix}{2}\Gamma t)|D^{0}\rangle + \frac{q}{p}\sinh(\frac{y+ix}{2}\Gamma t)|\bar{D^{0}}\rangle] \\ |\bar{D^{0}}(t)\rangle &= e^{-(\Gamma/2+im)t} [\frac{p}{q}\sinh(\frac{y+ix}{2}\Gamma t)|D^{0}\rangle + \cosh(\frac{y+ix}{2}\Gamma t)|\bar{D^{0}}\rangle] \end{aligned}$

• Ker je mešanje pri D^0 majhno ($|x|, |y| \ll 1$):

Mešanje pri D^0 ____

$$|D^{0}(t)\rangle = e^{-(\Gamma/2+im)t}[|D^{0}\rangle + \frac{p}{q}(\frac{y+ix}{2}\Gamma t)|\bar{D^{0}}\rangle]$$

• Časovna odvisnost pogostosti razpadov $D^0 \rightarrow f$:

$$\frac{dN_{D^0 \to f}}{dt} \propto |\langle f|\mathcal{H}|D^0(t)\rangle|^2 = e^{-\Gamma t} |\langle f|\mathcal{H}|D^0\rangle + \frac{q}{p} (\frac{y+ix}{2}\Gamma t)\langle f|\mathcal{H}|\overline{D}^0\rangle|^2$$

- Eksponentno pojemanje, modulirano s parametroma x in y
 - $\triangleright x$ in y lahko dobimo iz izmerjene časovne odvisnosti $\frac{dN_{D^0 \rightarrow f}}{dt}$
- Oblika porazdelitve odvisna tudi od končnega stanja
 različna končna stanja imajo različno občutljivost na x in y

 $D^0 \to K^+ e^- \nu$ (253 fb⁻¹) ____

Razpadov z napačno nabojno kombinacijo nismo opazili

 $_ D^0 \rightarrow K^+ K^-, \ \pi^+ \pi^-$ (540 fb⁻¹) $_$ Razpadi v CP stanja K^+K^- , $\pi^+\pi^-$ M. Starič et al., Phys.Rev.Lett. 98, 211803 (2007) Meritev razlike v razpadnih časih med $D^0 \rightarrow K^- \pi^+$ in $K^+ K^-, \pi^+ \pi^-$ Časovne porazdelitve so eksponentne (če se CP ohranja) ▷ parameter mešanja: $y_{CP} = \frac{\tau(K^- \pi^+)}{\tau(K^+ K^-)} - 1$ \triangleright če se CP ohranja: $y_{CP} = y = \Delta \Gamma / 2\Gamma$ Če se CP ne ohranja, pride tudi do razlike v razpadnih časih D^0 in \overline{D}^0 $\triangleright \text{ parameter kršitve CP:} \qquad A_{\Gamma} = \frac{\tau(\overline{D}^0 \to K^- K^+) - \tau(D^0 \to K^+ K^-)}{\tau(\overline{D}^0 \to K^- K^+) + \tau(D^0 \to K^+ K^-)}$ $\triangleright y_{CP} = y\cos\phi - \frac{1}{2}A_Mx\sin\phi$ (S. Bergmann et.al., PLB 486, 418 (2000)) $\triangleright A_{\Gamma} = \frac{1}{2} A_M y \cos \phi - x \sin \phi$

 $D^0 \to K^+ K^-, \ \pi^+ \pi^-$ (540 fb⁻¹) • Simultano prilagajanje $e^{-t/\tau} * R(t)$ z metodo največje zanesljivosti kvaliteta: $\chi^2/289 = 1.084$ 10⁴ Events per 61.5 fs 10⁵ (*a*) *KK* (b) $K\pi$ $(c) \pi \pi$ 10³ 10^{3} 10⁴ 10^{2} 10^{2} 10^{-3} 10 ² 10 10 4000 -2000 -2000 2000 2000 4000 -2000 2000 4000 0 0 0 t (fs) **t** (**fs**) t (fs) 420 $\mathfrak{r}_{K\pi}(fs)$ 408.7±0.6 fs 415 W.A.Izmerjen življenjski čas za $D^0 \rightarrow K^- \pi^+$ 410 stabilen v različnih merskih razdobjih ter v skladu s svetovnim povprečjem 405 Belle preliminary 400 3 2 4 1 run period

4000

t (fs)

4000

t (fs)

 $- D^0 \rightarrow K_s^0 \pi^+ \pi^-$ Dalitz (540 fb⁻¹) _ Razpadi v sebi-konjugirana stanja $K_s^0 \pi^+\pi^-$ L.M. Zhang, Phys.Rev.Lett. 99, 131803 (2007) \bullet D⁰ razpade preko različnih vmesnih resonanc, npr: CF: $D^0 \rightarrow K^{*-}\pi^+$ DCS: $D^0 \rightarrow K^{*+}\pi^-$ CP: $D^0 \rightarrow \rho^0 K_s^0$ Matrični element se zato spreminja po Dalitzovem prostoru: $|\langle f|\mathcal{H}|D^{0}(t)\rangle|^{2} = e^{-\Gamma t} \left|\mathcal{A}(m_{-}^{2}, m_{+}^{2}) + \frac{q}{n}(\frac{y+ix}{2}\Gamma t)\overline{\mathcal{A}}(m_{-}^{2}, m_{+}^{2})\right|^{2}$ Celotno amplitudo \mathcal{A} zapišemo kot vsota dvodelčnih resonanc $\mathcal{A}(m_{-}^{2}, m_{+}^{2}) = \sum a_{r} e^{i\phi} \mathcal{A}_{r}(m_{-}^{2}, m_{+}^{2})$ Eno izmed faz CP stanj izpostavimo (fiksiramo), ostale so prosti parametri Torej lahko izmerimo x in y hkrati Potrebno prilagajati v treh dimenzijah; mnogo prostih parametrov

$- D^0 \rightarrow K_s^0 \pi^+ \pi^-$ Dalitz (540 fb⁻¹) _____

Dalitzov diagram (2D projekcija)

Resonance	Amplitude	Phase (deg)	Fit fraction
$K^{*}(892)^{-}$	1.629 ± 0.005	134.3 ± 0.3	0.6227
$K_0^*(1430)^-$	2.12 ± 0.02	-0.9 ± 0.5	0.0724
$K_2^*(1430)^-$	0.87 ± 0.01	-47.3 ± 0.7	0.0133
$K^{*}(1410)^{-}$	0.65 ± 0.02	111 ± 2	0.0048
$K^{*}(1680)^{-}$	0.60 ± 0.05	147 ± 5	0.0002
$K^{*}(892)^{+}$	0.152 ± 0.003	-37.5 ± 1.1	0.0054
$K_0^*(1430)^+$	0.541 ± 0.013	91.8 ± 1.5	0.0047
$K_2^*(1430)^+$	0.276 ± 0.010	-106 ± 3	0.0013
$K^{*}(1410)^{+}$	0.333 ± 0.016	-102 ± 2	0.0013
$K^*(1680)^+$	0.73 ± 0.10	103 ± 6	0.0004
$\rho(770)$	1 (fixed)	0 (fixed)	0.2111
$\omega(782)$	0.0380 ± 0.0006	115.1 ± 0.9	0.0063
$f_0(980)$	0.380 ± 0.002	-147.1 ± 0.9	0.0452
$f_0(1370)$	1.46 ± 0.04	98.6 ± 1.4	0.0162
$f_2(1270)$	1.43 ± 0.02	-13.6 ± 1.1	0.0180
$ \rho(1450) $	0.72 ± 0.02	40.9 ± 1.9	0.0024
σ_1	1.387 ± 0.018	-147 ± 1	0.0914
σ_2	0.267 ± 0.009	-157 ± 3	0.0088
NR	2.36 ± 0.05	155 ± 2	0.0615

BELLE

$_ D^0 \rightarrow K_s^0 \pi^+ \pi^-$ Dalitz (540 fb⁻¹) $_$

Rezultati

Ob privzetku ohranitve CP

 $x = 0.80 \pm 0.29^{+0.09+0.10}_{-0.07-0.14} \%$ $y = 0.33 \pm 0.24^{+0.08+0.06}_{-0.12-0.08} \%$

trenutno najbolj natančnen rezultat Cleo, PRD 72, 012001 (2005): $x = 1.8 \pm 3.4 \pm 0.6\%$ $y = -1.4 \pm 2.5 \pm 0.9\%$

Iskanje kršitve CP

- Prilagajanje posebej za D^0 in za $\overline{D}{}^0$
- Izmerjeni vrednosti |q/p| in φ = arg(q/p) ne kažeta na kršitev CP

$$|q/p| = 0.86^{+0.30+0.10}_{-0.29-0.09}$$
 $\phi = (-14^{+16+5}_{-18-5})^{\circ}$

Projekcija na časovno os 10 10 10 -2000 2000 4000 $\tau = 409.9 \pm 0.9~\mathrm{fs}$ → konsistentno s PDG 95% C.L. contours mo CPV (stat. only — no CPV ----- CPV (stat. only) --- CPV y (%) 0 -1 -1 0 1 2 x (%)

Današnje stanje _____

HFAG povprečje: (Belle, BaBar, CLEO, FOCUS, E791, CDF)

Interpretacija rezultatov ____

- Mešanje pri mezonih D⁰ je veliko večje od napovedi SM v najnižjem redu!
 a) novi delci (supersimetrični, 4.gen. kvarkov, FCNC v drev. redu,...)?
 b) prispevki višjih redov v SM?
- Prispevek naslednjega reda v SM:

$$M_{12} = \langle \overline{D}^0 | \mathcal{H}_{eff}^{\Delta c = -2} | D^0 \rangle + \mathcal{P} \sum_n \frac{\langle \overline{D}^0 | \mathcal{H}_{eff}^{\Delta c = -1} | n \rangle \langle n | \mathcal{H}_{eff}^{\Delta c = -1} | D^0 \rangle}{m_D^2 - E_n^2}$$

$$\Gamma_{12} = \sum_{n} \rho_n^{ph.sp.} \langle \overline{D}^0 | \mathcal{H}_{eff}^{\Delta c = -1} | n \rangle \langle n | \mathcal{H}_{eff}^{\Delta c = -1} | D^0 \rangle$$

- Izračuni težavni, potrebnih precej privzetkov, zato nenatančni
- Nekateri pristopi dajo: $x \sim y \sim \mathcal{O}(10^{-2})$
- Splošno mnenje: bolj verjeten je vzrok b)

Nova fizika _

BELLE

E. Golowich et al., arXiv:0705.3650 (2007)

Mo de l	Approximate Constraint
Fourth Generation (Fig. 2)	$ V_{ub'}V_{cb'} \cdot m_{b'} < 0.5~({\rm GeV})$
Q = -1/3 Singlet Quark (Fig. 4)	$s_2 \cdot m_S < 0.27~({\rm GeV})$
Q = +2/3 Singlet Quark (Fig. 6)	$ \lambda_{uc} < 2.4 \cdot 10^{-4}$
Little Higgs	Tree: See entry for $Q = -1/3$ Singlet Quark
	Box: Region of parameter space can reach observed x
Generic Z' (Fig. 7)	$M_{Z'}/C>2.2\cdot 10^3~{ m TeV}$
Family Symmetries (Fig. 8)	$m_1/f > 1.2 \cdot 10^3 \text{ TeV} \text{ (with } m_1/m_2 = 0.5)$
Left-Right Symmetric (Fig. 9)	No constraint
Alternate Left-Right Symmetric (Fig. 10)	$M_R > 1.2 \ {\rm TeV} \ (m_{D_1} = 0.5 \ {\rm TeV})$
	$(\Delta m/m_{D_1})/M_R > 0.4 \text{ TeV}^{-1}$
Vector Leptoquark Bosons (Fig. 11)	$M_{VLQ} > 55 (\lambda_{PP}/0.1) ~{\rm TeV}$
Flavor Conserving Two-Higgs-Doublet (Fig. 13)	No constraint
Flavor Changing Neutral Higgs (Fig. 15)	$m_{H}/C>2.4\cdot10^3{\rm TeV}$
FC Neutral Higgs (Cheng-Sher ansatz) (Fig. 16)	$m_H/ \Delta_{uc} > 600~{ m GeV}$
Scalar Leptoquark Bosons	See entry for RPV SUSY
Higgsless (Fig. 17)	$M > 100 { m ~TeV}$
Universal Extra Dimensions	No constraint
Split Fermion (Fig. 19)	$M/\left \Delta y\right > (6\cdot 10^2~{\rm GeV})$
Warped Geometries (Fig. 21)	$M_1 > 3.5~{ m TeV}$
Minimal Supersymmetric Standard (Fig. 23)	$ (\delta^{u}_{12})_{\rm LR,RL} < 3.5 \cdot 10^{-2} \text{ for } \tilde{m} \sim 1 \text{ TeV}$
	$\left (\delta^u_{12})_{\rm LL,RR} \right < .25$ for $\tilde{m} \sim 1~{\rm TeV}$
Supersymmetric Alignment	${\tilde m}>2~{ m TeV}$
Supersymmetry with RPV (Fig. 27)	$\lambda_{12k}'\lambda_{11k}'/m_{\tilde{d}_{R,k}} < 1.8\cdot 10^{-3}/100~{\rm GeV}$
Split Supersymmetry	No constraint

- Ostrejše omejitve na parametrih 17/21 modelov nove fizike
- Primer:
 kvark b' iz 4. generacije

$|V_{ub'}V_{cb'}| \cdot m_{b'} < 0.5 \text{ GeV}$

 $|V_{ub'}V_{cb'}| < 0.003$ za red velikosti ostreje, kot iz unitarnosti CKM

- Mešanje mezonov D^0 je bilo po 31. letih definitivno odkrito (2007)
- Mešanje je veliko večje, kot smo pričakovali: $x \sim y \sim 1\%$
- Razložimo ga lahko znotraj Standardnega modela s prispevki višjega reda od box diagrama.
- Postavljene ostrejše omejitve za parametre kar 17 od 21 modelov nove fizike