February 21st 2012

Measuring atomic mass. For measurments, a two part machine is used. In the first part, once ionized atoms (ions) are accelerated with a known voltage, while in the second part their track is curved with a perpendicular magnetic field. For calibration, ions of isotope ¹²C are used. Since natural carbon contains 1.1 % parts of isotope ¹³C, an additional track will be observed with the original ¹²C track. The measured ratio of the curvature of both tracks is $q=\sqrt{\frac{13.003355}{12}}=1.040967$. What is the binding energy of ¹³C nucleus?

Atom mass	$m_a(^{12}C)=12u$
Nucleus mass	$m_j(^{12}C) = 12u - 12m_e$
Ion mass	$m_i(^{12}C^+) = 12u - m_e$
Curvature r dependence on mass	$r = \frac{1}{B} \sqrt{\frac{2mU}{e_0}}$
Ion mass	$m_i({}^{13}C^+) = q^2 m_i({}^{12}C^+)$
Nucleus mass	$m_j(^{13}C) = m_i(^{13}C^+) - 11m_e$
Binding energy	$W_v/c^2 = m_j(^{13}C)-6m_p-7m_n$ [-0.1 u]
Proton mass	$m_p = 1.007276 u$
Neutron mass	$m_n = 1.008665 u$
Electron mass	$m_e = 5.485799 \times 10^{-5} u$
Atomic mass unit	$uc^2 = 931,494 \text{ MeV}$

For mirrored nuclei the difference in binding energy arrises from different electrostatic energy of the nuclei. The nuclide $^{13}_{7}$ N decays via β^+ decay to its mirrored counterpart $^{13}_{6}$ C, and measurements show that the maximum kinetic energy of the created positron equals 1.2 MeV. What is the estimate on nuclide $^{13}_{7}$ N or $^{13}_{6}$ C radius based on this asumption?

Electric field in a sphere	$E(\mathbf{r}) = \frac{Ze_0r}{4\pi\varepsilon_0R}$
Electric field outside of the sphere	$E(\mathbf{r}) = \frac{Ze_0}{4\pi\varepsilon_0 r^2}$
Electrostatic potential in the sphere	$U(\mathbf{r}) = U(0)$
Electrostatic potential outside of the sphere	$U(\mathbf{r}) = U(\infty)$
Continuity at r=R	$U(0) = U(\infty)$
Arbitrary 0 of electrostatic potential	$U(\mathbf{r}; r < R) =$
Electrostatic potential energy	$W_{ep} = \int_0^\infty \rho_e$
For $\rho_e = \frac{Ze_0}{4\pi R^3}$, $r < R$; 0 otherwise	$W_{ep} = \frac{3}{20} \frac{Z^2 e}{\pi \varepsilon_0}$
In mirrored nuclides	$\Delta W_{ep} = \frac{3}{20} \frac{1}{\pi \epsilon}$
Radius	$R = \frac{3}{20} \frac{e_0^2}{\pi \varepsilon_0} \frac{2Z}{\Delta V}$

$$\begin{split} E(\mathbf{r}) &= \frac{Ze_0 r}{4\pi \varepsilon_0 R^3} \frac{\mathbf{r}}{r} \\ E(\mathbf{r}) &= \frac{Ze_0}{4\pi \varepsilon_0 r^2} \frac{\mathbf{r}}{r} \\ U(\mathbf{r}) &= U(0) - \frac{Ze_0 r^2}{8\pi \varepsilon_0 R^3} \\ U(\mathbf{r}) &= U(\infty) + \frac{Ze_0}{4\pi \varepsilon_0 r} \\ U(0) &= U(\infty) + \frac{3Ze_0}{8\pi \varepsilon_0 R} \\ U(\mathbf{r}; r < R) &= \frac{Ze_0}{8\pi \varepsilon_0 R^3} (3R^2 - r^2) \\ W_{ep} &= \int_0^\infty \rho_e(\mathbf{r}) U(\mathbf{r}) dV \\ W_{ep} &= \frac{3}{20} \frac{Z^2 e_0^2}{\pi \varepsilon_0 R} \\ \Delta W_{ep} &= \frac{3}{20} \frac{e_0^2}{\pi \varepsilon_0 R} (2Z - 1) \\ R &= \frac{3}{20} \frac{e_0^2}{\pi \varepsilon_0} \frac{2Z - 1}{2W_{ep}} \ [6 \ fm] \end{split}$$

February 28th 2012

What is the most stable number of protons for a given total number of nucleons (protons and neutrons) in the nuclide based on the semiempiric mass formula? Compare to the actual rations for ${}^{40}_{20}$ Ca, ${}^{88}_{38}$ Sr and ${}^{197}_{79}$ Au! [Z/A=0.5/(1+(w₂/4w₃)A^{2/3})]

Scattering of electrons with kinetic energy of 300 MeV on a certain nucleus yields the first minimum in number of detected particles at 30° relative to the incoming current. What is the estimate on nucleus's radius, if you assume it being a homogenuous sphere?

$$F(s) = \frac{3}{(sR_j)^3} \left(\sin(sR_j) - (sR_j)\cos(sR_j) \right)$$

Min @ $sR_j = (k - \frac{1}{2})\pi$; $k = 2, \dots$
 $sR_j = \frac{2pcR_j}{\hbar c}\sin\theta/2 = \frac{3\pi}{2}$
 $R_j = \frac{3\pi}{2}\frac{\hbar c}{2pc\sin\theta/2}$ [6 fm]

Determine luminosity for an experiment, where a current of 1 mA of electrons focused to a 1 mm² spot, accelerated to an energy of 250 Mev hits a target, a thin 100 μ m gold foil of gold, ¹⁹⁷₇₉Au with a density of 19 g/cm³! The intensity of the scattered electrons is measured with a detector with a cross-section of 5 cm² 10 cm away from the target at the scattering angle of 30° relative to the incoming current. How frequent will be the hits in this sensor. Assume that the nucleus is point like!

$$\begin{split} L &= N_{\text{tarča}} \frac{dn_{\text{curek}}}{dSdt} = \frac{\rho N_A S d}{M} \frac{I}{e_0 S} = \frac{\rho N_A I d}{M e_0} \qquad [3, 6 \times 10^{37} / \text{m}^2 \text{s}] \\ \frac{d\sigma}{d\Omega} &= \left(\frac{k}{2pc}\right)^2 \frac{1}{\sin^4 \theta/2} = \frac{1}{4} \left(\frac{Z e_0^2 \hbar c}{4\pi \varepsilon_0 \hbar c E}\right)^2 \frac{1}{\sin^4 \theta/2} = \left(\frac{197 \text{MeV fm}}{\alpha E}\right)^2 \frac{1}{4 \sin^4 \theta/2} \\ &[0.0018 \text{ fm}^2/\text{ster} = 18 \mu \text{barn/ster}] \\ \frac{d\Gamma}{d\Omega} &= L \frac{d\sigma}{d\Omega} \qquad [6, 5 \times 10^4 / \text{s}] \\ \Delta\Omega &= \frac{S}{r^2} \qquad [5 \times 10^{-2}] \\ &\Gamma = \int_{\Delta\Omega} \frac{d\Gamma}{d\Omega} d\Omega \approx \frac{d\Gamma}{d\Omega} \Delta\Omega \qquad [3, 3 \text{ kHz}] \end{split}$$

Show that the angular part of the wave function, $Y_{lm}(\theta, \phi)$ is an eigensolution of the angular part of the Laplace operator ∇^2 with an eigenvalue -l(l+1).

In a certain nucleus the emission spectrum allows us to determine that the energy difference between a state with the last nucleon in the state $2d_{3/2}$ and the state $2d_{5/2}$ equals to 1.35 MeV. Based on this fact we can determine the strength of the spin-orbit coupling, written as an energy contribution $W_s=-2\eta \hat{l}\hat{s}$. What is the strength of the coupling η ?

$$\hat{j} = \hat{l} + \hat{s}$$

$$\hat{j}^2 = \hat{l}^2 + 2\hat{l}\hat{s} + \hat{s}^2$$

$$2\hat{l}\hat{s} = \hat{j}^2 - \hat{l}^2 - \hat{s}^2$$

$$2d_{3/2} : j = 3/2; \ l = 2; \ s = 1/2$$

$$2d_{5/2} : j' = 5/2; \ l = 2; \ s = 1/2$$

$$\Delta W = \eta \Big(j'(j'+1) - j(j+1) \Big) = 5\eta$$

$$\eta = \frac{\Delta W}{5} \qquad [0.27 \text{ Mev}]$$

In the same nucleus the difference between states of the last nucleon $2f_{7/2}$ and $2d_{5/2}$ equals to 6.3 MeV. Assuming a harmonic nuclear potential V(r)=-V₀+ $\frac{1}{2}m_N\omega^2 r^2$, determine parameter ω , measuring the slope of the potential. Include spin-orbit effects!

$$\begin{split} W_{n_r lj} &= (2(n_r - 1) + l + 3/2)\hbar\omega - 2\eta \hat{l}\hat{s} \\ 2f_{7/2} : n_r &= 2 ; l = 3 ; j = 7/2; \\ 2d_{5/2} : n'_r &= 2 ; l' = 2 ; j' = 5/2; \\ \Delta W &= \left(2(n_r - n'_r) + l - l'\right)\hbar\omega - \left(j(j+1) - l(l+1) - j'(j+1) - l'(l'+1)\right)\eta = \\ &= \hbar\omega - \eta \\ \hbar\omega &= \Delta W + \eta \qquad [6, 6 \text{ MeV}] \end{split}$$

With a know parameter ω an estimate on the well depth V₀ can be determined. For values from the previous exercise and a 200 nucleon nucleus (giving estimate on the nucleus size) determine the potential value at r=0!

$$R_{j} = r_{0}A^{1/3} \qquad r_{0} = 1.1 \text{ fm}$$

$$V(R_{j}) = 0 \rightarrow V_{0} = -\frac{1}{2}m_{p,n}\omega^{2}R_{j}^{2} = -\frac{1}{2}\frac{m_{p,n}c^{2}\hbar^{2}\omega^{2}r_{0}^{2}A^{2/3}}{\hbar^{2}c^{2}} = -\frac{1}{2}\frac{938 \text{ MeV} \cdot (6.6 \text{ MeV})^{2} \cdot 1, 2 \text{ fm}^{2}200^{2/3}}{(197 \text{ MeV fm})^{2}} \qquad [-21.6 \text{ MeV}]$$