February 21st 2012

Measuring atomic mass. For measurments, a two part machine is used. In the first part, once ionized atoms (ions) are accelerated with a known voltage, while in the second part their track is curved with a perpendicular magnetic field. For calibration, ions of isotope ${ }^{12} \mathrm{C}$ are used. Since natural carbon contains 1.1% parts of isotope ${ }^{13} \mathrm{C}$, an additional track will be observed with the original ${ }^{12} \mathrm{C}$ track. The measured ratio of the curvature of both tracks is $\mathrm{q}=\sqrt{\frac{13.003355}{12}}=1.040967$. What is the binding energy of ${ }^{13} \mathrm{C}$ nucleus?

Atom mass	$\mathrm{m}_{a}\left({ }^{12} \mathrm{C}\right)=12 \mathrm{u}$
Nucleus mass	$\left.\mathrm{m}_{j}{ }^{12} \mathrm{C}\right)=12 \mathrm{u}-12 \mathrm{~m}_{e}$
Ion mass	$\mathrm{m}_{i}\left({ }^{12} \mathrm{C}^{+}\right)=12 \mathrm{u}-\mathrm{m}_{e}$
Curvature r dependence on mass	$r=\frac{1}{B} \sqrt{\frac{2 m U}{e_{0}}}$
Ion mass	$\mathrm{m}_{i}\left({ }^{13} \mathrm{C}^{+}\right)=\mathrm{q}^{2} \mathrm{~m}_{i}\left({ }^{(12} \mathrm{C}^{+}\right)$
Nucleus mass	$\mathrm{m}_{j}\left({ }^{13} \mathrm{C}\right)=\mathrm{m}_{i}\left(1{ }^{13} \mathrm{C}^{+}\right)-11 \mathrm{~m}_{e}$
Binding energy	$\mathrm{W}_{v} / \mathrm{c}^{2}=\mathrm{m}_{j}\left(13{ }^{13} \mathrm{C}\right)-6 \mathrm{~m}_{p}-7 \mathrm{~m}_{n}[-0.1 \mathrm{u}]$
Proton mass	$\mathrm{m}_{p}=1.007276 \mathrm{u}$
Neutron mass	$\mathrm{m}_{n}=1.008665 \mathrm{u}$
Electron mass	$\mathrm{m}_{e}=5.485799 \times 10^{-5} \mathrm{u}$
Atomic mass unit	$\mathrm{uc}^{2}=931,494 \mathrm{MeV}$

For mirrored nuclei the difference in binding energy arrises from different electrostatic energy of the nuclei. The nuclide ${ }_{7}^{13} \mathrm{~N}$ decays via β^{+}decay to its mirrored counterpart ${ }_{6}^{13} \mathrm{C}$, and measurements show that the maximum kinetic energy of the created positron equals 1.2 MeV . What is the estimate on nuclide ${ }_{7}^{13} \mathrm{~N}$ or ${ }_{6}^{13} \mathrm{C}$ radius based on this asumption?

Electric field in a sphere
Electric field outside of the sphere
Electrostatic potential in the sphere
Electrostatic potential outside of the sphere
Continuity at $r=R$
Arbitrary 0 of electrostatic potential
Electrostatic potential energy
For $\rho_{e}=\frac{Z_{e_{0}}}{4 \pi R^{3}}, r<R ; 0$ otherwise
In mirrored nuclides
Radius

$$
\begin{aligned}
& E(\mathbf{r})=\frac{Z e_{0} r}{4 \pi R_{0} R^{3}} \frac{\mathbf{r}}{r} \\
& E(\mathbf{r})=\frac{Z \frac{Z}{0}}{4 \pi \varepsilon_{0} r^{2}} \frac{r}{r} \\
& U(\mathbf{r})=U(0)-\frac{Z e_{0} r^{2}}{8 \pi \varepsilon^{3} R^{3}} \\
& U(\mathbf{r})=U(\infty)+\frac{Z e_{0}}{4 \pi \varepsilon_{0} r} \\
& U(0)=U(\infty)+\frac{3 Z_{0}}{8 \pi \varepsilon_{0} R} \\
& U(\mathbf{r} ; r<R)=\frac{Z e_{0} R}{8 \pi R^{3}}\left(3 R^{2}-r^{2}\right) \\
& W_{e p}=\int_{0}^{\infty} \rho_{e}(\mathbf{r}) U(\mathbf{r}) d V \\
& W_{e p}=\frac{3}{20} \frac{Z^{2} e_{0}^{2}}{\pi \varepsilon_{0}} \\
& \Delta W_{e p}=\frac{3}{20} e_{0}^{2} \\
& R=\frac{e_{0}}{\pi \varepsilon_{0} R}(2 Z-1) \\
& R=\frac{e_{0}^{2}}{\pi \varepsilon_{0}} \frac{2 Z-1}{\Delta W_{e p}}[6 \mathrm{fm}]
\end{aligned}
$$

February 28th 2012

What is the most stable number of protons for a given total number of nucleons (protons and neutrons) in the nuclide based on the semiempiric mass formula? Compare to the actual rations for ${ }_{20}^{40} \mathrm{Ca},{ }_{38}^{88} \mathrm{Sr}$ and ${ }_{79}^{197} \mathrm{Au}$! $\left.\mathrm{Z} / \mathrm{A}=0.5 /\left(1+\left(\mathrm{w}_{2} / 4 \mathrm{w}_{3}\right) \mathrm{A}^{2 / 3}\right)\right]$

Scattering of electrons with kinetic energy of 300 MeV on a certain nucleus yields the first minimum in number of detected particles at 30° relative to the incoming current. What is the estimate on nucleus's radius, if you assume it being a homogenuous sphere?

$$
\begin{aligned}
& F(s)=\frac{3}{\left(s R_{j}\right)^{3}}\left(\sin \left(s R_{j}\right)-\left(s R_{j}\right) \cos \left(s R_{j}\right)\right) \\
& \text { Min @ } s R_{j}=\left(k-\frac{1}{2}\right) \pi ; k=2, \ldots \\
& s R_{j}=\frac{2 p c R_{j}}{\hbar c} \sin \theta / 2=\frac{3 \pi}{2} \\
& R_{j}=\frac{3 \pi}{2} \frac{\hbar c}{2 p c \sin \theta / 2} \quad[6 \mathrm{fm}]
\end{aligned}
$$

Determine luminosity for an experiment, where a current of 1 mA of electrons focused to a $1 \mathrm{~mm}^{2}$ spot, accelerated to an energy of 250 Mev hits a target, a thin $100 \mu \mathrm{~m}$ gold foil of gold, ${ }_{79}{ }^{197} \mathrm{Au}$ with a density of $19 \mathrm{~g} / \mathrm{cm}^{3}$! The intensity of the scattered electrons is measured with a detector with a crosssection of $5 \mathrm{~cm}^{2} 10 \mathrm{~cm}$ away from the target at the scattering angle of 30° relative to the incoming current. How frequent will be the hits in this sensor. Assume that the nucleus is point like!

$$
\begin{align*}
L & =N_{\text {tarča }} \frac{d n_{\text {curek }}}{d S d t}=\frac{\rho N_{A} S d}{M} \frac{I}{e_{0} S}=\frac{\rho N_{A} I d}{M e_{0}} \quad\left[3,6 \times 10^{37} / \mathrm{m}^{2} \mathrm{~s}\right] \\
\frac{d \sigma}{d \Omega} & =\left(\frac{k}{2 p c}\right)^{2} \frac{1}{\sin ^{4} \theta / 2}=\frac{1}{4}\left(\frac{Z e_{0}^{2} \hbar c}{4 \pi \varepsilon_{0} \hbar c E}\right)^{2} \frac{1}{\sin ^{4} \theta / 2}=\left(\frac{197 \mathrm{MeVfm}}{\alpha E}\right)^{2} \frac{1}{4 \sin ^{4} \theta / 2} \\
& {\left[0.0018 \mathrm{fm}^{2} / \text { ster }=18 \mu \mathrm{barn} / \text { ster }\right] } \\
\frac{d \Gamma}{d \Omega} & =L \frac{d \sigma}{d \Omega} \quad\left[6,5 \times 10^{4} / \mathrm{s}\right] \\
\Delta \Omega & =\frac{S}{r^{2}} \quad\left[5 \times 10^{-2}\right] \\
\Gamma & =\int_{\Delta \Omega} \frac{d \Gamma}{d \Omega} d \Omega \approx \frac{d \Gamma}{d \Omega} \Delta \Omega \quad[3,3 \mathrm{kHz}] \tag{3,3kHz}
\end{align*}
$$

Show that the angular part of the wave function, $\mathrm{Y}_{l m}(\theta, \phi)$ is an eigensolution of the angular part of the Laplace operator ∇^{2} with an eigenvalue $-1(1+1)$.

In a certain nucleus the emission spectrum allows us to determine that the energy difference between a state with the last nucleon in the state $2 \mathrm{~d}_{3 / 2}$ and the state $2 \mathrm{~d}_{5 / 2}$ equals to 1.35 MeV . Based on this fact we can determine the strength of the spin-orbit coupling, written as an energy contribution $\mathrm{W}_{s}=-$ $2 \eta \hat{l} \hat{s}$. What is the strength of the coupling η ?

$$
\begin{aligned}
\hat{j} & =\hat{l}+\hat{s} \\
\hat{j}^{2} & =\hat{l}^{2}+2 \hat{l} \hat{s}+\hat{s}^{2} \\
2 \hat{l} \hat{s} & =\hat{j}^{2}-\hat{l}^{2}-\hat{s}^{2} \\
2 d_{3 / 2} & : j=3 / 2 ; l=2 ; s=1 / 2 \\
2 d_{5 / 2} & : j^{\prime}=5 / 2 ; l=2 ; s=1 / 2 \\
\Delta W & =\eta\left(j^{\prime}\left(j^{\prime}+1\right)-j(j+1)\right)=5 \eta \\
\eta & =\frac{\Delta W}{5} \quad[0.27 \mathrm{Mev}]
\end{aligned}
$$

In the same nucleus the difference between states of the last nucleon $2 \mathrm{f}_{7 / 2}$ and $2 \mathrm{~d}_{5 / 2}$ equals to 6.3 MeV . Assuming a harmonic nuclear potential $\mathrm{V}(\mathrm{r})=-$ $\mathrm{V}_{0}+\frac{1}{2} \mathrm{~m}_{N} \omega^{2} \mathrm{r}^{2}$, determine parameter ω, measuring the slope of the potential. Include spin-orbit effects!

$$
\begin{aligned}
W_{n_{r} l j} & =\left(2\left(n_{r}-1\right)+l+3 / 2\right) \hbar \omega-2 \eta \hat{l} \hat{s} \\
2 f_{7 / 2} & : n_{r}=2 ; l=3 ; j=7 / 2 \\
2 d_{5 / 2} & : n_{r}^{\prime}=2 ; l^{\prime}=2 ; j^{\prime}=5 / 2 \\
\Delta W & =\left(2\left(n_{r}-n_{r}^{\prime}\right)+l-l^{\prime}\right) \hbar \omega-\left(j(j+1)-l(l+1)-j^{\prime}\left(\prime^{\prime} j+1\right)-l^{\prime}\left(l^{\prime}+1\right)\right) \eta= \\
& =\hbar \omega-\eta \\
\hbar \omega & =\Delta W+\eta \quad[6,6 \mathrm{MeV}]
\end{aligned}
$$

With a know parameter ω an estimate on the well depth V_{0} can be determined. For values from the previous exercise and a 200 nucleon nucleus (giving estimate on the nucleus size) determine the potential value at $\mathrm{r}=0$!

$$
\begin{aligned}
R_{j} & =r_{0} A^{1 / 3} \quad r_{0}=1.1 \mathrm{fm} \\
V\left(R_{j}\right) & =0 \rightarrow V_{0}=-\frac{1}{2} m_{p, n} \omega^{2} R_{j}^{2}=-\frac{1}{2} \frac{m_{p, n} c^{2} \hbar^{2} \omega^{2} r_{0}^{2} A^{2 / 3}}{\hbar^{2} c^{2}}= \\
& =-\frac{1}{2} \frac{938 \mathrm{MeV} \cdot(6.6 \mathrm{MeV})^{2} \cdot 1,2 \mathrm{fm}^{2} 200^{2 / 3}}{(197 \mathrm{MeVfm})^{2}} \quad[-21.6 \mathrm{MeV}
\end{aligned}
$$

