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A Differential 3 -order Bessel Filterrd

Erik Margan

Experimental Particle Physics department, Jožef Stefan Institute, Ljubljana, Slovenia

The circuit in  has been presented in Linear Audio as part of a differentialFig.1

line drive system, with only the final result of the analysis of the system transfer

function. Here we show the complete analysis and the procedure of finding the

suitable component values from the system poles, and verify the design by calculating

the frequency domain and time domain (unit step response) performance.
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Fig.1: Differential third-order Bessel filter with a 50 kHz cut off, and a gain of two, inverting.

To make the circuit analysis easier, we cut the differential filter in half, taking

only the upper arm, and grounding the lower side of capacitors  and . In theG G$ %

analysis we shall follow the node labels as are indicated in .Fig.3

IMPORTANT: In a differential filter the capacitors  and  are driven byG G$ %

the resistors in both arms, so in order to have the same system time constants those

capacitors should be of double value in the single-ended circuit, as indicated in .Fig.3
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Real or Ideal Opamps?

First we need to show that we are not making a big mistake if, instead of a real

opamp, having a limited gain and bandwidth, we use an idealized model in the circuit

analysis. A good audio grade opamp has a very high input resistance (>1M ), and aH

very low input capacitance (~1pF), so at audio frequencies (and even a decade

beyond) its loading on the filter components can be neglected. To show this more

clearly let us compare the amplifier’s open loop performance to the highest circuit

time constant set by  and  in the feedback loop.V G" "

But before we set off, let us make a short digression and consider the general

polynomial form of the system transfer function as required by the circuit theory. This

will hopefully clarify a couple of points, which sadly often remain obscure even in

some of the best textbooks. The general Cauchy -order polynomial form, by which8th

we describe the performance of a circuit with  reactive components (capacitors or8
inductors) in the frequency domain is:

J = œ
"

=  = =  = â =  =
8

" # 8

a b a ba b a b (1)

Here , , ,  are the circuit poles set by the various system time constants. In= = á =" # 8

general, a circuit may also have some zeros,  etc., in the numerator, but herea b=  D"
we are dealing with pole-only circuits.

When the expression (1) is multiplied, the last polynomial coefficient, which is

a product of all the poles, , will determine the system gain, which will= = â=" # 8

obviously be different for systems with different number of poles. This is undesirable,

because we want to treat the real (DC) gain of the circuit separately from its frequency

dependence. We therefore normalize the characteristic circuit polynomial by dividing

it with the same polynomial evaluated at  (DC). So the frequency dependence is:= œ !

J = = = â =

J ! =  = =  = â =  =
œ œ

"

=  = =  = â =  =
"

= = â =

8 " # 8

8 " # 8

" # 8

" # 8

a b a ba b a ba b a ba b a ba ba b a b
a ba b a b

(2)

In this way it is obvious that for , as well as for very low frequencies, the= œ !
frequency response will be equal to 1 (it will deviate from unity as  approaches the=
lowest of the poles and progressively onward). Consequently the frequency

independent gain can be attributed to a separate factor multiplying the expression (2).

The amplifier’s transfer function  can be modeled by assuming its DCE =a b
gain to be , and its single dominant pole . Every pole causes an additionalE = œ ! ! !=

90° phase shift at high frequencies, so in order to remain stable at closed feedback

loop, all other amplifier poles must be at very high frequencies, where the amplifier’s

gain is less than unity. This prevents the feedback from becoming positive with
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enough gain to cause oscillations. On the other hand, any pole defined by external

circuitry must be suitably damped, so that the resistive (energy dissipating) part of the

poles dominate, and the poles are positioned on the left hand side of the complex

plane (they have their real part negative, whilst their imaginary part can be either zero

or forming complex conjugate pairs). Poles too close to the imaginary axis (very low

real part value) or poles in the right hand side of the complex plane (positive real part)

are sure signs of trouble.

With the frequency variable , and the non-inverting input grounded,= œ 4=
@ œ !p , we have the open-loop gain determined by:

@ œ @  @ † E = œ @  @ † E œ @ E
= =

=  = =  =
o p n p n na b a b a b ! !

! !

! !

(3)

From (1) we can express the open loop gain as a function of the complex

frequency  in the Laplace space:= œ  45 =

E = œ œ E
@ =

@ =  =
a b o

n
!

!

!

(4)

and along the imaginary frequency axis:

E 4 œ E
4 

a b= =

= =
!

!

!

(5)
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Fig.2: A typical open loop gain magnitude | | and phase  of an inverting amplifier.E 0 0a b a b:

At the dominant pole frequency  the magnitude is lower by , and falls off by a0 "Î #!
È

factor of 10 for each decade increase of the frequency. The dashed lines show the influence

of a possible second pole, which for a stable unity gain closed loop must be higher than the

transition frequency  0 ÞT Note that for practical reasons we usually show the graphs as

functions of the full cycle frequency (in Hz), instead of the angular frequency  (in rad s).= Î
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The magnitude (absolute value) of the transfer function is the square root of

the product of the gain by its own complex conjugate:

 œ E 4 † E 4 œ E
@

@ 4  4 
º º Œ Œ È a b a b Ëo

n

= =
= =

= = = =
!

! !

! !

 (6)œ E œ E


"

" 

! !
!
#

#
!
#

!

#
Ë

Ë Œ 
=

= =
=

=

Fig.2 shows graphically the expression (7). At DC  the gain magnitudea b= œ !
equals . When the input frequency becomes  the open loop gain falls toE œ! != =

E Î #! !
È . Above  the gain magnitude decreases by a factor of 10 for every 10-fold=

increase in frequency (or dB , or dB ). And when ,#! Î"!0 ' Î#0 œ E  "= =! !
#È

the open loop gain decreases to unity (and decreasing further beyond that frequency).

This frequency is the ‘transition frequency’, often labeled .=T

Of course, the gain magnitude is not the whole story, the change of the phase

angle of the output signal referred to the input is also important. From equation (1) the

phase angle is expressed as the arctangent of the ratio of the imaginary to the real part

of the gain function:

:a b Œ e fa be fa b= œ
e E =

d E =
arctan (7)

To separate the real and the imaginary part we need to rationalize the denominator, so

we multiply both the numerator and the denominator by the complex conjugate of the

denominator:

E 4 œ E œ E  4
4 

4  4  
a b a ba ba ba b= = =

= = = =

= = = = = =
! ! !

! ! !

! !
#

!
#

(8)

Now the phase along the imaginary axis is:

: =

=

= =
=

=

= =
=

=

=
a b

Î ÑÐ ÓÐ Ó
Ï Ò

a b
Œ 4 œ œ

E † 


E †



arctan arctan

!
!

#
!
#

! !
!

#
!
#

!

(9)

The phase plot indicates the initial phase inversion ( 180°) at low
frequencies, since the signal is being fed to the amplifier’s inverting input. However,

note that the positive direction of the phase rotation is defined as counterclockwise, so

the negative frequency sign,  in (9), indicates a clockwise rotation. With the=

frequency increasing towards the dominat pole the phase angle rotates by a further

   45° to 225°, and another 45° beyond, reaching 270° two decades higher.
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Good audio grade opamps usually have Hz, and ,0 œ Î# ¸ "!! E ¸ "!! ! !
&= 1

thus MHz. Observe that  and  in our circuit set the shortest0 œ Î# ¸ "! V GT T= 1 " "

time constant, equivalent to 647 kHz, which is almost 20× lower0 œ "Î# V G ¸1 " "

than , so there will be still some 24 dB of feedback at that frequency. Thus we can=T

be sure that neither the amplifier’s input impedance, nor its gain and bandwidth

limitations will influence much the  time constant, and at audio frequencies theV G" "

situation will be better still.

Circuit Analysis

———— 
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Fig.3: The single-ended filter used for analysis. Note the doubled  and .G G$ %

We want to find the closed loop response of the circuit in . With a realFig.3

opamp the current sum equation at node  would be ,@ @  @ ÎV œ @  @ =G" # " " " "a b a bo
and we would have to use equation (3) to express  by . But because at the top of@ @" o

the audio band the open loop gain is still about 500, we can use an ideal amplifier

model, and set , which simplifies the  node equation to:@ ¸ @ œ ! @" "p

@

V
œ @ =G

#

"
"o (10)

From (10) we express :@#

@ œ @ =G V# " "o (11)

Next, the current sum at the node  is:@#

@  @ @ @  @

V V V
œ   @ =G

$ # # #

# " %
# $

o
(12)

We can separate the voltages:

@ œ @ "    =G V  @
V V V

V V V
$ # $ #

# # #

" % %
Œ  o (13)
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By substituting  from (11) we obtain:@#

@ œ  @ =G V "    =G V  @
V V V

V V V
$ " " $ #

# # #

" % %
o oŒ  (14)

By separating the voltage variables, and grouping the various powers of  we get:=

@ œ @ =G V "    = G G V V 
V V V

V V V
$ " " " $ " #

# # #

" % %

#
o” •Œ  (15)

Finally we set the current sum equation at node :@$

@  @ @  @

V V
œ  @ =G

a $ $ #

$ #
$ % (16)

This we rearrange as:

@ œ @ "   =G V  @ =G V
V V

V V
a o$ % $ " "

$ $

# #
Œ  (17)

We now substitute  from (15) and group the various powers of :@ =$

@ œ @ T=  U=  V=  Wa oˆ ‰$ # (18)

where the polynomial coefficients are:

 (19)T œ G G G V V V" $ % " # $

 (20)U œ G G V V "   G G V V "  
V V V

V V V
" $ " # " % " $

$ # #

# " %
Œ  Œ 

 (21)V œ G V "     G V
V V V V V

V V V V V
" " % $

# $ # $ #

" " % % %
Œ 

 (22)W œ " 
V V

V V
# $

% #
Œ 

The system transfer function is:

@ "

@ T=  U=  V=  W
œ 

o

a
$ #

(23)

In order to obtain a canonical polynomial expression, we need to make the

coefficient at the highest power of  equal to 1, so we must divide all the coefficients=
by . By substituting , , and  we obtain:T O œ UÎT O œ VÎT O œ WÎT# " !

@

@ = O = O = O
œ 

"

G G G V V Vo

a

" $ % " # $

$ #
# " !

(23)

where we have:

 (24)O œ "   "  
" V " V V

G V V G V V V
#

% $ # $ # " %

$ # #Œ  Œ 
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 (25)O œ "     
" V V V V "

G G V V V V V V G G V V
"

$ % # $ " " % % " $ " %

# $ # $Œ 
 (26)O œ † " 

" V V

G G G V V V V V
!

" $ % " # $ % #

# $Œ 
In the normalized canonical polynomial form, the numerator must be equal to

the coefficient . But by doing so we increase the numerator by , soO V V ÎV! # $ %a b
we must multiply the whole transfer function by an inverse of this factor:

@ V O

@ V V = O = O = O
œ  †

o

a

% !

# $ # " !
$ #

(27)

It is immediately obvious that the system DC gain must be:

E œ 
V

V V
!

%

# $

(28)

System Poles

Now that we have the transfer function expressed by the characteristic

polynomial, and its coefficients determined, we must relate those coefficients to the

system poles. By observing the relations in a general 3 -order form:rd

 (29)œ EJ =
= = =

=  = =  = =  =
$ !

" # $

" # $

a b a ba ba ba ba ba b
 œ E

= = =

=  = =  =  =  = = =  = =  = =  = = =
!

" # $

$ #
" # $ " # " $ # $ " # $

a ba ba ba b a b a ba ba b
(30)

we can equate the coefficients , ,  with the appropriate combinations ofO O O# " !

system poles (note that ):O œ "$

 (31)œ =  =  =O# " # $

 (32)œ = =  = =  = =O" " # " $ # $

 (33)œ = = =O! " # $a ba ba b
In order to express the poles  by the polynomial coefficients  we= O"ß#ß$ #ß"ß!

have to solve a system of three equations with three unknowns. An easy way to

accomplish the task would be by realizing that in (32) we have a sum and a product of

two poles, say  and , and those are readily available from the other two equations.= =# $

Specifically we reorder (32) as:

 (34)œ = =  =  = =O" " # $ # $a b
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Then from (33) we have:

 (35)œ = =
O

=
# $

!

"

and from (31) we have:

 (36)œ O  ==  =# $ # "

With (35) and (36) we return to (34) to obtain:

 (37)œ = O  = O
O

=
" " # "

!

"

a b
which, after a little reordering can be written as a general 3 -order equation:rd

= O =  = O O œ !" "
$ #

# " " ! (38)

Various forms of cubic equations have been solved already in the XVI century

by the Venetian mathematician , and published in 1545 byNoccolò Fontana Tartaglia

Gerolamo Cardano François Viète, using purely algebraic expressions. Later 

independently discovered the trigonometric solutions. Here we shall use the general

algebraic form.

A general solution can have either three real roots, or three coincident real

roots, or one real and two complex conjugate roots. In order to shorten the long

expressions let us replace the polynomial coefficients as follows:

 œ O+ #

 œ O, "

 (39)œ O- !

Since there is a rather long common term, we shall replace it by the symbol :H

 (40)œ $'+,  "!)-  )+  "# "#,  $+ ,  &%+,-  )"-  "#+ -H É È$
$ $ # # # $

The real polynomial root is then:

 (41)œ   <
H ' , + +

' H $ * $
"

#Œ 
and the two complex-conjugate roots are:

 (42)œ     „ 4  <
H $ , + + $ H ' , +

"# H $ * $ # ' H $ *
#ß$

# #Œ  ” •È Œ 
It should be pointed out that the expression under the square root in  must beH

non-negative in order to be applicable to solutions with at least one real root, as

required by any realizable electronic circuit. So once the real solution is known, with

= œ <" ", we can go back to equations (35) and (36) and solve a quadratic equation,
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using its well known general solution (known already to Babylonian mathematicians).

From (36) we have:

 (43)œ O  =  ==# # " $

And from (35) we have:

 (44)œ =
O

= =
#

!

" $

Thus by equating (43) to (44):

 (45)œ O  =  =
O

= =
!

" $
# " $

we have the quadratic equation for :=$

=  = O  =  œ !
O

=$
#

$ # "
!

"

a b (46)

with the general solution:

= œ

 O  = „ O  =  % 

#
$

# " # "
# O

=

"ß#

!

"
a b a bÊ Š ‹

(47)

We obtain here either two real solutions (if the expression under the square

root is positive), or two coincident real solutions (if the expression under the square

root is zero), or a complex conjugate pair (if the expression under the square root is

negative).  It is not necessary to solve for  from either (43) or (44), because if we=#
assign  to  then .= = = œ =$ $ # $" #

Actually, we may spare ourselves all that trouble, since  and .= œ < = œ <# # $ $

It is now possible to express the poles  by the actual  time constants= VG"ß#ß$

from the coefficients  in equations (24–26). However, this is a tedious work, andO#ß"ß!

does not offer much insight in the working of our circuit, and anyway, those

expressions will be different for different types of 3 -order filters, so we may as wellrd

be satisfied by numerical values for the poles .="ß#ß$

However, we still have to find a way of calculating the circuit components, as

well as find such values which will conform to the desired Bessel 3 -order system.rd

Apparently the expressions given by the polynomial coefficients  are moreO#ß"ß!

simple to work with.

But first let us see the relations for the Bessel poles and the polynomial

coefficients of a 3 -order system.rd

The general form for Bessel coefficients of order  can be calculated as:8

- œ
#8  3 x

# 3x 8  3 x
3 83

3œ!â8

ºa ba b  
(48)
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For a 3 -order system ( , and , , ,  the coefficients are:rd 8 œ $ 3 œ ! " # $Ñ

 œ "&-! (49)

 œ "&-" (50)

 œ '-# (51)

 - œ "$ (52)

Our characteristic polynomial is now , and we want to=  - =  - =  -$ #
# " !

find its roots. We can again use (40–42), by making the following substitutions:

 œ -+ #

 œ -, "

 œ -- ! (53)

then by solving equations (40–42) we arrive at the Bessel poles of a 3 -order system:rd

  [rad s] (54)œ  #Þ$### Î<"

  [rad s] (55)œ  "Þ)$)*  4"Þ(&%% Î<#

  [rad s] (56)œ  "Þ)$)*  4"Þ(&%% Î<$

Note that the Bessel poles were derived on the assumption that the envelope

delay is normalized to unity, and not the bandwidth as in the Butterworth case! The

bandwidth (the angular frequency at which the magnitude response falls to ) will"ÎÈ#

thus be somewhat higher than 1 rad s, so we shall have to account for this, in additionÎ
to the actual bandwidth, when specifying the values of resistors and the capacitors.

Now for Butterworth systems the bandwidth is simply equal to the  root of8th

the absolute value of the product of all the  poles. Because all Butterworth poles lie8
on a circle, the bandwidth is also equal to the absolute value of any single pole.

Unfortunately for Bessel systems there is no simple formula to relate the pole

values to the system bandwidth. Bessel poles lie on a family of ellipses becoming

larger with increasing system order, but all with the near focus at the complex plane

origin and the other focus on the positive part of the real axis.

To obtain the bandwidth we must input the values of  into equation (29),<"ß#ß$
calculate the frequency response magnitude for a range of frequencies, then find the

frequency at which the magnitude is down by , and then divide all the"ÎÈ#

polynomial roots by that frequency. For a greater precision it might be necessary to

reiterate this process once or twice.

Using that procedure the bandwidth of the 3 -order Bessel system normalizedrd

to a unit envelope delay is  rad s. By dividing the roots  by  a= =3N N¸ "Þ(&&' Î <"ß#ß$ $

bandwidth of rad s will result." Î

For audio work we need a 50 kHz bandwidth, or rad s, so we= 1H œ # † &!!!! Î
must multiply the roots by a factor . Thus our poles will be:= =H NÎ $

= œ < †"ß#ß$ "ß#ß$
$

=

=

H

N

(43-57)
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Calculating the Resistors and Capacitors

Now we have everything necessary to calculate the values of resistors and

capacitors. However, there are 4 resistors and 3 capacitors in the filter, but we have a

system of only 3 equations with 3 unknowns in (31–33). Fortunately, the circuit time

constants are defined by appropriate  products, which allows us to reduce theVG
number of unknowns.

We have already established that the system gain . InE œ V Î V V! % # $a b
order to have a gain of 2 (to compensate the loss owed to the 600  line impedanceH

matching), we can make , and . The remaining resistor  canV œ V œ V V œ %V V# $ % "

be of any suitable value, so to minimize the system variations we set it also to

V œ V V œ "" . This determines the resistor ratios, and by making  we can disregardH

it in the equations and determine the capacitance ratios. Once we do that, we can

increase  to any suitable value and decrease the capacitors in proportion.V

Note that by using the poles from (57) in relations for the polynomial

coefficients  (31–33) we would have to solve the 3-equation system once toO#ß"ß!

express the poles by the coefficients, and then again to find the  component valuesVG
from the poles. It is thus more economic here to express the components directly by

the coefficients, so we have to solve the system of equations only once.

From (24), (25) and (26) we have the normalized component values:

 (58)œ "   "  '
" V " V V

G V V G V V V% $ # $ # " %

$ # #Œ  Œ 

 (59)œ "     "&
" V V V V "

G G V V V V V V G G V V$ % # $ " " % % " $ " %

# $ # $Œ 

 (60)œ † " "&
" V V

G G G V V V V V" $ % " # $ % #

# $Œ 
By replacing  and  (as required for a gain of 2):V œ V œ V œ V V œ %V" # $ %

 (61)œ "   "  '
" V " V V

G V V G V V %V% $
Œ  Œ 

 (62)œ "     "&
" V V V V "

G G VV V V %V %V G G %VV$ % " $
Œ 

 (63)œ † " "&
" V V

G G G VVV %V V" $ %
Œ 

By making  we have:V œ "
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 (64)œ "  "  "  " '
" " "

G G %% $

a b Œ 

 (65)œ "  "  "   "&
" " " "

G G % % %G G$ % " $
Œ 

 (66)œ † "  ""&
" "

G G G %" $ %

a b
Consequently:

 (67)œ '
# *

G %G% $

 (68)œ "&
( "

#G G %G G$ % " $

 (69)œ †"&
" "

G G G #" $ %

From (69) we can express, say, :G"

 (70)œG
"

$!G G
"

$ %

and insert it into (68);

 (71)œ "&
( "

#G G
% G

"

$!G G
$ %

$ %
$

From (71) we express G$

 (72)œG
(

"&G #  G
$

% %a b
We insert  from (72) into (67):G$

 (73)œ '
# *

G
%

(

"&G #  G
%

% %a b
Now our only variable is . By reordering we arrive at the 3 -order polynomial:G%

rd

 (74)œ !G  #G  G 
"') &'

"$& "$&% %
$ #

%

We can solve (74) by the same relations as for the roots  (40–42).<"ß#ß$
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However, here we need only the real solution, because once we determine G%

we already have real relations for finding  and . Our coefficients in (74) are now:G G" $

   (75)œ  # œ œ + , -
"') &'

"$& "$&

We insert these into (41) and the resulting  will be our normalized . By< G" %

putting the numbers into a mathematical computer program, such as Matlab,

MathCAD, Mathematica, or other suitable software, we obtain:

 F (76)œ "Þ#)"&G%

It is useful to make a program for equations (40–42) since the general

solutions can be used for any other 3 -order system calculation.rd

With the value of  from (76) we return to (72) and calculate :G G% $

 F (77)œ œ !Þ&!')G
(

$!G " 
$

%
G
#

ˆ ‰%
and with the value of  we return to (70) and obtain :G G$ "

 F (78)œ œ !Þ!&"$G
"

$!G G
"

$ %

Remember, these values have been calculated by assuming a Bessel system

with the envelope delay of 1 s with the upper cut off frequency rad s and=$N ¸ "Þ(& Î
with a normalized value . Because , and because we require anV œ " œ "ÎVGH =

actual cut off frequency rad s (or 50 kHz), we now have to= 1H Hœ # † &! !!! Î 0 œ
multiply these capacitor values by , and divide them by the actual value of = =$N HÎ V
to obtain the required values for a system upper cut off frequency equal to .=H

We can choose any standard value of  (making sure that our amplifiers areV
capable of driving such an impedance), and then check if the resulting capacitor

values are within their tolerance limits to their standard values. Without a special

order the capacitors available on the market are usually of a 10% tolerance, with the

E12 set of values, whilst the resistors are easily obtainable with 1% values and the

E48 set. Therefore there is a good chance of finding easily several suitable  values.V

One such suitable value is . This makes , and theV œ (&! V œ $!!!H H%

capacitors:

 nFœ *Þ&%)G%

 nFœ $Þ(('G$

 pF (79)œ $)#G œ G" #

As already emphasized, in the   and  are being drivendifferential filter G G% $

by the resistors in both filter arms, so they effectively see a double resistance. Thus the

differential filter uses  and of half the value of the single-ended example.G G$ %

We can approximate the values to the following nearest standard values:
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 nFœ %Þ(G%

 nFœ "Þ)G$

 pF (80)œ $*!G œ G" #

Note that for our purpose it is not particularly important to have the upper cut

off frequency exactly 50 kHz, it is much more important to have the envelope delay

substantially flat up to the filter cut off frequency. With a flat envelope delay all the

relevant frequencies will pass through the system with equal delay, and that preserves

the shape of the time-domain transient (step and impulse) response as close as

possible to the ideal for the chosen bandwidth.

Design Verification

Because the circuit is very simple we can verify the design by building it on a

proto-board, and measure its performance by inserting a low frequency square wave to

the input and observe the waveform on an oscilloscope, checking the rise time (the

10% to 90% transition should be of the order of 10–12 µs) and the amount of

overshoot (this should be ideally 0.4%, not exceeding 1%).

We can also build the filter model in one of the many circuit simulation

programs and run the AC and transient simulations.

We can also verify the design by calculating the magnitude, the phase angle

and the envelope delay as functions of frequency and plot the results. We can also

check the design by calculating and plotting the transient (step) response. The

procedure example is shown here briefly.

Frequency Domain Performance

As already shown in equation (6), the magnitude (absolute value) of the

transfer function is calculated by taking the square root of the product of the transfer

function with its own complex conjugate. We take the transfer function from (27) and

express it as a function of purely imaginary frequency :4=

 (81)œ EJ 4
O

4  4 O  4 O O
a b a b a b=

= = =
!

!

$ #
# " !

The gain  is the same as in (28), and the coefficients  are the same asE O! #ß"ß!

in equations (24–26). Taking the appropriate power of the imaginary unit yields:

 (82)œ EJ 4
O

4  O  4 O O
a b=

= = =
!

!

$ #
# " !

We need to separate the real and imaginary parts in the denominator:
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 (83)œ EJ 4
O

 O O  4   O
a b a b a b=

= = =
!

!

# $
# ! "

We rationalize the denominator by multiplying both the numerator and the

denominator by the complex conjugate of the denominator:

 œJ 4
E O  O O  4   O

 O O  4   O  O O  4   O
a b c da b a bc dc da b a b a b a b=

= = =

= = = = = =

! ! # ! "
# $

# $ # $
# ! " # ! "

(84)

By multiplying the terms in the denominator we obtain:

 (85)œ E OJ 4
 O O  4   O

 O O    O
a b a b a ba b a b=

= = =

= = =
! !

# $
# ! "

# $
# ! "

# #

So the magnitude is:

 (86)œ E J 4 J 4Qa b a b a bÈ= = =!

 œ E O
 O O    O

 O O    O
! !

# $
# ! "

# #

# $
# ! "

# #

Éa b a b
a b a b

= = =

= = =

 (87)œ E O
 O  #O  O  #O O O

 O  #O  O  #O O O
! !

' % #
# " !
# # #

" # !

' % #
# " !
# # #

" # !

È a b a ba b a b= = =

= = =

To obtain the phase as the function of frequency use (85), and take the

arctangent of the imaginary to real ratio:

 (88)œ
e J 4

d J 4
: =

=

=
a b e fa be fa barctan

 (89)œ

E O
   O

 O O    O

E O
 O O

 O O    O

: =

= =

= = =

=

= = =

a b
a ba b a ba ba b a b

arctan

! !

$
"

# $
# ! "

# #

! !

#
# !

# $
# ! "

# #

 (90)œ
 O

 O O
arctan

= =

=

$
"

#
# !

The envelope delay is calculated as the phase derivative in frequency. Because

the phase angle is measured in radians and the angular frequency in radians per

second, the envelope delay is measured in seconds.

 (91)œ
.

.
7 =

: =

=
ea b a b
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By using the phase expression of (90) the envelope delay is:

 (92)œ
.  O

.  O O
7 =ea b

= =

= =Œ arctan
$

"

#
# !

 œ
" # O  O O   O # O

"   O OŠ ‹
a ba b a ba ba b= =

=

$
"

#
# !

 O
 O O

# #

# # $
" # ! " #

#
# !

= = = = =

=

 œ
" % O  $O O  #O O O

"   O OŠ ‹
a ba b= =

=

$
"

#
# !

 O
 O O

# #

% #
# # " ! " !

#
# !

= =

=

 œ
 O O % O  $O O  #O O O

 O O   O  O O

a b a ba b a b a b= = =

= = = =

# % #
# ! # # " ! " !

#

# $ #
# ! " # !

# # #

 (93)œ
% O  $O O  #O O O

 O  #O  O  #O O O

= =

= = =

% #
# # " ! " !

' % #
# " !
# # #

" # !

a ba b a b
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Fig.6: Frequency domain performance of the (single ended) 3rd-order Bessel filter. Note

the gain of 2 (+6 dB), the dB  roll off, the phase inversion ( 180°) at low") Î#0 
frequencies, and the envelope delay of ~6 µs being essentially flat up to the cut off

frequency (~50 kHz). The graphs were plotted using actual component values rounded to

the standard values. The difference from the ideal Bessel filter is mostly notable from the

envelope delay, which increases very slightly between ×  and × Hz.& "! $ "!$ %
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Time Domain Performance (Transient Response)

It is beyond the scope of this text to provide the full mathematical background

on the forward and inverse Laplace transform, the complex number theory, the

contour integration of Cauchy or Laurent types of complex functions, and the theory

of residues, which are necessary for understanding the relationship between the

frequency domain and time domain performance of electronic circuits. Here we shall

only give a ‘cookery book recipe’ for obtaining the (linear) time domain performance

via residue calculation. More information can be found in standard mathematical

textbooks, and in a compressed form suitable for electronics engineers in .Ref.6

A  (  in Latin, meaning a remainder) of the transfer function isresidue residuum

found by eliminating one of its poles and calculating the value of the transfer function

at that pole from the remaining poles. By doing so for all the poles we obtain all the

residues and .the sum of all the residues is the time domain response of the system

It is worth mentioning that the residue pairs of complex conjugated pole pairs

are also complex conjugated, thus summing them up results in the double value of the

real part only (imaginary components, being of opposite sign, cancel by the addition).

Thus only  residues need to be calculated for even order systems, and8Î#
"  8  " Î#a b  for odd order systems. Here we offer a full calculation as an example.

The calculation of residues is easy if we express the transfer function by (29)

with the values of the poles from (57). Then the general form for a  residue is:5th

V5 5
3œ"

8

3

3œ"

8

3

=>œ =  =

=

=  =

lim
=p=5

a b
a b
a b

$
$ e (94)

Note: The expression (94) is valid only for functions containing simple non-repeating poles.

For functions containing multiple (coincident) poles, the procedure is different. If a function

contains  coincident poles, say , there is a term  in the7 = œ á œ = œ + =  +3" 37
7a b

characteristic polynomial of the transfer function, and to obtain the residue at the pole = œ +

the limiting process should be performed on the  derivative:a b7 " th

V5 œ =  + K =
=p+

" .

7 " x .=
lim a b – —a b a ba b

a b

7"

7"

7

Note that circuits containing coincident poles (equal  components) are never optimal inVG
any sense, except maybe in the case of a 2 -order system, if critical damping is absolutelynd

necessary. In practice it is easy to disregard optimization and use equal  componentsVG
throughout the system, but in such a way we sacrifice too much, since in order to achieve the

same bandwidth in a system with  stages those  components must be selected for the cut8 VG
off frequency higher by , with a consequent increase in system noise caused by the largerÈ8

bandwidth in the first stages. It is therefore always preferable to use staggered (complex

conjugated) poles wherever possible. This is especially true for multi-pole Bessel systems,

since (owed to the flat envelope delay) their theoretical overshoot of the step response never

exceeds 0.5%, a design goal also easily achievable in practice.
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So for systems with simple staggered poles we can always use equation (94)

for the evaluation of the residues.

One more important fact to note is that the sum of residues of the transfer

function  will give us the system’s impulse response. The system’s time domainJ =a b
response to an input signal is equal to the convolution integral of that signal with the

system’s impulse response. In the frequency domain the convolution integral is

transformed into a simple multiplication of the transformed signal by the transformed

impulse response. Because the Laplace transform of a unit impulse  (the Dirac’s$a b>
delta) is equal to 1, and the multiplication by 1 does not change the transferH = œa b
function, it is obvious that the inverse Laplace transform of the transfer function J =a b
must return the system’s impulse response .0 >a b

However for the step response the situation is different. The Laplace transform

of the Heaviside’s unit step  is equal to , thus to obtain the2 > œ "l L = œ "Î=a b a b>!

step response we need the residues of the composite function .K = œ J =a b a b"
=

Because of this there will be an additional residue owed to the pole at . The= œ !
meaning of this pole and its residue is easily comprehended by realizing that

frequency is inverse of time, thus  means . In other words, the pole at the= œ ! > œ _
complex plane origin determines the final value of the system’s output to which it

settles to when all transient phenomena have vanished, after some long time (several

times longer than the largest system’s time constant). For low pass systems this will

be the system’s DC value, equal to 1 for unit gain systems, and equal to  forE!

systems with a DC gain of . For band pass and high pass systems this value willE!

usually be zero (or a small DC offset).

In spite of this being a general rule, it is a good practice to check the result!

Here we now calculate the step response. We shall use the following

numerical values of the poles, taken from (54–56) and multiplied by the ratio of the

desired to the normalized system cut off frequency, as in (57):

 × rad s (95)
×

œ #Þ$### œ %Þ"&&& "! Î= œ <
# † & "!

"Þ(&&'
" "

$

%
&= 1

=

H

N

 
×

œ "Þ)$)*  4"Þ(&%%= œ <
# † & "!

"Þ(&&'
# #

$

%= 1

=

H

N

a b
 × rad s (96)œ $Þ#*!(  4$Þ"$*% "! Îa b &

 
×

œ "Þ)$)*  4"Þ(&%%= œ <
# † & "!

"Þ(&&'
$ $

$

%= 1

=

H

N

a b
 × rad s (97)œ $Þ#*!(  4$Þ"$*% "! Îa b &

Since we want the step response we must multiply our transfer function ,J =a b
equation (29) by the Laplace transform of the input unit step signal, , so we shall"Î=
have an additional pole at the complex plane origin:

 rad s (98)œ ! Î=!

and our new function will be:
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 (99)œ J = œ EK =
" " = = =

= = =  = =  = =  =
a b a b a ba ba ba ba ba b!

" # $

" # $

Our first residue for  will be:=p !

 (100)œ =  =>V E
" = = =

= =  = =  = =  =
! !

=>a b a blim
=p!

!
" # $

" # $a ba ba b e

 (101)œ E
= = =

!  = !  = !  =
!

" # $

" # $a ba ba b e!>

 (102)œ E!

because the product  before the limiting process,a b a b=  = œ =  ! œ = œ "!
" " "
= = =

and after the limiting we have the product of the poles in both the numerator and the

denominator, which equals 1, and also e . The second residue for will be:!
"œ " =p =

 (103)œ =  =>V E
" = = =

= =  = =  = =  =
1a b a blim

=p="
"

=>
!

" # $

" # $

a ba ba ba ba ba b e

 (104)œ lim
=p="

" = = =

= =  = =  =
E!

" # $

# $a ba b e=>

 (105)œ
" = = =

= =  = =  =
E

" " # " $
!

" # $a ba b e= >"

 (106)œ E
= =

=  = =  =
!

# $

" # " $a ba b e= >"

because  cancels before the limiting, and cancels after the limiting.a b=  = =" "

Likewise for :=p =#

 (107)œ =  =>V E
" = = =

= =  = =  = =  =
# #

=>a b a blim
=p=#

!
" # $

" # $

a ba ba ba ba ba b e

 (108)œ lim
=p=#

" = = =

= =  = =  =
E!

" # $

" $a ba b e=>

 (109)œ
" = = =

= =  = =  =
E

# # " # $
!

" # $a ba b e= >#

 (110)œ E
= =

=  = =  =
!

" $

# " # $a ba b e= >#

and finally for :=p =$
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 (111)œ =  =>V E
" = = =

= =  = =  = =  =
$ $

=>a b a blim
=p=$

!
" # $

" # $

a ba ba ba ba ba b e

 (112)œ lim
=p=$

" = = =

= =  = =  =
E!

" # $

" #a ba b e=>

 (113)œ
" = = =

= =  = =  =
E

$ $ " $ #
!

" # $a ba b e= >$

 (114)œ E
= =

=  = =  =
!

" #

$ " $ #a ba b e= >$

The time domain response is the sum of all residues:

ga b a b a b a b a b a b"> œ V > œ V >  V >  V >  V >
3œ!

8

3 ! " # $ (115)

which in our case means:

ga b ” •a ba b a ba b a ba b> œ E "   
= = = = = =

=  = =  = =  = =  = =  = =  =
!

# $ " $ " #

" # " $ # " # $ $ " $ #

e e e= > = > = >" # $

(116)

We may now insert the appropriate numbers into the computer and calculate

the step response for the required time range and resolution. According to a well

known relation, which has been derived for a simple  low pass system, the stepVG
rise time from 10% to 90% of the final amplitude is related to the cut off frequency as:

> ¸
!Þ$&

0
<

H

(117)

Since Bessel systems follow closely the frequency response of the 1st-order system

down to dB, the same approximation is valid for Bessel systems of any order.$
Thus, for a 50 kHz cut off we expect a rise time of about µs, and since the system(
must settle close to the final value within some × larger time, it will be enough to&
select a time range from  to µs. A resolution of µs should be suitable, giving! $& !Þ"
us a total of  time samples (longer time range and or smaller time increments can$&! Î
be chosen at will, though this means more time samples and thus longer calculation).

However, before leaving the subject, there is another important insight to

realize, which is difficult to see from the complex exponential expression in (116). In

order to see this let us write the poles in terms of their real and imaginary part.

The pole  is real, and  form a complex conjugate pair:= =" #ß$

 œ=" "5

 œ  4=# # #5 =

 (118)œ  4=$ # #5 =
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Here the real and imaginary components represent the numerical values as in (95–97).

The time domain response can then be written as:

 > œ E "
 4  4

  4   4
ga b ” a ba ba ba b!

# # # #

" # # " # #

5 = 5 =

5 5 = 5 5 =
e5">

 
 4

 4   4   4

5 5 =

5 = 5 5 = 5 =

" # #

# # " # # # #

4a ba ba b ea b5 =# # >

 (119)
 4

 4   4   4

5 5 =

5 = 5 5 = 5 =

" # #

# # " # # # #

4a ba ba b •ea b5 =# # >

As we sum and multiply the various terms we obtain:

 > œ E "


 
ga b ” a b!

# #
# #

" #
#

#
#

5 =

5 5 =
e5">

  †
 4

  4  #4

5 5 =

5 5 = =

" # #

# " # #

4a b ea b5 =# # >

 (120) †
 4

  4 #4

5 5 =

5 5 = =

" # #

# " # #

4a b ea b5 =# # > •
To reorder this properly we must rationalize the denominators of the last two terms, so

we multiply those numerators and denominators by the denominator’s complex

conjugate:

 > œ E "


 
ga b ” a b!

# #
# #

" #
#

#
#

5 =

5 5 =
e5">

  †
 4   4

  4   4  #4

5 5 = 5 5 =

5 5 = 5 5 = =

" # # # " #

# " # # " # #

4a ba ba ba b ea b5 =# # >

 (121) †
 4   4

  4   4 #4

5 5 = 5 5 =

5 5 = 5 5 = =

" # # # " #

# " # # " # #

4a ba ba ba b ea b5 =# # > •
The denominators are now real (except for the exponential terms, which will be dealt

with later):

 > œ E "


 
ga b ” a b!
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Now we perform the multiplications in the numerators:
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and we separate the real and imaginary parts, but we leave the imaginary unit in the

denominators of the exponential parts, as we shall need them later:
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(124)

We group together the two real parts and the two imaginary parts:
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We can now cancel the imaginary unit in the last term:
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Now we separate the real and imaginary exponents:
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and we extract the common real exponential part:
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The imaginary exponential parts can be rearranged to form the Euler’s representation

of trigonometric functions, a sine and a cosine:
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and so we have a purely real time function:
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What we have here are some real scaling coefficients in front of real

exponential functions with negative exponents (decaying with time!), the last two

multiplying (damping!) a sine and a cosine function.

The resulting step response is plotted in , and it clearly shows that theFig.7

design goal of obtaining a maximally steep rise time with minimal overshoot,

characteristic of Bessel systems, has been met.

Of educational importance is , where each row of equation (130) hasFig.8

been drawn separately in the red-green-blue order, with the gray curve the resulting

sum (but without the multiplication by ). Note the purely exponential first rowE!

(red), and the heavily damped sine and cosine of the second (green) and third (blue)

row. It is precisely the correct damping which ensures the desired response.
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Fig.8: Plot of the row by row components of equation (130) in the red-green-blue

order. The gray plot is their sum (as in Fig.7, but without ). Note the purelyE!

exponential red line (first row), and the heavily damped sine and cosine (green and

blue) components (second and third row).
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This completes our filter analysis.

I hope that the analysis has been presented with enough detail and without

gaps, so that it should be easy to follow, and the general design principles shown are

clear and easily applicable to other similar circuits. Those readers who will encounter

some difficulties in the required theoretical or mathematical background should

consult the relevant literature, some good examples are indicated in the references, but

of course the list of available literature is much much broader.
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