#include "Riostream.h"
#include "TGLBoundingBox.h"
#include "TGLIncludes.h"
#include "TMathBase.h"
ClassImp(TGLBoundingBox)
TGLBoundingBox::TGLBoundingBox() :
   fVertex(8)
{
   
   SetEmpty();
}
TGLBoundingBox::TGLBoundingBox(const TGLVertex3 vertex[8]) :
   fVertex(8)
{
   
   Set(vertex);
}
TGLBoundingBox::TGLBoundingBox(const Double_t vertex[8][3]) :
   fVertex(8)
{
   
   Set(vertex);
}
TGLBoundingBox::TGLBoundingBox(const TGLVertex3 & lowVertex, const TGLVertex3 & highVertex) :
   fVertex(8)
{
   
   SetAligned(lowVertex, highVertex);
}
TGLBoundingBox::TGLBoundingBox(const TGLBoundingBox & other) :
   fVertex(8)
{
   
   Set(other);
}
TGLBoundingBox::~TGLBoundingBox()
{
  
}
void TGLBoundingBox::UpdateCache()
{
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   fAxes[0].Set(fVertex[1] - fVertex[0]);
   fAxes[1].Set(fVertex[3] - fVertex[0]);
   fAxes[2].Set(fVertex[4] - fVertex[0]);
   
   
   Bool_t fixZeroMagAxis = kFALSE;
   Int_t zeroMagAxisInd = -1;
   for (UInt_t i = 0; i<3; i++) {
      fAxesNorm[i] = fAxes[i];
      Double_t mag = fAxesNorm[i].Mag();
      if (mag > 0.0) {
         fAxesNorm[i] /= mag;
      } else {
         if (!fixZeroMagAxis && zeroMagAxisInd == -1) {
            zeroMagAxisInd = i;
            fixZeroMagAxis = kTRUE;
         } else if (fixZeroMagAxis) {
            fixZeroMagAxis = kFALSE;
         }
      }
   }
   
   
   if (fixZeroMagAxis) {
      fAxesNorm[zeroMagAxisInd] = Cross(fAxesNorm[(zeroMagAxisInd+1)%3],
                                        fAxesNorm[(zeroMagAxisInd+2)%3]);
   }
   TGLVector3 extents = Extents();
   fVolume   = TMath::Abs(extents.X() * extents.Y() * extents.Z());
   fDiagonal = extents.Mag();
}
void TGLBoundingBox::Set(const TGLVertex3 vertex[8])
{
   
   for (UInt_t v = 0; v < 8; v++) {
      fVertex[v] = vertex[v];
   }
   
   UpdateCache();
}
void TGLBoundingBox::Set(const Double_t vertex[8][3])
{
   
   for (UInt_t v = 0; v < 8; v++) {
      for (UInt_t a = 0; a < 3; a++) {
         fVertex[v][a] = vertex[v][a];
      }
   }
   
   UpdateCache();
}
void TGLBoundingBox::Set(const TGLBoundingBox & other)
{
   
   for (UInt_t v = 0; v < 8; v++) {
      fVertex[v].Set(other.fVertex[v]);
   }
   
   UpdateCache();
}
void TGLBoundingBox::SetEmpty()
{
   
   for (UInt_t v = 0; v < 8; v++) {
      fVertex[v].Fill(0.0);
   }
   
   UpdateCache();
}
void TGLBoundingBox::SetAligned(const TGLVertex3 & lowVertex, const TGLVertex3 & highVertex)
{
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   TGLVector3 diff = highVertex - lowVertex;
   if (diff.X() < 0.0 || diff.Y() < 0.0 || diff.Z() < 0.0) {
      Error("TGLBoundingBox::SetAligned", "low/high vertex range error");
   }
   fVertex[0] = lowVertex;
   fVertex[1] = lowVertex;  fVertex[1].X() += diff.X();
   fVertex[2] = lowVertex;  fVertex[2].X() += diff.X(); fVertex[2].Y() += diff.Y();
   fVertex[3] = lowVertex;  fVertex[3].Y() += diff.Y();
   fVertex[4] = highVertex; fVertex[4].X() -= diff.X(); fVertex[4].Y() -= diff.Y();
   fVertex[5] = highVertex; fVertex[5].Y() -= diff.Y();
   fVertex[6] = highVertex;
   fVertex[7] = highVertex; fVertex[7].X() -= diff.X();
   
   UpdateCache();
}
void TGLBoundingBox::SetAligned(UInt_t nbPnts, const Double_t * pnts)
{
   
   
   if (nbPnts < 1 || !pnts) {
      assert(false);
      return;
   }
   
   TGLVertex3 low(pnts[0], pnts[1], pnts[2]);
   TGLVertex3 high(pnts[0], pnts[1], pnts[2]);
   for (UInt_t p = 1; p < nbPnts; p++) {
      for (UInt_t i = 0; i < 3; i++) {
         if (pnts[3*p + i] < low[i]) {
            low[i] = pnts[3*p + i] ;
         }
         if (pnts[3*p + i] > high[i]) {
            high[i] = pnts[3*p + i] ;
         }
      }
   }
   SetAligned(low, high);
}
void TGLBoundingBox::MergeAligned(const TGLBoundingBox & other)
{
   
   
   if (other.IsEmpty()) return;
   if (IsEmpty())
   {
      Set(other);
   }
   else
   {
      TGLVertex3 low (other.MinAAVertex());
      TGLVertex3 high(other.MaxAAVertex());
      low .Minimum(MinAAVertex());
      high.Maximum(MaxAAVertex());
      SetAligned(low, high);
   }
}
void TGLBoundingBox::Scale(Double_t factor)
{
   
   Scale(factor, factor, factor);
   
   UpdateCache();
}
void TGLBoundingBox::Scale(Double_t xFactor, Double_t yFactor, Double_t zFactor)
{
   
   
   
   const TGLVector3 xOffset = Axis(0, kFALSE)*(xFactor - 1.0) / 2.0;
   const TGLVector3 yOffset = Axis(1, kFALSE)*(yFactor - 1.0) / 2.0;
   const TGLVector3 zOffset = Axis(2, kFALSE)*(zFactor - 1.0) / 2.0;
   
   
   
   
   
   
   
   
   
   
   
   fVertex[0] += -xOffset - yOffset - zOffset;
   fVertex[1] +=  xOffset - yOffset - zOffset;
   fVertex[2] +=  xOffset + yOffset - zOffset;
   fVertex[3] += -xOffset + yOffset - zOffset;
   fVertex[4] += -xOffset - yOffset + zOffset;
   fVertex[5] +=  xOffset - yOffset + zOffset;
   fVertex[6] +=  xOffset + yOffset + zOffset;
   fVertex[7] += -xOffset + yOffset + zOffset;
   
   UpdateCache();
}
void TGLBoundingBox::Translate(const TGLVector3 & offset)
{
   
   for (UInt_t v = 0; v < 8; v++) {
      fVertex[v] = fVertex[v] + offset;
   }
   
}
void TGLBoundingBox::Transform(const TGLMatrix & matrix)
{
   
   for (UInt_t v = 0; v < 8; v++) {
      matrix.TransformVertex(fVertex[v]);
   }
   
   UpdateCache();
}
const std::vector<UInt_t> & TGLBoundingBox::FaceVertices(EFace face) const
{
   
   
   
   
   
   
   
   
   
   
   
   
   static Bool_t init = kFALSE;
   static std::vector<UInt_t> faceIndexes[kFaceCount];
   if (!init) {
      
      faceIndexes[kFaceLowX].push_back(7);
      faceIndexes[kFaceLowX].push_back(4);
      faceIndexes[kFaceLowX].push_back(0);
      faceIndexes[kFaceLowX].push_back(3);
      
      faceIndexes[kFaceHighX].push_back(2);
      faceIndexes[kFaceHighX].push_back(1);
      faceIndexes[kFaceHighX].push_back(5);
      faceIndexes[kFaceHighX].push_back(6);
      
      faceIndexes[kFaceLowY].push_back(5);
      faceIndexes[kFaceLowY].push_back(1);
      faceIndexes[kFaceLowY].push_back(0);
      faceIndexes[kFaceLowY].push_back(4);
      
      faceIndexes[kFaceHighY].push_back(2);
      faceIndexes[kFaceHighY].push_back(6);
      faceIndexes[kFaceHighY].push_back(7);
      faceIndexes[kFaceHighY].push_back(3);
      
      faceIndexes[kFaceLowZ].push_back(3);
      faceIndexes[kFaceLowZ].push_back(0);
      faceIndexes[kFaceLowZ].push_back(1);
      faceIndexes[kFaceLowZ].push_back(2);
      
      faceIndexes[kFaceHighZ].push_back(6);
      faceIndexes[kFaceHighZ].push_back(5);
      faceIndexes[kFaceHighZ].push_back(4);
      faceIndexes[kFaceHighZ].push_back(7);
      init= kTRUE;
   }
   return faceIndexes[face];
}
void TGLBoundingBox::PlaneSet(TGLPlaneSet_t & planeSet) const
{
   
   
   assert(planeSet.empty());
   
   
   
   
   
   
   
   
   
   
   
   
   planeSet.push_back(TGLPlane( fAxesNorm[2], fVertex[4])); 
   planeSet.push_back(TGLPlane(-fAxesNorm[2], fVertex[0])); 
   planeSet.push_back(TGLPlane(-fAxesNorm[0], fVertex[0])); 
   planeSet.push_back(TGLPlane( fAxesNorm[0], fVertex[1])); 
   planeSet.push_back(TGLPlane(-fAxesNorm[1], fVertex[0])); 
   planeSet.push_back(TGLPlane( fAxesNorm[1], fVertex[3])); 
}
TGLPlane TGLBoundingBox::GetNearPlane() const
{
   
   return TGLPlane(fAxesNorm[2], fVertex[4]);
}
EOverlap TGLBoundingBox::Overlap(const TGLPlane & plane) const
{
   
   
   
   if (plane.DistanceTo(Center()) + (Extents().Mag()/2.0) < 0.0) {
      return kOutside;
   }
   
   Int_t verticesInsidePlane = 8;
   for (UInt_t v = 0; v < 8; v++) {
      if (plane.DistanceTo(fVertex[v]) < 0.0) {
         verticesInsidePlane--;
      }
   }
   if ( verticesInsidePlane == 0 ) {
      return kOutside;
   } else if ( verticesInsidePlane == 8 ) {
      return kInside;
   } else {
      return kPartial;
   }
}
EOverlap TGLBoundingBox::Overlap(const TGLBoundingBox & other) const
{
   
   
   const TGLBoundingBox & a = *this;
   const TGLBoundingBox & b = other;
   TGLVector3 aHL = a.Extents() / 2.0; 
   TGLVector3 bHL = b.Extents() / 2.0; 
   
   
   
   TGLVector3 parentT = b.Center() - a.Center();
   
   
   
   
   Double_t aSphereRadius = aHL[0] < aHL[1] ? aHL[0] : aHL[1];
   if (aHL[2] < aSphereRadius) {
      aSphereRadius = aHL[2];
   }
   
   Double_t bSphereRadius = bHL.Mag();
   
   
   if (bSphereRadius + parentT.Mag() < aSphereRadius) {
      return kInside;
   }
   
   
   TGLVector3 aT(Dot(parentT, a.Axis(0)), Dot(parentT, a.Axis(1)), Dot(parentT, a.Axis(2)));
   
   
   Double_t   roaT[3][3];
   UInt_t     i, k;
   for (i=0 ; i<3 ; i++) {
      for (k=0; k<3; k++) {
         roaT[i][k] = Dot(a.Axis(i), b.Axis(k));
         
         if (fabs(roaT[i][k]) < 1e-14) {
            roaT[i][k] = 0.0;
         }
      }
      
      Double_t norm = sqrt(roaT[i][0]*roaT[i][0] + roaT[i][1]*roaT[i][1] + roaT[i][2]*roaT[i][2]);
      roaT[i][0] /= norm; roaT[i][1] /= norm; roaT[i][2] /= norm;
   }
   
   
   Double_t ra, rb, t;
   
   for (i=0; i<3; i++) {
      ra = aHL[i];
      rb = bHL[0]*fabs(roaT[i][0]) + bHL[1]*fabs(roaT[i][1]) + bHL[2]*fabs(roaT[i][2]);
      t = fabs(aT[i]);
      if (t > ra + rb)
         return kOutside;
      else if (ra < t + rb)
         return kPartial;
   }
   
   for (k=0; k<3; k++) {
      ra = aHL[0]*fabs(roaT[0][k]) + aHL[1]*fabs(roaT[1][k]) + aHL[2]*fabs(roaT[2][k]);
      rb = bHL[k];
      t = fabs(aT[0]*roaT[0][k] + aT[1]*roaT[1][k] + aT[2]*roaT[2][k]);
      if (t > ra + rb)
         return kOutside;
      else if (ra < t + rb)
         return kPartial;
   }
   
   
   ra = aHL[1]*fabs(roaT[2][0]) + aHL[2]*fabs(roaT[1][0]);
   rb = bHL[1]*fabs(roaT[0][2]) + bHL[2]*fabs(roaT[0][1]);
   t = fabs(aT[2]*roaT[1][0] - aT[1]*roaT[2][0]);
   if (t > ra + rb)
      return kOutside;
   else if (ra < t + rb)
      return kPartial;
   
   ra = aHL[1]*fabs(roaT[2][1]) + aHL[2]*fabs(roaT[1][1]);
   rb = bHL[0]*fabs(roaT[0][2]) + bHL[2]*fabs(roaT[0][0]);
   t = fabs(aT[2]*roaT[1][1] - aT[1]*roaT[2][1]);
   if (t > ra + rb)
      return kOutside;
   else if (ra < t + rb)
      return kPartial;
   
   ra = aHL[1]*fabs(roaT[2][2]) + aHL[2]*fabs(roaT[1][2]);
   rb = bHL[0]*fabs(roaT[0][1]) + bHL[1]*fabs(roaT[0][0]);
   t = fabs(aT[2]*roaT[1][2] - aT[1]*roaT[2][2]);
   if (t > ra + rb)
      return kOutside;
   else if (ra < t + rb)
      return kPartial;
   
   ra = aHL[0]*fabs(roaT[2][0]) + aHL[2]*fabs(roaT[0][0]);
   rb = bHL[1]*fabs(roaT[1][2]) + bHL[2]*fabs(roaT[1][1]);
   t = fabs(aT[0]*roaT[2][0] - aT[2]*roaT[0][0]);
   if (t > ra + rb)
      return kOutside;
   else if (ra < t + rb)
      return kPartial;
   
   ra = aHL[0]*fabs(roaT[2][1]) + aHL[2]*fabs(roaT[0][1]);
   rb = bHL[0]*fabs(roaT[1][2]) + bHL[2]*fabs(roaT[1][0]);
   t = fabs(aT[0]*roaT[2][1] - aT[2]*roaT[0][1]);
   if (t > ra + rb)
      return kOutside;
   else if (ra < t + rb)
      return kPartial;
   
   ra = aHL[0]*fabs(roaT[2][2]) + aHL[2]*fabs(roaT[0][2]);
   rb = bHL[0]*fabs(roaT[1][1]) + bHL[1]*fabs(roaT[1][0]);
   t = fabs(aT[0]*roaT[2][2] - aT[2]*roaT[0][2]);
   if (t > ra + rb)
      return kOutside;
   else if (ra < t + rb)
      return kPartial;
   
   ra = aHL[0]*fabs(roaT[1][0]) + aHL[1]*fabs(roaT[0][0]);
   rb = bHL[1]*fabs(roaT[2][2]) + bHL[2]*fabs(roaT[2][1]);
   t = fabs(aT[1]*roaT[0][0] - aT[0]*roaT[1][0]);
   if (t > ra + rb)
      return kOutside;
   else if (ra < t + rb)
      return kPartial;
   
   ra = aHL[0]*fabs(roaT[1][1]) + aHL[1]*fabs(roaT[0][1]);
   rb = bHL[0]*fabs(roaT[2][2]) + bHL[2]*fabs(roaT[2][0]);
   t = fabs(aT[1]*roaT[0][1] - aT[0]*roaT[1][1]);
   if (t > ra + rb)
      return kOutside;
   else if (ra < t + rb)
      return kPartial;
   
   ra = aHL[0]*fabs(roaT[1][2]) + aHL[1]*fabs(roaT[0][2]);
   rb = bHL[0]*fabs(roaT[2][1]) + bHL[1]*fabs(roaT[2][0]);
   t = fabs(aT[1]*roaT[0][2] - aT[0]*roaT[1][2]);
   if (t > ra + rb)
      return kOutside;
   else if (ra < t + rb)
      return kPartial;
   
   return kInside;
}
void TGLBoundingBox::Draw(Bool_t solid) const
{
   
   
   if (!solid) {
      glBegin(GL_LINE_LOOP);
      glVertex3dv(fVertex[0].CArr());
      glVertex3dv(fVertex[1].CArr());
      glVertex3dv(fVertex[2].CArr());
      glVertex3dv(fVertex[3].CArr());
      glVertex3dv(fVertex[7].CArr());
      glVertex3dv(fVertex[6].CArr());
      glVertex3dv(fVertex[5].CArr());
      glVertex3dv(fVertex[4].CArr());
      glEnd();
      glBegin(GL_LINES);
      glVertex3dv(fVertex[1].CArr());
      glVertex3dv(fVertex[5].CArr());
      glVertex3dv(fVertex[2].CArr());
      glVertex3dv(fVertex[6].CArr());
      glVertex3dv(fVertex[0].CArr());
      glVertex3dv(fVertex[3].CArr());
      glVertex3dv(fVertex[4].CArr());
      glVertex3dv(fVertex[7].CArr());
      glEnd();
   } else {
   
   
   
   
   
   
   
   
   
   
      
      glBegin(GL_QUADS);
      
      glNormal3d ( fAxesNorm[2].X(),  fAxesNorm[2].Y(),  fAxesNorm[2].Z());
      glVertex3dv(fVertex[4].CArr());
      glVertex3dv(fVertex[7].CArr());
      glVertex3dv(fVertex[6].CArr());
      glVertex3dv(fVertex[5].CArr());
      
      glNormal3d (-fAxesNorm[2].X(), -fAxesNorm[2].Y(), -fAxesNorm[2].Z());
      glVertex3dv(fVertex[0].CArr());
      glVertex3dv(fVertex[1].CArr());
      glVertex3dv(fVertex[2].CArr());
      glVertex3dv(fVertex[3].CArr());
      
      glNormal3d (-fAxesNorm[0].X(), -fAxesNorm[0].Y(), -fAxesNorm[0].Z());
      glVertex3dv(fVertex[0].CArr());
      glVertex3dv(fVertex[3].CArr());
      glVertex3dv(fVertex[7].CArr());
      glVertex3dv(fVertex[4].CArr());
      
      glNormal3d ( fAxesNorm[0].X(),  fAxesNorm[0].Y(),  fAxesNorm[0].Z());
      glVertex3dv(fVertex[6].CArr());
      glVertex3dv(fVertex[2].CArr());
      glVertex3dv(fVertex[1].CArr());
      glVertex3dv(fVertex[5].CArr());
      
      glNormal3d ( fAxesNorm[1].X(),  fAxesNorm[1].Y(),  fAxesNorm[1].Z());
      glVertex3dv(fVertex[3].CArr());
      glVertex3dv(fVertex[2].CArr());
      glVertex3dv(fVertex[6].CArr());
      glVertex3dv(fVertex[7].CArr());
      
      glNormal3d (-fAxesNorm[1].X(), -fAxesNorm[1].Y(), -fAxesNorm[1].Z());
      glVertex3dv(fVertex[4].CArr());
      glVertex3dv(fVertex[5].CArr());
      glVertex3dv(fVertex[1].CArr());
      glVertex3dv(fVertex[0].CArr());
      glEnd();
   }
}
Double_t TGLBoundingBox::Min(UInt_t index) const
{
   
   Double_t min = fVertex[0][index];
   for (UInt_t v = 1; v < 8; v++) {
      if (fVertex[v][index] < min) {
         min = fVertex[v][index];
      }
   }
   return min;
}
Double_t TGLBoundingBox::Max(UInt_t index) const
{
   
   Double_t max = fVertex[0][index];
   for (UInt_t v = 1; v < 8; v++) {
      if (fVertex[v][index] > max) {
         max = fVertex[v][index];
      }
   }
   return max;
}
TGLVertex3 TGLBoundingBox::MinAAVertex() const
{
   
   return TGLVertex3(Min(0), Min(1), Min(2));
}
TGLVertex3 TGLBoundingBox::MaxAAVertex() const
{
   
   return TGLVertex3(Max(0), Max(1), Max(2));
}
void TGLBoundingBox::Dump() const
{
   
   for (UInt_t i = 0; i<8; i++) {
      std::cout << "[" << i << "] (" << fVertex[i].X() << "," << fVertex[i].Y() << "," << fVertex[i].Z() << ")" << std::endl;
   }
   std::cout << "Center ";
   Center().Dump();
   std::cout << " Volume " << Volume() << std::endl;
}
Last change: Wed Jun 25 08:40:47 2008
Last generated: 2008-06-25 08:40
This page has been automatically generated. If you have any comments or suggestions about the page layout send a mail to ROOT support, or contact the developers with any questions or problems regarding ROOT.