#include "Riostream.h"
#include "TList.h"
#include "TFormula.h"
#include "TString.h"
#include "TObjString.h"
#include "TRandom.h"
#include "TMVA/MethodFDA.h"
#include "TMVA/Tools.h"
#include "TMVA/Interval.h"
#include "TMVA/Timer.h"
#include "TMVA/GeneticFitter.h"
#include "TMVA/SimulatedAnnealingFitter.h"
#include "TMVA/MinuitFitter.h"
#include "TMVA/MCFitter.h"
#include "TMVA/Config.h"
#include <stdlib.h>
ClassImp(TMVA::MethodFDA)
TMVA::MethodFDA::MethodFDA( const TString& jobName, const TString& methodTitle, DataSet& theData,
const TString& theOption, TDirectory* theTargetDir )
: MethodBase( jobName, methodTitle, theData, theOption, theTargetDir ),
IFitterTarget()
, fFitter(0)
, fConvergerFitter(0)
{
InitFDA();
SetConfigName( TString("Method") + GetMethodName() );
DeclareOptions();
ParseOptions();
ProcessOptions();
}
TMVA::MethodFDA::MethodFDA( DataSet& theData,
const TString& theWeightFile,
TDirectory* theTargetDir )
: MethodBase( theData, theWeightFile, theTargetDir )
{
InitFDA();
DeclareOptions();
}
void TMVA::MethodFDA::InitFDA( void )
{
SetMethodName( "FDA" );
SetMethodType( Types::kFDA );
SetTestvarName();
fNPars = 0;
fFormula = 0;
fBestPars.clear();
fEventsSig.clear();
fEventsBkg.clear();
fSumOfWeightsSig = 0;
fSumOfWeightsBkg = 0;
}
void TMVA::MethodFDA::DeclareOptions()
{
DeclareOptionRef( fFormulaStringP = "", "Formula", "The discrimination formula" );
DeclareOptionRef( fParRangeStringP = "", "ParRanges", "Parameter ranges" );
DeclareOptionRef( fFitMethod = "MINUIT", "FitMethod", "Optimisation Method");
AddPreDefVal(TString("MC"));
AddPreDefVal(TString("GA"));
AddPreDefVal(TString("SA"));
AddPreDefVal(TString("MINUIT"));
DeclareOptionRef( fConverger = "None", "Converger", "FitMethod uses Converger to improve result");
AddPreDefVal(TString("None"));
AddPreDefVal(TString("MINUIT"));
}
void TMVA::MethodFDA::ProcessOptions()
{
MethodBase::ProcessOptions();
ClearAll();
fFormulaStringT = fFormulaStringP;
fParRangeStringT = fParRangeStringP;
fParRangeStringT.ReplaceAll( " ", "" );
fNPars = fParRangeStringT.CountChar( ')' );
TList* parList = gTools().ParseFormatLine( fParRangeStringT, ";" );
if (parList->GetSize() != fNPars) {
fLogger << kFATAL << "<ProcessOptions> Mismatch in parameter string: "
<< "the number of parameters: " << fNPars << " != ranges defined: "
<< parList->GetSize() << "; the format of the \"ParRanges\" string "
<< "must be: \"(-1.2,3.4);(-2.3,4.55);...\", "
<< "where the numbers in \"(a,b)\" correspond to the a=min, b=max parameter ranges; "
<< "each parameter defined in the function string must have a corresponding rang."
<< Endl;
}
fParRange.resize( fNPars );
for (Int_t ipar=0; ipar<fNPars; ipar++) fParRange[ipar] = 0;
for (Int_t ipar=0; ipar<fNPars; ipar++) {
TString str = ((TObjString*)parList->At(ipar))->GetString();
Ssiz_t istr = str.First( ',' );
TString pminS(str(1,istr-1));
TString pmaxS(str(istr+1,str.Length()-2-istr));
Float_t pmin = atof(pminS.Data());
Float_t pmax = atof(pmaxS.Data());
if (pmin > pmax) fLogger << kFATAL << "<ProcessOptions> max > min in interval for parameter: ["
<< ipar << "] : [" << pmin << ", " << pmax << "] " << Endl;
fParRange[ipar] = new Interval( pmin, pmax );
}
delete parList;
for (Int_t ipar=0; ipar<fNPars; ipar++) {
fFormulaStringT.ReplaceAll( Form("(%i)",ipar), Form("[%i]",ipar) );
}
for (Int_t ipar=fNPars; ipar<1000; ipar++) {
if (fFormulaStringT.Contains( Form("(%i)",ipar) ))
fLogger << kFATAL
<< "<ProcessOptions> Formula contains expression: \"" << Form("(%i)",ipar) << "\", "
<< "which cannot be attributed to a parameter; "
<< "it may be that the number of variable ranges given via \"ParRanges\" "
<< "does not match the number of parameters in the formula expression, please verify!"
<< Endl;
}
for (Int_t ivar=GetNvar()-1; ivar >= 0; ivar--) {
fFormulaStringT.ReplaceAll( Form("x%i",ivar), Form("[%i]",ivar+fNPars) );
}
for (Int_t ivar=GetNvar(); ivar<1000; ivar++) {
if (fFormulaStringT.Contains( Form("x%i",ivar) ))
fLogger << kFATAL
<< "<ProcessOptions> Formula contains expression: \"" << Form("x%i",ivar) << "\", "
<< "which cannot be attributed to an input variable" << Endl;
}
fLogger << "User-defined formula string : \"" << fFormulaStringP << "\"" << Endl;
fLogger << "TFormula-compatible formula string: \"" << fFormulaStringT << "\"" << Endl;
fLogger << "Creating and compiling formula" << Endl;
fFormula = new TFormula( "FDA_Formula", fFormulaStringT );
#if ROOT_VERSION_CODE >= ROOT_VERSION(5,2,0)
fFormula->Optimize();
#endif
if (fFormula->Compile() != 0)
fLogger << kFATAL << "<ProcessOptions> Formula expression could not be properly compiled" << Endl;
if (fFormula->GetNpar() > fNPars + GetNvar())
fLogger << kFATAL << "<ProcessOptions> Dubious number of parameters in formula expression: "
<< fFormula->GetNpar() << " - compared to maximum allowed: " << fNPars + GetNvar() << Endl;
fConvergerFitter = (IFitterTarget*)this;
if (fConverger == "MINUIT") {
fConvergerFitter = new MinuitFitter( *this, Form("%s_Converger_Minuit", GetName()), fParRange, GetOptions() );
SetOptions(dynamic_cast<Configurable*>(fConvergerFitter)->GetOptions());
}
if (fFitMethod == "MC")
fFitter = new MCFitter( *fConvergerFitter, Form("%s_Fitter_MC", GetName()), fParRange, GetOptions() );
else if (fFitMethod == "GA")
fFitter = new GeneticFitter( *fConvergerFitter, Form("%s_Fitter_GA", GetName()), fParRange, GetOptions() );
else if (fFitMethod == "SA")
fFitter = new SimulatedAnnealingFitter( *fConvergerFitter, Form("%s_Fitter_SA", GetName()), fParRange, GetOptions() );
else if (fFitMethod == "MINUIT")
fFitter = new MinuitFitter( *fConvergerFitter, Form("%s_Fitter_Minuit", GetName()), fParRange, GetOptions() );
else {
fLogger << kFATAL << "<Train> Do not understand fit method:" << fFitMethod << Endl;
}
fFitter->CheckForUnusedOptions();
}
TMVA::MethodFDA::~MethodFDA( void )
{
ClearAll();
if(fFitter) delete fFitter;
if(fConvergerFitter!=0 && fConvergerFitter!=this) delete fConvergerFitter;
}
void TMVA::MethodFDA::ClearAll( void )
{
for (UInt_t ipar=0; ipar<fParRange.size(); ipar++) {
if (fParRange[ipar] != 0) { delete fParRange[ipar]; fParRange[ipar] = 0; }
}
fParRange.clear();
if (fFormula != 0) { delete fFormula; fFormula = 0; }
fBestPars.clear();
}
void TMVA::MethodFDA::Train( void )
{
if (!CheckSanity()) fLogger << kFATAL << "<Train> sanity check failed" << Endl;
fSumOfWeightsSig = 0;
fSumOfWeightsBkg = 0;
for (Int_t ievt=0; ievt<Data().GetNEvtTrain(); ievt++) {
ReadTrainingEvent(ievt);
Event* ev = new Event( GetEvent() );
Float_t w = ev->GetWeight();
if (ev->IsSignal()) { fEventsSig.push_back( ev ); fSumOfWeightsSig += w; }
else { fEventsBkg.push_back( ev ); fSumOfWeightsBkg += w; }
}
if (fSumOfWeightsSig <= 0 || fSumOfWeightsBkg <= 0) {
fLogger << kFATAL << "<Train> Troubles in sum of weights: "
<< fSumOfWeightsSig << " (S) : " << fSumOfWeightsBkg << " (B)" << Endl;
}
fBestPars.clear();
for (std::vector<Interval*>::const_iterator parIt = fParRange.begin(); parIt != fParRange.end(); parIt++) {
fBestPars.push_back( (*parIt)->GetMean() );
}
Double_t estimator = fFitter->Run( fBestPars );
PrintResults( fFitMethod, fBestPars, estimator );
std::vector<const Event*>::const_iterator itev;
for (itev = fEventsSig.begin(); itev != fEventsSig.end(); itev++) delete *itev;
for (itev = fEventsBkg.begin(); itev != fEventsBkg.end(); itev++) delete *itev;
fEventsSig.clear();
fEventsBkg.clear();
if (fConverger == "MINUIT") delete fConvergerFitter;
delete fFitter; fFitter = 0;
}
void TMVA::MethodFDA::PrintResults( const TString& fitter, std::vector<Double_t>& pars, const Double_t estimator ) const
{
fLogger << kINFO;
fLogger << "Results for parameter fit using \"" << fitter << "\" fitter:" << Endl;
vector<TString> parNames;
for (UInt_t ipar=0; ipar<pars.size(); ipar++) parNames.push_back( Form("Par(%i)",ipar ) );
gTools().FormattedOutput( pars, parNames, "Parameter" , "Fit result", fLogger, "%g" );
fLogger << "Discriminator expression: \"" << fFormulaStringP << "\"" << Endl;
fLogger << "Value of estimator at minimum: " << estimator << Endl;
}
Double_t TMVA::MethodFDA::EstimatorFunction( std::vector<Double_t>& pars )
{
const std::vector<const Event*>* eventVecs[] = { &fEventsSig, &fEventsBkg };
const Double_t sumOfWeights[] = { fSumOfWeightsSig, fSumOfWeightsBkg };
const Double_t desiredVal[] = { 1, 0 };
Double_t estimator[] = { 0, 0 };
std::vector<const Event*>::const_iterator itev;
for (Int_t itype=0; itype<2; itype++) {
for (itev = eventVecs[itype]->begin(); itev != eventVecs[itype]->end(); itev++) {
Double_t result = InterpretFormula( **itev, pars );
Double_t deviation = (result - desiredVal[itype])*(result - desiredVal[itype]);
estimator[itype] += deviation * (*itev)->GetWeight();
}
estimator[itype] /= sumOfWeights[itype];
}
return estimator[0] + estimator[1];
}
Double_t TMVA::MethodFDA::InterpretFormula( const Event& event, std::vector<Double_t>& pars )
{
for (UInt_t ipar=0; ipar<pars.size(); ipar++) fFormula->SetParameter( ipar, pars[ipar] );
for (Int_t ivar=0; ivar<GetNvar(); ivar++) fFormula->SetParameter( fNPars+ivar, event.GetVal(ivar) );
return fFormula->Eval( 0 );
}
Double_t TMVA::MethodFDA::GetMvaValue()
{
return InterpretFormula( GetEvent(), fBestPars );
}
void TMVA::MethodFDA::WriteWeightsToStream( ostream& o ) const
{
o << fNPars << endl;
for (Int_t ipar=0; ipar<fNPars; ipar++) o << fBestPars[ipar] << endl;
}
void TMVA::MethodFDA::ReadWeightsFromStream( istream& istr )
{
istr >> fNPars;
fBestPars.clear();
fBestPars.resize( fNPars );
for (Int_t ipar=0; ipar<fNPars; ipar++) istr >> fBestPars[ipar];
}
void TMVA::MethodFDA::MakeClassSpecific( std::ostream& fout, const TString& className ) const
{
fout << " double fParameter[" << fNPars << "];" << endl;
fout << "};" << endl;
fout << "" << endl;
fout << "inline void " << className << "::Initialize() " << endl;
fout << "{" << endl;
for (Int_t ipar=0; ipar<fNPars; ipar++) {
fout << " fParameter[" << ipar << "] = " << fBestPars[ipar] << ";" << endl;
}
fout << "}" << endl;
fout << endl;
fout << "inline double " << className << "::GetMvaValue__( const std::vector<double>& inputValues ) const" << endl;
fout << "{" << endl;
fout << " // interpret the formula" << endl;
TString str = fFormulaStringT;
for (Int_t ipar=0; ipar<fNPars; ipar++) {
str.ReplaceAll( Form("[%i]", ipar), Form("fParameter[%i]", ipar) );
}
for (Int_t ivar=0; ivar<GetNvar(); ivar++) {
str.ReplaceAll( Form("[%i]", ivar+fNPars), Form("inputValues[%i]", ivar) );
}
fout << " double retval = " << str << ";" << endl;
fout << endl;
fout << " return retval; " << endl;
fout << "}" << endl;
fout << endl;
fout << "// Clean up" << endl;
fout << "inline void " << className << "::Clear() " << endl;
fout << "{" << endl;
fout << " // nothing to clear" << endl;
fout << "}" << endl;
}
void TMVA::MethodFDA::GetHelpMessage() const
{
fLogger << Endl;
fLogger << gTools().Color("bold") << "--- Short description:" << gTools().Color("reset") << Endl;
fLogger << Endl;
fLogger << "The function discriminant analysis (FDA) is a classifier suitable " << Endl;
fLogger << "to solve linear or simple nonlinear discrimination problems." << Endl;
fLogger << Endl;
fLogger << "The user provides the desired function with adjustable parameters" << Endl;
fLogger << "via the configuration option string, and FDA fits the parameters to" << Endl;
fLogger << "it, requiring the signal (background) function value to be as close" << Endl;
fLogger << "as possible to 1 (0). Its advantage over the more involved and" << Endl;
fLogger << "automatic nonlinear discriminators is the simplicity and transparency " << Endl;
fLogger << "of the discrimination expression. A shortcoming is that FDA will" << Endl;
fLogger << "underperform for involved problems with complicated, phase space" << Endl;
fLogger << "dependent nonlinear correlations." << Endl;
fLogger << Endl;
fLogger << "Please consult the Users Guide for the format of the formula string" << Endl;
fLogger << "and the allowed parameter ranges:" << Endl;
if (gConfig().WriteOptionsReference()) {
fLogger << "<a href=\"http://tmva.sourceforge.net/docu/TMVAUsersGuide.pdf\">"
<< "http://tmva.sourceforge.net/docu/TMVAUsersGuide.pdf</a>" << Endl;
}
else fLogger << "http://tmva.sourceforge.net/docu/TMVAUsersGuide.pdf" << Endl;
fLogger << Endl;
fLogger << gTools().Color("bold") << "--- Performance optimisation:" << gTools().Color("reset") << Endl;
fLogger << Endl;
fLogger << "The FDA performance depends on the complexity and fidelity of the" << Endl;
fLogger << "user-defined discriminator function. As a general rule, it should" << Endl;
fLogger << "be able to reproduce the discrimination power of any linear" << Endl;
fLogger << "discriminant analysis. To reach into the nonlinear domain, it is" << Endl;
fLogger << "useful to inspect the correlation profiles of the input variables," << Endl;
fLogger << "and add quadratic and higher polynomial terms between variables as" << Endl;
fLogger << "necessary. Comparison with more involved nonlinear classifiers can" << Endl;
fLogger << "be used as a guide." << Endl;
fLogger << Endl;
fLogger << gTools().Color("bold") << "--- Performance tuning via configuration options:" << gTools().Color("reset") << Endl;
fLogger << Endl;
fLogger << "Depending on the function used, the choice of \"FitMethod\" is" << Endl;
fLogger << "crucial for getting valuable solutions with FDA. As a guideline it" << Endl;
fLogger << "is recommended to start with \"FitMethod=MINUIT\". When more complex" << Endl;
fLogger << "functions are used where MINUIT does not converge to reasonable" << Endl;
fLogger << "results, the user should switch to non-gradient FitMethods such" << Endl;
fLogger << "as GeneticAlgorithm (GA) or Monte Carlo (MC). It might prove to be" << Endl;
fLogger << "useful to combine GA (or MC) with MINUIT by setting the option" << Endl;
fLogger << "\"Converger=MINUIT\". GA (MC) will then set the starting parameters" << Endl;
fLogger << "for MINUIT such that the basic quality of GA (MC) of finding global" << Endl;
fLogger << "minima is combined with the efficacy of MINUIT of finding local" << Endl;
fLogger << "minima." << Endl;
}
Last change: Sat Nov 1 10:21:45 2008
Last generated: 2008-11-01 10:21
This page has been automatically generated. If you have any comments or suggestions about the page layout send a mail to ROOT support, or contact the developers with any questions or problems regarding ROOT.