// @(#)root/g3d:$Id: TPoints3DABC.cxx 21394 2007-12-17 08:57:17Z couet $ // Author: Valery Fine(fine@mail.cern.ch) 04/05/99 // @(#)root/g3d:$Id: TPoints3DABC.cxx 21394 2007-12-17 08:57:17Z couet $ // Author: Valery Fine(fine@mail.cern.ch) 24/04/99 #include "TPoints3DABC.h" #include "TMath.h" ClassImp(TPoints3DABC) //______________________________________________________________________________ /* Begin_Html <center><h2>The TPoints3DABC class</h2></center> Abstract class to define Arrays of 3D points. End_Html */ //______________________________________________________________________________ Int_t TPoints3DABC::Add(Float_t x, Float_t y, Float_t z) { // Add one 3D point defined by x,y,z to the array of the points // as its last element return AddLast(x,y,z); } //______________________________________________________________________________ Int_t TPoints3DABC::AddLast(Float_t x, Float_t y, Float_t z) { // Add one 3D point defined by x,y,z to the array of the points // as its last element return SetNextPoint(x,y,z); } //______________________________________________________________________________ Int_t TPoints3DABC::DistancetoLine(Int_t px, Int_t py, Float_t x1, Float_t y1, Float_t x2, Float_t y2, Int_t lineWidth ) { // Compute distance from point px,py to an axis of the band defined. // by pair points (x1,y1),(x2,y2) where lineWidth is the width of the band // // Compute the closest distance of approach from point px,py to this line. // The distance is computed in pixels units. // // // Algorithm: // // A(x1,y1) P B(x2,y2) // ------------------------------------------------ // I // I // I // I // M(x,y) // // Let us call a = distance AM a2=a**2 // b = distance BM b2=b**2 // c = distance AB c2=c**2 // d = distance PM d2=d**2 // u = distance AP u2=u**2 // v = distance BP v2=v**2 c = u + v // // d2 = a2 - u2 // d2 = b2 - v2 = b2 -(c-u)**2 // ==> u = (a2 -b2 +c2)/2c // // Float_t x1 = gPad->XtoAbsPixel(xp1); // Float_t y1 = gPad->YtoAbsPixel(yp1); // Float_t x2 = gPad->XtoAbsPixel(xp2); // Float_t y2 = gPad->YtoAbsPixel(yp2); Float_t xl, xt, yl, yt; Float_t x = px; Float_t y = py; if (x1 < x2) {xl = x1; xt = x2;} else {xl = x2; xt = x1;} if (y1 < y2) {yl = y1; yt = y2;} else {yl = y2; yt = y1;} if (x < xl-2 || x> xt+2) return 9999; //following algorithm only valid in the box if (y < yl-2 || y> yt+2) return 9999; //surrounding the line Float_t xx1 = x - x1; Float_t xx2 = x - x2; Float_t x1x2 = x1 - x2; Float_t yy1 = y - y1; Float_t yy2 = y - y2; Float_t y1y2 = y1 - y2; Float_t a2 = xx1*xx1 + yy1*yy1; Float_t b2 = xx2*xx2 + yy2*yy2; Float_t c2 = x1x2*x1x2 + y1y2*y1y2; if (c2 <= 0) return 9999; Float_t c = TMath::Sqrt(c2); Float_t u = (a2 - b2 + c2)/(2*c); Float_t d2 = TMath::Abs(a2 - u*u); if (d2 < 0) return 9999; return Int_t(TMath::Sqrt(d2) - 0.5*float(lineWidth)); } //______________________________________________________________________________ Int_t TPoints3DABC::SetNextPoint(Float_t x, Float_t y, Float_t z) { // Add one 3D point defined by x,y,z to the array of the points // as its last element return SetPoint(GetLastPosition()+1,x,y,z); } //______________________________________________________________________________ Int_t TPoints3DABC::GetN() const { // GetN() returns the number of allocated cells if any. // GetN() > 0 shows how many cells // can be available via GetP() method. // GetN() == 0 then GetP() must return 0 as well return 0; } //______________________________________________________________________________ Float_t *TPoints3DABC::GetP() const { // GetP() returns the pointer to the float point array // of points if available // The number of the available celss can be found via // GetN() method. // GetN() > 0 shows how many cells return 0; } //______________________________________________________________________________ Float_t *TPoints3DABC::GetXYZ(Float_t *xyz,Int_t idx,Int_t num) const { // GetXYZ(Float_t *xyz,Int_t idx,Int_t num=1) fills the buffer supplied // by the calling code with the points information. // // Input parameters: // // Float_t *xyz - an external user supplied floating point array. // Int_t num - the total number of the points to be copied // the dimension of that array the size of the // array is num*sizeof(Float_t) at least // Int_t idx - The index of the first copy to be taken. // // Return: The pointer to the buffer array supplied if (xyz) { Int_t size = TMath::Min(idx+num,Size()); Int_t j=0; for (Int_t i=idx;i<size;i++) { xyz[j++] = GetX(i); xyz[j++] = GetY(i); xyz[j++] = GetZ(i); } } return xyz; }