

The HERMES RICH aerogel radiator

MIYACHI Yoshiyuki Tokyo Institute of Technology for the HERMES collaboration

Requirements and Limitations

- Lepton / Hadron for DIS event
 - 98% lepton identification
 - Hadron contamination < 1%
- Hadron identification
 - π, K, p from 2 to 15
 GeV/c required
- Limited Space (upgrade the HERMES original threshold type Čerenkov counter)
- As little material as possible

Čerenkov angle for aerogel and C₄F₁₀

- Dual radiators:
 - Higher momentum:
 - C_4F_{10} (n~1.0014)
 - Lower momentum:
 - Silica Aerogel (n~1.0304)

HERMES RICH Design

Forth Workshop on RICH Detectors at the NESTOR Institute, 5-10 June 2002, at PYLOS Yoshiyuki Miyachi, Tokyo Institute of Technology

Below 3 GeV/c

- Aerogel as "Threshold": π / K
- 3 to 9.3 GeV/c
 - Aerogel as "RICH": K/p
 - Gas as "Threshold": π / K

Above 9.3 GeV/c

- Gas as "Threshold": K/p
- Gas as "RICH": π/K

Required Reconstruction Resolution

$$n_{\sigma}^{p/K} = \frac{\left|\theta_{p} - \theta_{K}\right|}{\sqrt{d\theta_{p}^{2} + d\theta_{K}^{2}}}$$

- 3σ separation of kaon and proton at 9.3 GeV/c, above which C_4F_{10} can be used as a threshold Čerenkov counter
 - $-\Delta\theta/\theta$ ≤ 1.4% is required
 - For aerogel Δθ/θ ~ 0.5% is required (Others: Photo-detector pixel size, correction efficiency and so on)
- $\Delta\theta/\theta \sim 0.5\%$ corresponds
 - $-\Delta n/n \sim 1.0 \%$

HERMES RICH Silica Aerogel

- Produced by <u>Matsushita</u>
 <u>Electric Works</u> (Osaka,
 Japan)
- Size: about 11×11×1 cm³
- Refractive Index: about
 1.03
- Total Number of Produced Tiles: 1680

Contribution to Reconstruction Resolution

- Possible contributions to the Čerenkov angle reconstruction resolution
 - Refractive index variation
 - Dispersion relation
 - Rayleigh Scattering
 - Deflection at the tile surface
 - Reflection inside the aerogel tile

Refractive Index Measurement

- Refractive index was measured by 633nm laser
 - $-\Delta n = 4.1 \times 10^{-4}$ for selected tiles
- Position dependence of the refractive index was also measured
 - $-\Delta n = 2.8 \times 10^{-4}$ (within one tile)

Dispersion Relation

$$n_{aerogel}(\lambda) = A \cdot n_{air} + (1 - A) \cdot n_{SiO_2}(\lambda)$$

Dispersion relation of aerogel

- Air (n~1) and Silica's dispersion relation
- Mixing Parameter A can be determined measured refractive index at 633nm
- $-\Delta\theta/\theta \sim 0.3\%$
 - $\Delta n = 5 \times 10^{-4}$
 - Lucite widow, light detection efficiency, and so on.

Rayleigh Scattering

- Rayleigh Scattering is dominated below 0.3 μm
 - Estimated by measuring transmittance and determine Hunt parameter
- Exit Lucite window eliminates
 Rayleigh scattered radiation

Forth Workshop on RICH Detectors at the NESTOR Institute, 5-10 June 2002, at PYLOS

Yoshiyuki Miyachi, Tokyo Institute of Technology

Deflection at the tile edge region

- Large deflection at the edge was found (at tile outer 5mm region)
- Non-flat tile surface
 - Consistent results tile thickness measurement

Reflection and Deflection at the side surface

- Install black Tedlar foil between tiles
 - Absorb randomly scattered at the side
 - Absorb diffracted radiation at the edge

Tile Selections

- Tile selection: 1040 out of 1680 tiles
 - Good transparency, no visible large cracks
 - Uniform surface shape
 - Quality check
 - Tile Size: $11.31 \le x, y \le 11.51 \text{ cm}, 1.025 \le z \le 1.225 \text{ cm}$
 - Refractive index: $1.0290 \le n \le 1.0310$
- Select 425×2 tiles for top and bottom
- Final goal: $\Delta\theta/\theta$ aerogel $\leq 0.5\%$

HERMES RICH Aerogel Radiator

- Maximize unscattered / scattered radiation ratio: 5 tiles
- Similar refractive index in one stack
- Minimize diffraction effect at the tile edge region
 - Flat surface to the downstream
 - Photon absorbers between stacks
- Gas shielded container + dry N₂ gas circulated continuously

HERMES RICH Aerogel Radiator

Forth Workshop on RICH Detectors at the NESTOR Institute, 5-10 June 2002, at PYLOS Yoshiyuki Miyachi, Tokyo Institute of Technology

Single Photon Resolution

- Achieved single photon resolution: $\Delta\theta_{\text{single}} \sim 7.6 \text{ mrad}$
 - Global + local alignment, boundary corrections....
 - Small background
 - · Lucite exit window
 - Absorber between tiles

$$\frac{\Delta \theta}{\theta} = \frac{\Delta \theta_{single}}{\theta} \cdot \frac{1}{\sqrt{N_{aero} \approx 10}} \approx 1\%$$

$$(\theta \approx 0.25)$$

Longterm stability

Aerogel Reconstructed Refractive Index

Summary

- HERMES uses aerogel and C₄F₁₀ radiators to identify π,
 K, p from 2 to 15 GeV/c.
- Select 850 aerogel tiles for RICH
 - 1680 Tiles were produced by Matsushita Electric Works
- Stable RICH operation over three years since 1998 **
- Single Photon Resolution : $\Delta\theta \sim 7.6$ mrad
 - Allow us to study a lot of physics topics; quark flavor decomposition by measuring spin asymmetries of π and K...