PP1 PCB Test Methods, Specifications And Limits E.Margan, IJS, F-9

1) Connectivity and Capacitance Test

- a) connection from the connector to the capacitance (no resistance measured)
- b) short or R up to $2 M\Omega$ between any two lines or ground
- c) capcitance value test, from 10 pF to approx. $20 \,\mu\text{F}$, resolution $10 \,\text{pF}$, absolute accuracy < 1 %.

The test sequentially activates each line and checks all other lines for possible error. For details, see the block circuit diagram in Fig.1.

2) High-Voltage Test

- a) sustained 500 Vdc test for $\sim 30 \, \mathrm{s}$ on the HV-Bias line (risetime 0.5 s)
- b) leakage current from HV-Bias to HV-return at 500 V, $Z_{\rm in}=1~{\rm M}\Omega$, $V_{\rm in}$ max $=10~{\rm V}$, $I_{\rm lk}$ max $=10~\mu{\rm A}$, resolution $30~{\rm pA}$.
- c) leakage current from HV-Bias to Ground at 500 V, $I_{\rm lk}$ max = $10\,\mu{\rm A}$, resolution $30\,{\rm pA}$ ($Z_{\rm in}$ is virtual ground, amplifier input offset voltage < $100\,\mu{\rm V}$, amplifier input current < $25\,{\rm pA}$).

Other lines are protected by design layout of the PCB and are not tested. For details, see the block circuit diagram in Fig.2.

3) Trace Resistance Test

a) 4-point Kelvin resistance measurement from the connector to the LM-Tape solder pads; each line is sequentially activated by 100 mA and the voltage drop is measured by a 2 V range, $100 \,\mu\text{V}$ resolution ADC, resulting in a $20 \,\Omega$ range and $1 \,\text{m}\Omega$ resolution, with absolute accuracy < 0.5 %.

For details, see the block circuit diagram in Fig.3.

Fig.1: Capacitance test

Fig.2: High-Voltage test

Fig.3: Line Resistance test