

Catching TeV—PeV particles in Space

Andrii Tykhonov

Ljubljana, March 30, 2022

Chapter I:
Cosmic Rays

Cosmic Rays — direct messengers of the most energetic events in the Galaxy and beyond, which impact Galactic element composition and evolution

Historical remark

First hints of already in 18th century

Coulomb observed spontaneous discharge of electroscope

1912 Discovery by Victor Hess in ballon flight

Conclusive proof of increasing penetrating radiation with altitude

1920 Millikan called them "cosmic rays"

Believed them to be energetic photons

1927 J. Clay discovered the latitude dependence of cosmic ray intensity

Geomagnetic effect proves that cosmic rays are charge particles

Particle physics emerges from cosmic rays

- Discovery of μ , π , e^+ , K, Λ
- Proof of special relativity (atmospheric muons)

Nowadays Cosmic Rays represent a laboratory for the Universe study

Victor Hess' flight

Cosmic Rays (CR)

- 85-90% *p*, 10% *He*, few % *ions*, <1% *e*
- Maximum energy up to ~10²⁰ eV (GZK cutoff*)
- Spectrum consists of different power-laws
 - $dN/dE \propto \sim E^{-2.7}$ up to the "knee"
- The "knee" (region around few PeV)
 - Galactic sources "work" up to ~PeV scale
 - Likely change of chemical composition
- Direct measurements (Space/balloon flights)
 - Precise, relatively small size/energy acceptance
- On-ground (air-shower/Cherenkov)
 - Large acceptance, limited identification capacity of CR composition

^{*} limit due to interaction of cosmic rays with cosmic microwave background

Power law in CR

Gain/loss at each acceleration proportional to energy:

$$\Delta E = k * E$$

("rich get richer")

• Given p — escape probability at each acceleration, probability to stay within acceleration region after N interactions:

$$P = (1-p)^N$$

• Energy after **N** interactions:

$$E = (1+k)^N * E_0$$

$$==> log(E/E_0) / log (1+k) = log(P) / log(1-p) ==> P(E) $\propto E^{-\gamma}$$$

Accelerated particle going back and forth until it escapes the front

$$dP/dE \propto E^{-\gamma-1}$$

- probability distribution function of gained CR energy

Fermi acceleration mechanism

- Fermi 2-nd order: dE / E ~ / V / C
 - "Reflection" from magnetic "mirror"
 - Energy loss at following collision
 - Energy gain at heads-on collision
 - Not efficient enough to explain CR spectra
- Fermi 1-st order: dE/E~ V/C
 - Acceleration when crossing shock wave front
 - Energy gain both upstream and downstream
 - Yields spectral index ~ 2
 - **Efficient**
 - ... can produce galactic CR in supernovae
 - ... at least least up to ~ 0.x PeV

Cosmic ray propagation

Cosmic rays propagate though Interstellar Medium (ISM) before reaching us

- Diffusive confinement of CRs in the Galaxy
 - → leaky box model
- Traverse on average ~ 10 g/cm²
- Crossing multiple turbulent magnetic fields
 - → isotropic CR direction
- Power law spectrum modified

$$P(E) \propto E^{-\gamma-\Delta}$$

Secondary cosmic rays produced

• Ratio of primary/secondary CRs (e.g. B/C) carries crucial information about ISM!

Supernovae remnants (SNRs)

SNRs — most likely source of CRs below the "knee"

Only known Galactic source with sufficient energy to power CRs

Even for SNRs, the mechanism has to be highly efficient!

CR composition → source injecting material from entire galaxy

Old not freshly synthesised material including low-mass stars

Non-thermal emission observed in SNRs

Radiation by ultra relativistic electrons & ions In-situ footprint of CR production!

Collisionless shock in SNRs → 1st order Fermi acceleration

Effective for accelerating of ions & electrons

Most naturally explains similar spectral shapes of leptons and hadrons

(See e.g. Bykov et al. arxiv.org/abs/1801.08890v1 Bell et al. doi.org/10.1016/j.astropartphys.2012.05.022)

Problems with SNRs (< TeV scale)

- Recent Cosmic Ray data question conventional SNR models
- Spectral break confirmed in major CR species

No structure in B/C ratio!

- New source?
- New propagation mechanism? self-generated waves (Blasi et al), superbubbles ...

Problems with SNRs (PeV scale)

Challenging to explain CR acceleration to PeV by classic SNR paradigm

- Maximum CR energy in <u>observed SNRs</u> does reach into the "knee"
- Requires strong magnetic field amplification above typical interstellar values
- How particles escape from the accelerator without experiencing strong adiabatic losses?

Are there CRs beyond PeV produced in SNRs?

- Acceleration in early years after supernovae explosion?
- Explosion of Wolf-Rayet stars? (Thoudam et al.)
- Re-acceleration of CRs in Superbubbles?

Origin of cosmic rays close to the knee and above remains an enigma!

Observational data at TeV—PeV is a key to crack it!

Cosmic Rays beyond the "knee"

Mostly extragalactic, even more uncertain origin, various hypotheses exist

Objects with strong rotating magnetic fields

- Binaries with neutron star or a pulsar
 Mergers accompanied by Gamma-Ray Burst &
 Gravitational Waves
- Pulsars fast spinning highly-magnetised neutron star
 Appears as a result of Supernovae explosion

Accretion to supermassive black hole

- Tidal Disruption Events
- Active Galactic Nuclei, ...

Starburst galaxies, etc.

Pulsar magnetic & spin axes do not coincide

→ appear "flickering" (pulsating)

Cosmic ray electrons & positrons (CRE)

Rare: 1/10000 cosmic rays at 1 TeV is an e- or e+

Sensitive to new physics

Rapidly loose their energy during propagation

- (synchrotron radiation & inverse Compton)
- Only nearby sources (1 kpc) at TeVs

Can be of primary or secondary nature

- (Primary) Pulsars & Supernovae
 - Same acceleration mechanism as CR p/ions
 - Mostly originate from π decays,
 - photons above e+e-production threshold (pulsars)?
- (Secondary) interaction of CR with interstellar medium

Positron spectrum incompatible with purely secondary origin: DM, pulsar?

Cosmic ray electrons & positrons (CRE)

Can be produced in annihilation\decay of Dark Matter (DM)

• Distinct spectral features, isotropic

Future precise CRE spectrum & anisotropy measurement at TeVs — key to disentangle Dark Matter signatures from local sources

Chapter II: Instruments

From spectrometers to calorimeters

Alpha Magnetic Spectrometer (AMS-02)

- Launched to ISS in 2011
- Utmost precise CR measurements up to ~ TeV
- Difficult to go beyond few TeV with spectrometers

Calorimetric space experiments

- AGILE, FERMI (2007, 2008) relatively thin calorimeters
- CALET: Calorimetric Electron Telescope (launch 2015)
- DAMPE: DArk Matter Particle Explorer (launch 2015)
- HERD: High Energy Radiation Detection mission (next-gen)

DArk Matter Particle Explorer (DAMPE)

- Launched in Dec 2015
- Orbit: sun-synchronous, 500 km
- Period: 95 min
- Payload: 1.4 Tonn
- Power: ~ 400 W
- Data: ~ 12 GByte / day

Collaboration

University of Geneva

DArk Matter Particle Explorer (DAMPE)

Thick calorimeter ~ 32 X₀ (biggest in Space)

- e/γ detection up to 10 TeV
- CR p/ions 50 GeV 500 TeV
- e/γ energy resolution 1% at TeVs
- e/p rejection factor ~ 10⁴ 10⁵

Precise Silicon-Tungsten tracker-converter

- Position resolution ~50 micron
- Charge Z identification up to Fe
- γ pointing *0.5*° *0.1*° (GeVs TeV)

Plastic scintillator

- Z identification
- y anti-coincidence signal

Netron detector

Additional e/p rejection capability

DAMPE Tracker detector (STK) & DPNC

R&D Construction (2013–2015)

University of Geneva (DPNC) & INFN Perugia groups DAMPE Silicon Tracker tests with cosmic muons (April 2015)

Space qualification (2014–2015)

Vibration, shock, thermal cycling,...

DAMPE Cosmic Rays Measurements

Electron—positron spectrum

- Energy span 3 orders of magnitude!
- Direct observation of spectral break

Proton spectrum

- First direct measurement up to 100 TeV
- Reveals new spectral feature at ~13 TeV

DAMPE Cosmic Rays Measurements

Alemanno et. al. PRL 126, 201102 (2021)

... indicates of Z-dependent source

... partial cancellation of systematics

Many more ongoing analyses — not covered in this talk (*C, O, Fe,* Anisotropy, Gamma Rays ..)

High Energy Radiation Detection facility (HERD)

Next-gen Calorimetric detector in Space

- 5-side tracking & charge (Z) detectors
- 3D imaging LYSO calorimeter
- Target size ~ 55 X₀
- Estimated launch timeline ~ 2027

Collaboration University of Geneva EPFL Lausanne

Image credit: C. Perrina, EPJ Web of Conferences, 2019 (RICAP-18)

High Energy Radiation Detection facility (HERD)

BIG 3D calorimeter + 5-side tracker =

- CR electrons up to 100 TeV
- CR p/ions detection up to PeVs
- > order of magnitude higher acceptance (compared to DAMPE)

→ O(100) PeV protons / year

Chapter III: Data Analysis & Challenges

Problems of TeV—PeV CR detection in Space

• Instruments big enough to collect good data statistics at TeV—PeV, but

Systematic errors dominate!

Particle Identification & tracking, hadronic interaction modelling

Problems of TeV—PeV CR detection in Space

Goal — reduce the systematics and fundamentally improve the accuracy of direct Cosmic Ray measurements at TeV—PeV

Use state-of-the-art Artificial Intelligence techniques and improved hadronic simulations to minimise the key uncertainties

Particle Tracking

Conventional pattern recognition not capable of disentangling the primary particle track

→ give a shot to Al & Machine Learning

Primary CR track drawn in the sea of secondary-particle hits

- Pre-showering before the calorimeter
- Back-splash from calorimeter
- Majority of events affected
- Gets worse at higher energies

Similar to LHC particle tracking problem?

— ... not exactly

- No magnetic field
- Interaction point (axis) unknown
- Way higher energies
- More passive material in/around tracker

Particle Tracking & Z identification

At present, Z measured in Plastic Scintillator (PSD):

Why precise tracking is important for CR?

- Enables STK-based Z identification!
- Not affected (almost) by secondary particles (unlike PSD)
- Provide up to 12 independent Z measurements
- High accuracy at all energies

track primary reconstructed WG Here

Tracking & Machine Learning — ConvNet

Many ides for ML application ... Let us start with the seed:

- Initial / rough guess of a particle direction, provided by either
 - A. Combinatorial guess (e.g. 3-point combinations from the tracker)
 - B. External detector (calorimeter)

 Used in DAMPE

Try regression with Convolutional Neural Net based on BGO "image" to predict the seed

Tracking & Machine Learning — ConvNet

Preliminary ConvNet at multi-TeV significantly beats the standard algorithm:

- Position resolution of ~1mm not bad! (given that STK silicon strip readout pitch is ~0.2mm)
- Allows pre-selecting small sub-set of candidate hits for tracking
- Next steps (tracker ConvNet + Hugh approach, etc), etc.

Hadronic Interaction Modelling

- DAMPE thickest calorimeter in space, HERD will be even bigger
 - Excellent e/ γ energy reconstruction, $E_{primary} = \sim E_{reco}$, uncertainty 1% (at TeVs)
 - plions leave only ~1/3 of energy in calorimeter, response matrix is not diagonal

- Energy of incident p/ion can be identified only with limited accuracy
- Primary spectrum obtained from "visible" spectrum through unfolding (e.g. D'Augustini)

Hadronic Interaction Modelling

- CR p/ion energy spectrum measurement rely significantly on hadrons simulations
- Limited accuracy of inelastic cross-sections & hadronic models (differential cross-sections)
 - → not constrained above LHC energies
 - → source of large systematics!

Cross-section uncertainty ~ 10%

Hadronic Interaction & Simulation Tuning

- DAMPE (HERD) feature highly granular calorimeter and unique data at multi-TeV
- Use these data to constrain/tune cross-sections & hadronic models
 - elastic/Inelastic ratio, shower shape characteristics (lateral, longitudinal, etc.)

Needs reliable Z identification and vertex reconstruction → connection to ML tracking

e/p discrimnation

- Tiny fraction e⁻+e⁺ in CR → gets even smaller with energy
 - → electron signal buried under proton background

Normally proton showers are thick & long, while electron showers are narrow and well contained

At multi-TeV, a chances to get a proton which looks like an electron become very high

Proton contamination after electron selection

- Standard e/p discrimination method not efficient at > few TeV; background-related systematics "explodes"!
- Let's try something new ...

e/p discrimination: MLP

Neural Net — Multi Layer Perceptron (MLP)

 Multiple models tested (grid search) to optimise a set of hyper-parameters (number of layers, neutrons, dropout, etc.)

D. Droz, A. Tykhonov et al. JINST, 16(07): P07036, 2021

e/p discrimination: ConvNet

- Alternative option ConvNet
- Consider both tracker and calorimeter as images

- Outputs of two ConvNets concatenated, followed by a standard MLP network
- Extensive optimisation campaign network architecture, impact of data selection, etc. (lots of technical details beyond the scope of this talk) ...

e/p discrimination: ML performance

• Neural Net classifier (MLP): 3−4 times better p rejection at highest energies (10 TeV)

- MLP classifier with even better performance was developed → requires further data/simu optimisation
- ConvNet performance usually marginally better than MLPs, but requires more optimisation with the data

Machine Learning — data vs simulation

- Optimisation and training of Machine Learning usually done with simulated data
- Performance of ML algorithm is important yes, however
- Equally important is a good correspondence between simulation and real data!

Quite specific to particle physics!

Good data / MC agreement achieved — reliable classifier!

Machine Learning — vertex finding

Inelastic interaction Vertex reconstruction (CR measurements, hadronic physics, etc.)

- Regression problem (predict vertex position) yes, seems "easy" in the Tracker
 - → not good precision in reality → majority of events convert in Calorimeter

- First, a classification problem to solve: does conversion happen before calorimeter?
 - → Developed ConvNet calssifier very good (per cent level) accuracy!

Wrap-up

- Cosmic Rays (CR) the laboratory for the Universe study
 - TeV—PeV is at borderline of our present CR understanding
 - after there are many theories / models
 - direct CR measurements are crucial to clarify the picture

- Calorimetric experiments in space (DAMPE, HERD)
 - Unique capability to directly measure CR at TeV—PeV
 - Data analysis bottleneck (hadronic models, particle identification)
 - Solution provided with modear Al techniques first results very promising — stay tuned!