The Performance of Silicon Photomultipliers in Cherenkov TOF PET

R. Dolenec a,b, S. Korpar a,b, P. Križan b,c, R. Pestotnik b

^a Faculty of Chemistry and Chemical Engineering, University of Maribor, Slovenia ^b Jožef Stefan Institute, Ljubljana, Slovenia ^c Faculty of Mathematics and Physics, University of Ljubljana, Slovenia

Introduction

- Contrast of images obtained with positron emission tomography (PET) can be improved by measuring the time-of-flight (TOF) of annihilation gammas
- Time resolution in TOF PET limited mainly by
 - photodetector response
 - scintillation rise and decay time constants
 - optical photon travel time spread in the crystal
- Limitation due to scintillator can be avoided by using Cherenkov light instead
 - produced promptly by a passage of charged particle trough dielectric when speed $> c_0/n$
- This talk:
 - Use of Cherenkov radiation in TOF PET
 - First experiments with timing < 100 ps FWHM
 - Experimental results using Silicon Photomultipliers (SiPMs)
 - Summary

Use of Cherenkov Radiation in TOF PET

Comparison between typical scintillation and Cherenkov TOF PET methods:

	Scintillator (LSO)	Cherenkov (PbF ₂)
<z></z>	56	71
μ _{511keV} [cm ⁻¹]	0.87	1.06
Photofraction (511 keV) (*)	0.32	0.46
Light Rise/Decay Time	87 ps ^(†) / 40 ns	prompt
Light Yield [photons/511keV]	15,000	10 ^(‡)
Light Production Threshold	-	$v_{Thr} = c_0/n$ $E_{e-} > 104 \text{ keV}$

^{(*) [}XCOM: Photon Cross Sections Database]

- gamma absorption & photofraction
- prompt light production
- Drawbacks:
 - single photon detection

^{(†) [}NIM A 767 (2014) 206]

^(‡) in 250-800 nm wavelength interval

[•] Benefits:

First Experiments

- Two detectors in back-to-back configuration
- Cherenkov radiators: 25x25x(5, 15) mm³ PbF₂
- Photodetectors: microchannel plate photomultiplier tubes (MCP PMTs)
 - single photon timing ~ 50 ps FWHM
 - active surface 22.5x22.5 mm²

- TOF resolution:
 - 5 mm thick, black painted PbF₂: 71 ps FWHM
 - 15 mm thick, black painted PbF₂: 95 ps FWHM

[NIM A 654 (2011) 532]

- Single side detection efficiency ~ 6% [Physics Procedia 37 (2012) 1531]
 - with LSO scintillator in ideal conditions ~ 30%
 - main limitation: photon detection efficiency of MCP PMT samples used

Experiments using SiPMs

- SiPMs as Cherenkov TOF PET photodetector:
 - high photo detection efficiency
 - insensitivity to high magnetic field (PET/MR)
 - potentially low cost
 - slightly limited single photon timing
 - ~200 ps FWHM for larger devices [NIM A 718 (2013) 569]

- high dark count rates at room temperature (~ 100 kHz/mm²)
- Experimental setup:
 - 3x3 mm² SiPMs:

Producer	Model	Pixel Pitch [µm]	Breakdown [V]
Hamamatsu	S10931-050P	50	69
Hamamatsu	S12641-PA-50	50	65
AdvanSiD	ASD-NUV3S-P-40	40	26
KETEK	PM3375TS-SBO	75	25
SensL	MicroFC-30050-SMT-GP	50	25

- 5x5x15 mm³ PbF₂ (available at the time of measurements)
- temperature controlled freezer box (down to -25°C)

- Dark count rate vs. Temperature
 - Hamamatsu S10931-050P at constant gain $(V_{ov} = 1.5V)$
 - dark noise reduces with temperature by $\sim 2.4x / 10^{\circ}C$

- First results for coincidence timing
 800 ps FWHM
 - Hamamatsu S10931-050P
 - SiPM overvoltage V_{ov} = 1.5V
 - bare PbF₂

- Singles Efficiency & Coincidence Timing at T = -25°C for different:
 - SiPM samples:

Producer	Model	Pixel Pitch [µm]	Breakdown [V]
Hamamatsu	S12641-PA-50	50	65
AdvanSiD	ASD-NUV3S-P-40	40	26
KETEK	PM3375TS-SBO	75	25
SensL	MicroFC-30050-SMT-GP	50	25

crystal surface treatments (black painted, bare, Teflon wrapped)

- Efficiency improves with:
 - SiPM overvoltage
 - surface reflectivity (Teflon wrapping)
- Best: 26% with SensL

- Timing improves with:
 - SiPM overvoltage
 - suppression of reflections (black paint)
- Best: 306 ps FWHM with AdvanSiD

Imperfect coupling: 5x5 mm² crystals on 3x3 mm² SiPMs!

Overvoltage [V]

Summary

- Cherenkov TOF PET is a promising new method for PET
 - coincidence timing < 100 ps (with MCP PMTs)
 - efficiency competitive to scintillator PET (26% single side with SiPMs)
 - high requirements for photodetector (single photon detection)
 - PbF₂ vs. LSO:
 - significantly lower cost
 - higher Z (better stopping power & photofraction, less scattering)
- SiPMs as photodetectors in Cherenkov TOF PET:
 - very good efficiency
 - could be even better with PDE extended in UV (250 nm) [NIM A 732 (2013) 427]
 - slightly limited timing
 - more suitable device
 - · data analysis, electronics, waveform sampling
 - high dark count rates
 - cooling
 - improvements in SiPM technology
 - low cost, operation in magnetic field (PET/MR)

Backup slides

Experimental setup - readout

- custom electronics board with NEC uPC2710TB preamplifier
- ORTEC FTA820 amplifier
- Philips scientific mod.708 LE discriminator
- Kaizu works KC3781A TDC (25ps/bin)
- CAEN V965 QDC
- time-walk correction applied in analysis

Efficiency measurements

- one Cherenkov detector replaced with a reference scintillation detector
- tight collimation of coincidence gammas on Cherenkov detector
- photopeak cut on reference detector → single side detection efficiency on Cherenkov detector
- corrected for
 - SiPM dark count rate
 - Compton scatter of 1275 keV gammas from ²²Na

- Improvements in timing: 425 ps FWHM
 - Hamamatsu S10931-050P

$$- V_{ov} = 2.5V$$

- black painted PbF₂
- $T = -25^{\circ}C$

- Best timing so far: 306 ps FWHM
 - AdvanSiD

$$- V_{ov} = 7V$$

- black painted PbF₂
- $T = -25^{\circ}C$

500 F

Hamamatsu S10931-050P

Coincidence Time [ns]

1 p.e. cut

- Single photoelectron cut: 190 ps FWHM
 - AdvanSiD
 - $V_{ov} = 7V$
 - black painted PbF₂
 - $T = -25^{\circ}C$
- improvements in timing possible with waveform sampling?

600

800

400

100

3 p.e.

1000

Charge [200 fC/bin]

2 p.e. cut

- 2 p.e. cut: **250 ps** FWHM
 - AdvanSiD
 - $V_{ov} = 7V$
 - black painted PbF,

Time-of-flight Positron Emission Tomography

- Contrast of images obtained with PET can be improved by measuring the time-of-flight (TOF) of the two annihilation gammas
 - localizes source position on line of response (LOR)
 - reduces the spread of noise along the LOR
 - full body PET field of view $D \sim 0.5$ m
 - → TOF better than $c_o^*D/2 \sim 1$ ns can improve the images

Philips Gemini TF PET/CT with TOF resolution of 600 ps:

[PET Center of Excellence Newsletter, Vol.3 Issue 3 (2006)]

Annihilation Gamma Detectors

- Scintillating crystal (BGO $Bi_4Ge_3O_{12}$, LSO $Lu_2SiO_5(Ce)$)
 - convert gamma energy into optical photons
- Photodetector (photomultiplier tubes)
 - convert optical photons into electrical pulses

 with development of faster photodetectors, the TOF resolution became mainly limited by the scintillator time response (scintillation raise and decay time constants)

	Nal(TI)	BGO	LSO	BaF ₂	LaBr ₃ (Ce)
Density (g/cm³)	3.7	7.1	7.4	4.9	5.1
μ _{511keV} (cm ⁻¹)	0.35	0.96	0.87	0.44	0.43
Decay time (ns)	230	300	40	0.6	17
LY (ph/511keV)	20,000	3,000	15,000	1,000	30,000

Cherenkov radiation

Limitations due to scintillators can be avoided by using radiators of Cherenkov light instead

charged particles (e⁻) passing trough dielectric material at speed $v_{Thr} > c_0/n$

→ prompt Cherenkov photons

analogous to sonic boom

Most promising available Cherenkov radiator for PET: lead fluoride (PbF₂)

	PbF ₂
Density (g/cm³)	7.77
μ _{511keV} (cm ⁻¹)	1.06
Refractive index ($\lambda = 400 \text{ nm}$)	1.8
Optical transmission λ_{cutoff} (nm)	250

Cherenkov radiation in TOF PET

- Only about 10 Cherenkov photons can be produced by 511 keV gamma, only a couple reach the photodetector → single photon detection
 - Photodetector efficiency a limit for efficiency of the whole method
 - No energy resolution, however there is an intrinsic Compton scatter suppression & less scattering in crystals (very high Z)
- New limitation for time resolution:
 - optical photon travel time spread in the crystal

- For even faster timing the crystals can be:
 - bare (no reflections from Teflon wrapping)
 - painted with black paint (reduce even the total internal reflections)

