Boštjan Golob University of Ljubljana/Jožef Stefan Institute & Belle/Belle II Collaboration

RELLE

Belle T

University "Jožef Stefan" of Ljubljana Institute Part I

1. Introduction

- 2. Mixing phenomenology
- 3. Mixing measurements

Part II

- 1. CPV phenomenology
- 2. CPV measurements
- 3. Constraints on NP

4. Outlook

Belle Analysis School, KEK, Feb 10 – 12, 2011

BAS 2011, KEK, Feb 2011

B. Golob, D Mixing & CPV 1/35

Boštjan Golob University of Ljubljana/Jožef Stefan Institute & Belle/Belle II Collaboration

University "Jožef Stefan"

of Ljubljana Institute

Few facts about statistics:

- Marko (Starič), main analyst on *D*⁰ mixing discovery, never owed a boat
- Belle II analysis coordinator never gambles (ok, perhaps sometimes with predictions of accuracy to be achieved at Belle II)
- I'm not Damjan Golob,
 and the priobability that Bruce
 gets 500 € from me is ε,

 $\lim_{N\to\infty}\varepsilon=0$

Introduction Mixing phenomenology Mixing measurements

Additional material

TM & C Nelva

Silicon Vertex

Tracker (SVT)

ertex and trajectory

measurements + dE/dx

Efficiency 97%

Electromagnetic

Calorimeter (EMC)

and photon energies (E)/E=1.33%E-1/4@2.1

Drift Chamber

(DCH)

lomentum measurement fo

charged particles + dE/dx

 $\sigma(p_r)/P_r=0.13\%P_r+0.45\%$

25

 $5 (e^+e^- \rightarrow Hadrons)(nb)$

Solenoid 1.5T

Muon Detector (IFR)

e+ (3.1 GeV)

Detector of Internally

Reflected Cherenkov

Light (DIRC)

Particle identification (PID)

through Cherenkov radiation

Separation $K - \pi > 3.4\sigma$ for

p<3.5GeV/c

 $\Upsilon(1S)$

9.44 9.46 10.00 10.02

Y(2S)

Introduction

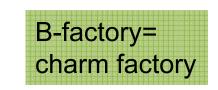
B-Factories BaBar @ PEPII SLAC

> Belle @ KEKB KEK

on resonance production $e^+e^- \rightarrow Y(4S) \rightarrow B^0B^0, B^+B^ \sigma(BB) \approx 1.1 \text{ nb} (\sim 10^9 \text{ BB pairs})$

continuum production

 $\sigma(c\ \overline{c}) \approx 1.3 \text{ nb} (\sim 1.3 \text{ x10}^{9} \text{ X}_{c} \overline{\text{Y}}_{c} \text{ pairs})$ $N_{rec}(D^{*+} \rightarrow D^{0} \pi^{+} \rightarrow K^{-} \pi^{+} \pi^{+}) \approx 2.5 \text{ x10}^{6} - \Upsilon^{*}$



10.54

Y(4S)

10.58

10.62

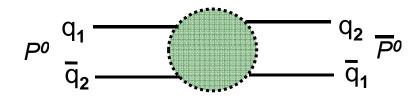
Y(3S)

10.37

Mass (GeV/c^2)

10.34

Phenomena in course of life neutral meson P^0 can transform into anti-meson \overline{P}^0



 $P^{0} = K^{0}, B_{d}^{0}, B_{s}^{0}$ and D^{0}

History

	observation of K ⁰ :	
	1950 (Caletch)	
	mixing in K ⁰ :	6
	1956 (Columbia)	years
c quark	observation of B _d ⁰ :	
mass	1983 (CESR)	
	mixing in B _d 0:	4
	1987 (Desy)	years
t quark	observation of B _s ⁰ :	
mass	1992 (LEP)	
	mixing in B _s º:	14
	2006 (Fermilab)	years
????	observation of D ⁰ :	
	1976 (SLAC)	
/	mixing in D ⁰ :	31
	2007 (KEK, SLAC)	years
????	(evidence of)	

i

Time evolution

Schrödinger equation mixing affects the time evolution \rightarrow oscillations

state initially produced as

will evolve in time as

if interested in a(t), b(t): effective Hamiltonian $H=M-(i/2)\Gamma$ (non-Hermitian) and t-dependent Schrödinger eq.:

eigenstates: (well defined $m_{1,2}$ and $\Gamma_{1,2}$)

D. Kirkby, Y. Nir, CPV in Meson Decays, in RPP

$$\begin{aligned} \left| \psi(t=0) \right\rangle &= a(0) \left| P^{0} \right\rangle + b(0) \left| \overline{P}^{0} \right\rangle \\ \left| \psi(t) \right\rangle &= a(t) \left| P^{0} \right\rangle + b(t) \left| \overline{P}^{0} \right\rangle + \dots \\ \frac{\partial}{\partial t} \begin{bmatrix} \left| P^{0}(t) \right\rangle \\ \left| \overline{P}^{0}(t) \right\rangle \end{bmatrix} &= \left(\mathbf{M} - \frac{i}{2} \mathbf{\Gamma} \right) \begin{bmatrix} \left| P^{0}(t) \right\rangle \\ \left| \overline{P}^{0}(t) \right\rangle \end{bmatrix} \\ \left| P_{1,2} \right\rangle &= p \left| P^{0} \right\rangle \pm q \left| \overline{P}^{0} \right\rangle \end{aligned}$$

Time evolution

Schrödinger equation eigenvalues diagonal elem.: $P^{0} \leftrightarrow P^{0}$ non-diagonal elem.: $P^{0} \leftrightarrow \overline{P^{0}}$

$$\begin{bmatrix} M - i\frac{\Gamma}{2} & M_{12} - i\frac{\Gamma_{12}}{2} \\ M_{12}^* - i\frac{\Gamma_{12}}{2} & M - i\frac{\Gamma}{2} \end{bmatrix} \begin{bmatrix} p \\ \pm q \end{bmatrix} = \lambda_{1,2} \begin{bmatrix} p \\ \pm q \end{bmatrix}$$

~

$$\lambda_{1,2} = M - i\frac{\Gamma}{2} \pm \frac{q}{p} \left[M_{12} - i\frac{\Gamma_{12}}{2} \right] \equiv m_{1,2} - i\frac{\Gamma_{1,2}}{2}, \quad \left(\frac{q}{p}\right)^2 = \frac{M_{12} * -i\frac{\Gamma_{12}}{2}}{M_{12} - i\frac{\Gamma_{12}}{2}}$$

q/p: CPV; if CPV neglected *q/p*=1

 $P_{1,2}$ evolve in time according to $m_{1,2}$ and $\Gamma_{1,2}$:

$$|P_{1,2}(t)\rangle = e^{-i\lambda_{1,2}t} |P_{1,2}(t=0)\rangle$$

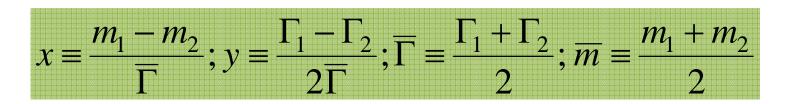
Time evolution

Flavor states state initially produced as pure P^0 or $\overline{P^0}$

$$\left| P^{0}(t) \right\rangle = \frac{1}{2p} \left[\left| P_{1}(t) \right\rangle + \left| P_{2}(t) \right\rangle \right]$$
$$\left| \overline{P}^{0}(t) \right\rangle = \frac{1}{2q} \left[\left| P_{1}(t) \right\rangle - \left| P_{2}(t) \right\rangle \right]$$

$$\left|P^{0}(t)\right\rangle = \left[\left|P^{0}\right\rangle \cosh\left(\frac{ix+y}{2}\overline{\Gamma}t\right) - \frac{q}{p}\right|\overline{P}^{0}\right\rangle \sinh\left(\frac{ix+y}{2}\overline{\Gamma}t\right)\right]e^{-i\overline{m}t - \frac{\overline{\Gamma}}{2}t}$$
$$\left|\overline{P}^{0}(t)\right\rangle = \left[\left|\overline{P}^{0}\right\rangle \cosh\left(\frac{ix+y}{2}\overline{\Gamma}t\right) - \frac{p}{q}\right|P^{0}\right\rangle \sinh\left(\frac{ix+y}{2}\overline{\Gamma}t\right)\right]e^{-i\overline{m}t - \frac{\overline{\Gamma}}{2}t}$$

can at a later time *t* be $\overline{P^0}$ or P^0 , depending on values of mixing parameters *x*, *y*:



Time evolution

Flavor states

coherent pair production from vector resonance $e^+e^- \rightarrow V \rightarrow P^0 \overline{P^0}$ M. Gronau et al., PLB508, 37 (2001)

V=Y(4S)	B^{0}
V= <i>Y</i> (3770)	D^0
V= <i>Φ</i>	K ⁰

$$\psi = \frac{1}{\sqrt{2}} \left[\left| P^0(\vec{p}_1) \right\rangle \left| \overline{P}^0(\vec{p}_2) \right\rangle \pm \left| \overline{P}^0(\vec{p}_1) \right\rangle \right| P^0(\vec{p}_2) \right\rangle \right] \text{ initial state, } C = \pm 1$$

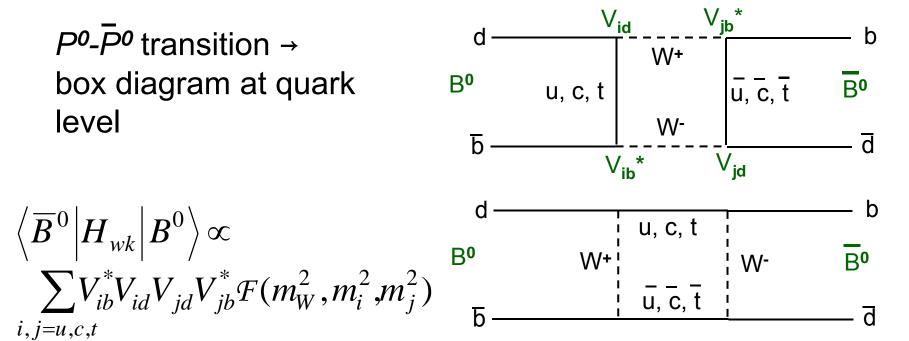
$$\begin{split} \psi(t_1,t_2) &= \frac{1}{\sqrt{2}} e^{-(\overline{m}-i\overline{\Gamma}/2)(t_1+t_2)} \Big\{ \cos \left(\overline{\Gamma} \frac{x-iy}{2}(t_1\pm t_2) \right) \Big[P^0(\vec{p}_1) \Big\rangle \Big| \overline{P}^0(\vec{p}_2) \Big\rangle \pm \Big| \overline{P}^0(\vec{p}_1) \Big\rangle \Big| P^0(\vec{p}_2) \Big\rangle \Big] \\ &\pm i \sin \left(\overline{\Gamma} \frac{x-iy}{2}(t_1\pm t_2) \right) \Big[P^0(\vec{p}_1) \Big\rangle \Big| P^0(\vec{p}_2) \Big\rangle - \Big| \overline{P}^0(\vec{p}_1) \Big\rangle \Big| \overline{P}^0(\vec{p}_2) \Big\rangle \Big] \Big\} \end{split}$$

BAS 2011, KEK, Feb 2011

Mixing rate

Phenomenology

 P^{0} : any pseudo-scalar meson; specific example of B_{d}^{0}



if $m_i = m_j \Rightarrow$ due to CKM unitarity: no mixing

Mixing rate

Phenomenology simplified treatment based on dimension:

O. Nachmtann, Elem. Part. Phys., Springer-Verlag

$$\left\langle \overline{B}^{0} \left| H_{wk} \right| B^{0} \right\rangle \propto$$

$$\sum_{i,j=u,c,t} V_{ib}^{*} V_{id} V_{jd} V_{jb}^{*} \mathcal{F}(m_{W}^{2}, m_{i}^{2}, m_{j}^{2})$$

$$\mathcal{F}(m_W^2, m_i^2, m_j^2) \propto f_0 m_W^2 + f_1 m_i^2 + f_2 m_j^2 + f_3 m_i m_j + O(m_W^{-2})$$

for serious treatment see e.g.: A.J. Buras et al., Nucl. Phys. B245, 369 (1984)

CKM unitarity
$$\Rightarrow \qquad \left\langle \overline{B}^{0} \left| H_{wk} \right| B^{0} \right\rangle \propto \sum_{i,j=u,c,t} V_{ib}^{*} V_{id} V_{jd} V_{jb}^{*} m_{i} m_{j}$$

Homework: contribution of which quark is dominant in the above expression?

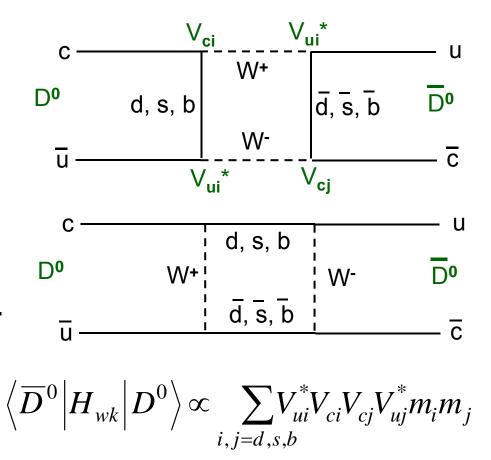
Mixing phenomenology

Mixing rate

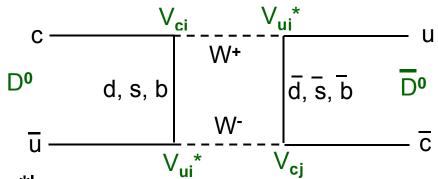
Phenomenology

D⁰ case

- the only P^0 system with uplike q's
- the system resisiting exp. observation for the longest time



Phenomenology



$$|V_{cb}V_{ub}^*| << |V_{cs}V_{us}^*|, |V_{cd}V_{ud}^*|$$

assuming unitarity in
2 generations \Rightarrow

$$\left\langle \overline{D}^{0} \left| H_{wk} \right| D^{0} \right\rangle \propto \underbrace{V_{us}^{*} V_{cs} V_{cd} V_{ud}^{*}}_{r} (\underbrace{m_{s} - m_{d}}_{r})^{2}$$

DCS SU(3) breaking

more involved (and correct) calculation:

A.F. Falk et al., PRD65, 054034 (2002) G. Burdman, I. Shipsey, Ann.Rev.Nucl.Sci. 53, 431 (2003)

$$\left\langle \overline{D}^{0} \left| H_{w}^{\Delta C=-2} \right| D^{0} \right\rangle = \frac{G_{F}^{2}}{4\pi^{2}} V_{cs}^{*} V_{cd}^{*} V_{ud} V_{us} \frac{(m_{s}^{2} - m_{d}^{2})^{2}}{m_{c}^{2}} \left\langle \overline{D}^{0} \left| \overline{u} \gamma^{\mu} (1 - \gamma_{5}) c \overline{u} \gamma_{\mu} (1 - \gamma_{5}) c \right| D^{0} \right\rangle$$

$$DCS \qquad SU(3) \text{ breaking}$$

Mixing rate

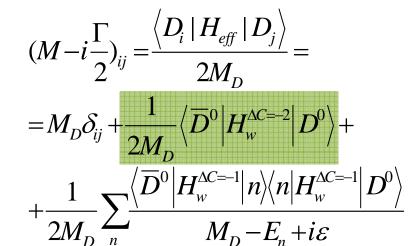
Phenomenology 2nd order perturb. theory

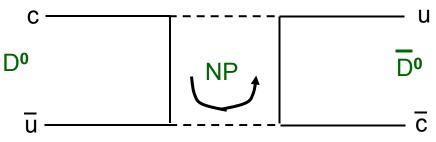
see formula on p. I/7 $\Delta m - i \Delta \Gamma / 2 = 2(q/p) [M - i \Gamma / 2]_{12}$ $\Delta m, \Delta \Gamma = f(M_{12}, \Gamma_{12})$

short distance |x

common statement: mixing with large x sign of NP;

more appropriate: measurement of x yields complementary \overline{u} constraints on NP models (because of specific uplike *q* couplings)





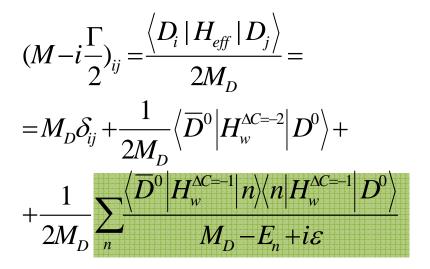
BAS 2011, KEK, Feb 2011

Mixing phenomenology

Mixing rate

Phenomenology 2nd order perturb. theory long distance

difficult to calculate; contributes to real and imaginary part \Rightarrow affects *x* and *y*;

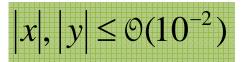


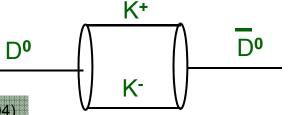
 two approaches:
 D

 OPE
 I.I. Bigi, N. Uraltsev, Nucl. Phys. B592, 92 (2001)

 exclusive approach
 A.F. Falk et al., PRD69, 114021 (2004)

 (principle can be easy understood, see p. II/26)





$$\frac{1}{M_D - E_n + i\varepsilon} = PV\left(\frac{1}{M_D - E_n}\right) + i\pi\delta(E_n - M_D)$$

Observables (B-factories, hadron machines) $\left| D^{0}(t) \right\rangle = \left| \left| D^{0} \right\rangle \cosh\left(\frac{ix+y}{2}\overline{\Gamma}t\right) - \frac{q}{p} \left| \overline{D}^{0} \right\rangle \sinh\left(\frac{ix+y}{2}\overline{\Gamma}t\right) \right| e^{-i\overline{m}t - \frac{1}{2}t}$ $|x|, |y| \ll 1 \Rightarrow$ $\frac{dN(D^0 \to f)}{dt} \propto e^{-\overline{\Gamma}t} \left| A_f + \frac{q}{p} \frac{ix + y}{2} \overline{A}_f \overline{\Gamma}t \right|^2$ $A_{f} = \langle f | D^{0} \rangle, \overline{A}_{f} = \langle f | \overline{D}^{0} \rangle$ $\frac{dN(\overline{D}^0 \to f)}{dt} \propto e^{-\overline{\Gamma}t} \left| \overline{A}_f + \frac{p}{a} \frac{ix + y}{2} A_f \overline{\Gamma}t \right|^2$

Decay time distribution of experimentally accessible states D^{o} , \overline{D}^{o} sensitive to mixing parameters x and y, depending on final state

Observables (Charm-factories) coherent production, $V(C=-1) \rightarrow D^0 \overline{D}^0$ t-integrated rate $\Gamma(V \rightarrow D^0 \overline{D}^0 \rightarrow f_1 f_2) = \frac{1}{2} |a_{\perp}|^2 \left(\frac{1}{1-y^2} + \frac{1}{1+x^2} \right) + \frac{1}{2} |b_{\perp}|^2 \left(\frac{1}{1-y^2} - \frac{1}{1+x^2} \right)$ $a_{\perp} = A_{f_1} \overline{A}_{f_2} - \overline{A}_{f_1} A_{f_2}; \quad b_{\perp} = \frac{p}{q} A_{f_1} A_{f_2} - \frac{q}{p} \overline{A}_{f_1} \overline{A}_{f_2}$

Decay rate of experimentally accessible states D^{o} , \overline{D}^{o} sensitive to mixing parameters **x** and **y**, depending on final state

Since they measure

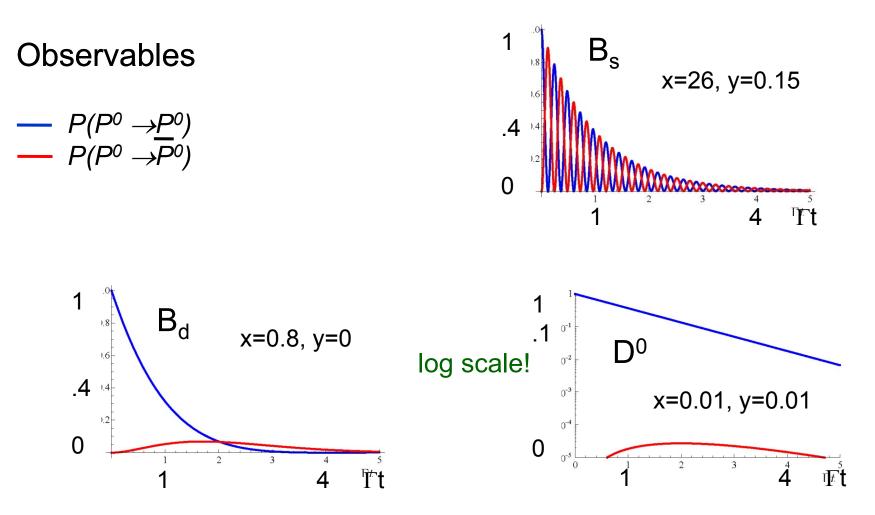
$$\frac{\Gamma(V \to D^0 \overline{D}^0 \to f_1 X)}{\Gamma(V \to D^0 \overline{D}^0 \to f_1 f_2)}$$

 \Rightarrow sensitive to *y*, x^2

(see p. l/49-53)

BAS 2011, KEK, Feb 2011

B. Golob, D Mixing & CPV 16/35



Experimental methods

Common exp. features tagging (B-factories, hadron machines) $D^{*+} \rightarrow D^{0}\pi_{s}^{+}$ charge of $\pi_{s} \Rightarrow$ flavor of D^{0} ; $\Delta M = M(D^{0}\pi_{s}) - M(D^{0})$ (or $q = \Delta M - m_{\pi}$) \Rightarrow background reduction

decay time
(B-factories)
D^o decay products vertex;
D^o momentum & int. region;

 $p^*(D^*) > 2.5 \text{ GeV/c}$ eliminates D^0 from $b \rightarrow c$

 $\frac{1}{e^{-t}} \frac{d\Gamma(D^0 \to f)}{dt} = \begin{vmatrix} A_f + \frac{q}{p} \frac{ix + y}{2} A_f t \end{vmatrix}$ (for easier notation: $\overline{\Gamma}t \to t$) $\int_{-100 \ \mu m} \int_{D^c \ fit \ D^0 \ decay \ vtx} \int_{\pi_s} \int_{-100 \ \mu m} \int_{D^c \ fit \ D^0 \ decay \ vtx} \int_{\pi_s} \int_{-100 \ \mu m} \int_{D^c \ hermit{e}} \int_{-200 \ \mu m} \int_{e^-} \int_{e^-} \int_{e^-} \int_{Beamspot} \int_{e^-} \int_{e^-} \int_{e^-} \int_{e^-} \int_{e^-} \int_{Beamspot} \int_{e^-} \int_$

Experimental methods

Decay modes

methods/precision/measured parameters depend on the decay mode

final states:	example, $D^0 \rightarrow$
semileptonic	Κ + ℓ ν
CP states	K+K-
WS hadronic 2-body states	Κ + <i>π</i> -
multi-body self conjugated states	$K_S \pi^- \pi^+$

and some decays which are a combination of those examples

 $K^+\pi^-\pi^0$

(see p. l/46-48)

charm-factory:

(see p. l/49-53)

Additional material

Mixing measurements

Semileptonic decays

Principle

$$D^{*+} \rightarrow D^{0} \pi_{slow}^{+}$$

$$D^{0} \rightarrow K^{(*)-} e^{+} \nu \qquad \text{RS}$$

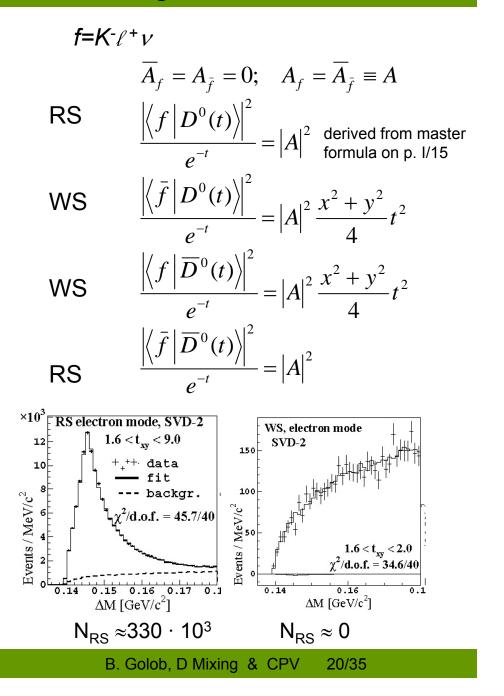
$$D^{0} \rightarrow \overline{D}^{0} \rightarrow K^{(*)+} e^{-} \overline{\nu} \qquad \text{WS}$$

t-integrated rates $N_{WS}/N_{RS} = R_M = (x^2 + y^2)/2$ Belle, PRD77, 112003 (2008), 492 fb⁻¹

Reconstruct v:

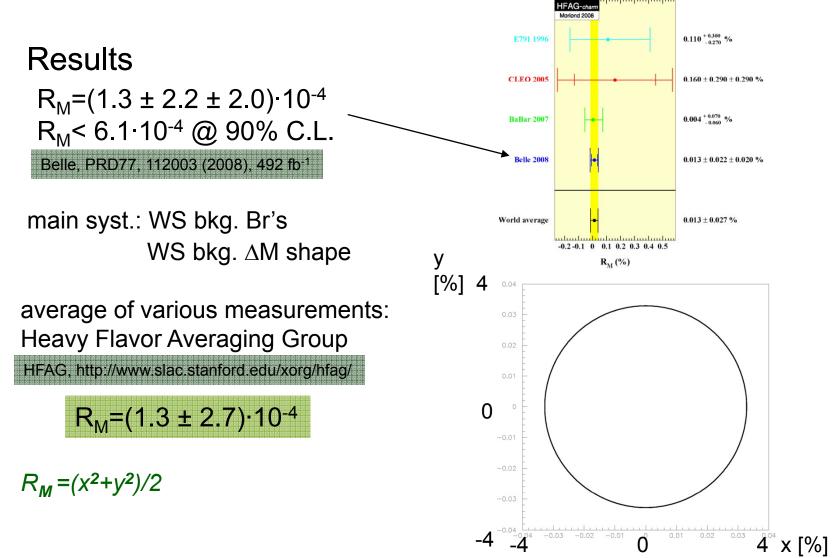
 $p_{miss} = p_{CMS} - p_{Ke\pi} - p_{rest}$

to improve resolution $M(Ke \nu \pi_{slow}) \equiv M(D^{*+}), M^{2}(\nu) \equiv 0$



BAS 2011, KEK, Feb 2011

Semileptonic decays



Decays to CP eigenstates

Principle $D^{0} \rightarrow K^{+}K^{-} / \pi^{+}\pi^{-}$ CP even final state;

if no CPV: $CP|D_1 > = |D_1 >$ $|D_1 >$ is CP even state; only this component of D^0/\overline{D}^0 decays to $K^+K^- / \pi^+\pi^-$; measuring lifetime in these decays $\Rightarrow \tau = 1/\Gamma_1$;

 $D^{o} \rightarrow K^{-} \pi^{+}$ $K^{-}\pi^{+}$: mixture of CP states $\Rightarrow \tau = f(1/\Gamma_{1}, 1/\Gamma_{2})$

$$f = \overline{f}; \quad A_f = A_{\overline{f}}; \quad \overline{A}_f = \overline{A}_{\overline{f}}; \quad \left|\frac{A_f}{\overline{A}_{\overline{f}}}\right| = 1$$

$$\frac{\left|\left\langle f \mid P^0(t) \right\rangle\right|^2}{e^{-t}} = \left|A_f\right|^2 \left[1 - y t + \frac{x^2 + y^2}{4} t^2\right]$$

$$\frac{\left|\left\langle f \mid \overline{P}^0(t) \right\rangle\right|^2}{e^{-t}} = \left|A_f\right|^2 \left[1 - y t + \frac{x^2 + y^2}{4} t^2\right]$$
to linear order:
$$\frac{\text{derived from master formula on p. I/15}}{\frac{1}{2}}$$

$$\frac{\left\langle f \left| P^{0}(t) \right\rangle \right|^{2}}{e^{-t}} + \frac{\left| \left\langle f \left| \overline{P}^{0}(t) \right\rangle \right|^{2}}{e^{-t}} = \left| A_{f} \right|^{2} [1 - y t]$$

$$\left\langle f \left| P^{0}(t) \right\rangle \right|^{2} + \left| \left\langle f \left| \overline{P}^{0}(t) \right\rangle \right|^{2} \propto e^{-t} (1 - yt)$$

$$\approx e^{-t} e^{-yt} = e^{-(1 + y)t}$$

when considering CPV expression is modified \Rightarrow y in this mode called y_{CP}

Decays to CP eigenstates

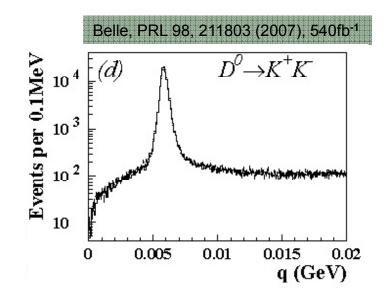
Principle $D^{0} \rightarrow K^{+}K^{-} / \pi^{+}\pi^{-}$

$$y_{CP} \equiv \frac{\tau(K^{-}\pi^{+})}{\tau(K^{-}K^{+})} - 1_{no \ CPV} = y$$

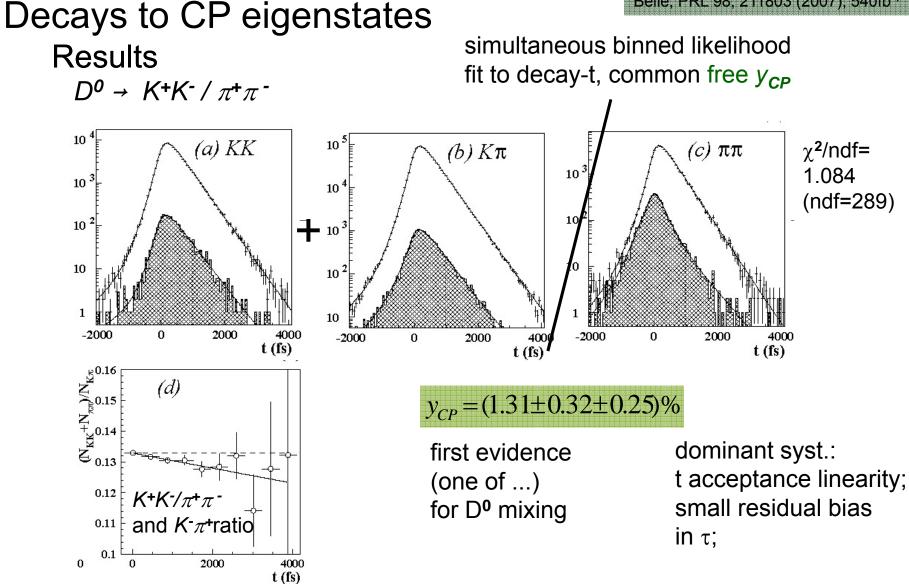
Results

 $\begin{array}{l} M(K^+K^-) \ , \\ q = M(K^+K^- \ \pi_s) - M(K^+K^-) - M(\pi), \\ \sigma_t, \\ \text{selection optimized on MC} \end{array}$

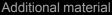
K+K-K- π + π + π - N_{sig} 111x10³1.22x10⁶49x10³P98%99%92%



Belle, PRL 98, 211803 (2007), 540fb⁻¹

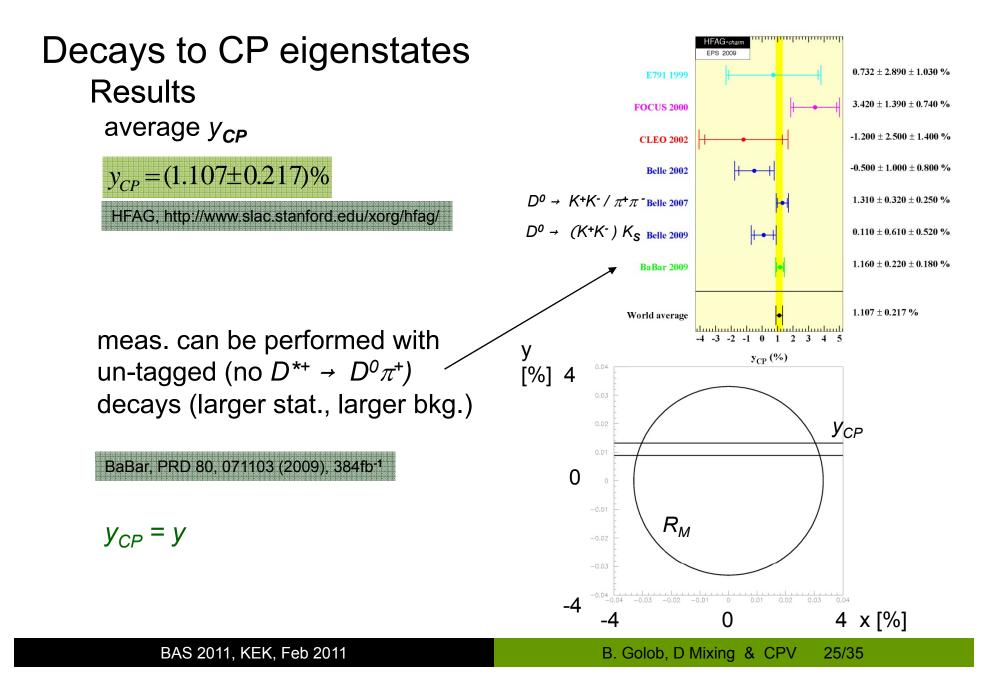


BAS 2011, KEK, Feb 2011



Introduction Mixing phenomenology Mixing measurements

Mixing measurements



WS 2-body decays

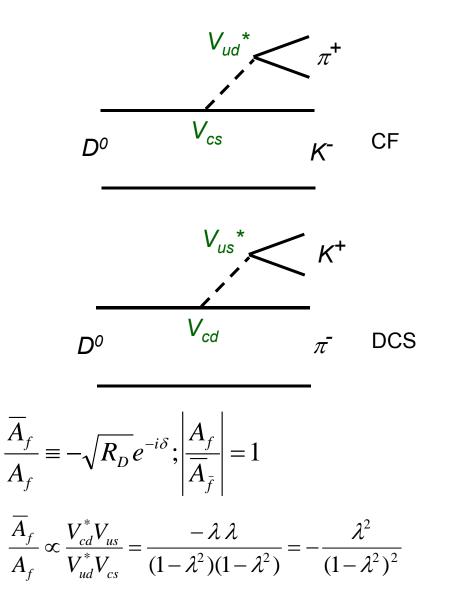
Principle

 $D^{*+} \rightarrow D^{0} \pi_{slow}^{+}$ RS: $D^{0} \rightarrow K^{-} \pi^{+}$ WS: $D^{0} \rightarrow \overline{D}^{0} \rightarrow K^{+} \pi$ or WS: $D^{0} \rightarrow K^{+} \pi$ (DCS)

interference between mixing and DCS for WS decays

f=K⁻π⁺

- sign due to relative sign of V_{us} and V_{cd}



WS 2-body decays

 $x' \equiv x \cos \delta + y \sin \delta; \quad y' \equiv y \cos \delta - x \sin \delta$ $y'' \equiv y \cos \delta + x \sin \delta$

derived from master formula on p. I/15

Principle

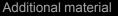
$$D^{*+} \rightarrow D^{0} \pi_{slow}^{+}$$

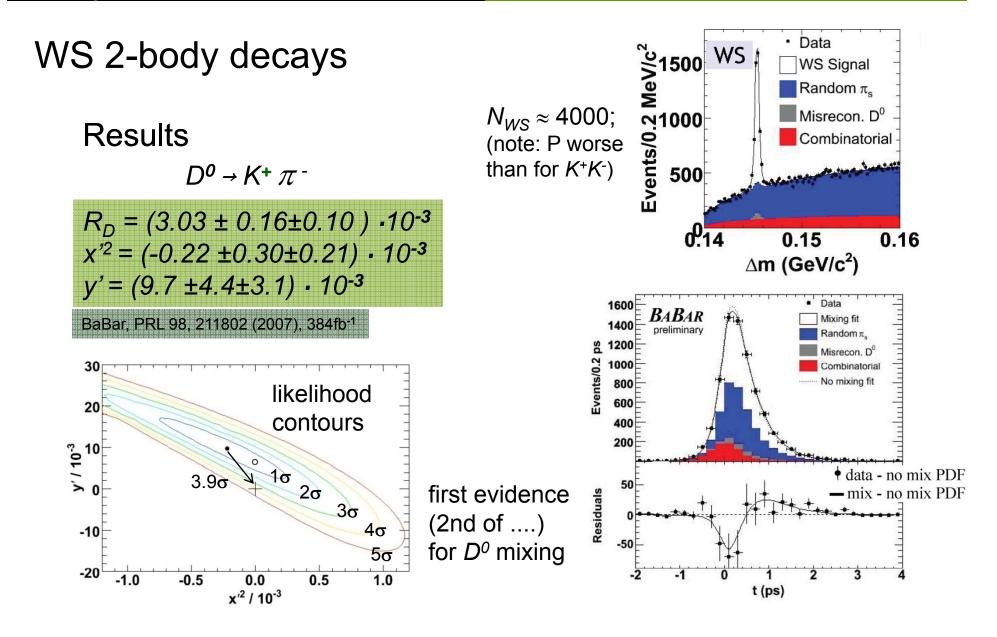
RS: $D^{0} \rightarrow K^{-} \pi^{+}$
WS: $D^{0} \rightarrow \overline{D}^{0} \rightarrow K^{+} \pi$

t-dependence to separate DCS/mixed

- $\frac{\left|\left\langle f \left| P^{0}(t) \right\rangle \right|^{2}}{e^{-t}} = \left| A_{f} \right|^{2} \left[1 \sqrt{R_{D}} y'' t + R_{D} \frac{x^{2} + y^{2}}{4} t^{2} \right] \approx \left| A_{f} \right|^{2}$ $\frac{\left|\left\langle \bar{f} \left| \overline{P}^{0}(t) \right\rangle \right|^{2}}{e^{-t}} \approx \left| \overline{A}_{\bar{f}} \right|^{2}$ $\frac{\left|\left\langle \bar{f} \left| P^{0}(t) \right\rangle \right|^{2}}{e^{-t}} = \left| \overline{A}_{\bar{f}} \right|^{2} \left[R_{D} + \sqrt{R_{D}} y' t + \frac{x^{2} + y^{2}}{4} t^{2} \right]$ $\frac{\left|\left\langle f\left|\overline{P}^{0}(t)\right\rangle\right|^{2}}{e^{-t}} = \left|A_{f}\right|^{2}\left[R_{D} + \sqrt{R_{D}}y't + \frac{x^{2} + y^{2}}{4}t^{2}\right]$ $\left|\left\langle K^{+}\pi^{-}\left|D^{0}(t)\right\rangle\right|^{2} \propto \left|\underbrace{R_{D}}_{DCS} + \underbrace{\sqrt{R_{D}}y't}_{interf} + \underbrace{x'^{2} + y'^{2}}_{4}t^{2}\right|e^{-t}\right|$
- δ: unknown strong phase DCS/CF; not directly measurable at B-factories; directly accesible at charm-factories

n.b.:
$$x'^2 + y'^2 = x^2 + y^2$$





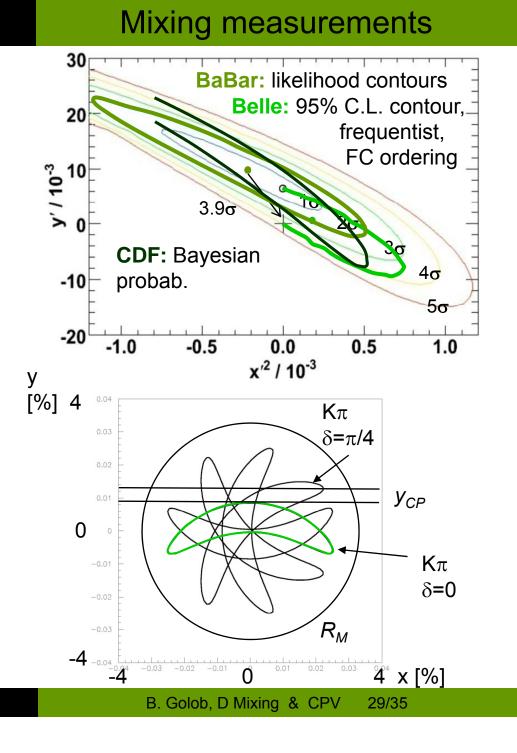
WS 2-body decays

Results

 $D^{0} \to K^{+} \, \pi^{-}$

Belle, PRL 96, 151801 (2006), 400fb ⁻¹	
	8
	趨
BaBar, PRL 98, 211802 (2007), 384fb ⁻¹	H
- Dabai, 1 IXL 30, 211002 (2007), 30710	翩
	繇
	800
CDF, PRL 100, 121802 (2008), 1.5fb ⁻¹	
0D1, 11(2100, 121002 (2000), 1.010	

 $x^{\prime 2} = (x \cos \delta + y \sin \delta)^2$ $y' = -x \sin \delta + y \cos \delta$



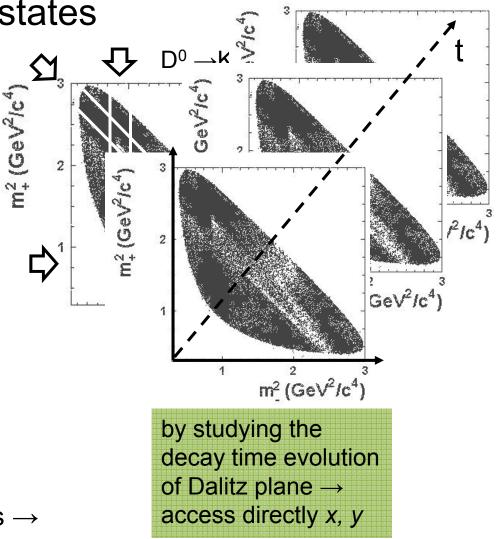
Mixing measurements

Multi-body self conjugated states Principle

example $D^0 \rightarrow K_S \pi^+ \pi^$ different types of interm. states; CF: $D^0 \rightarrow K^{*-}\pi^+$ DCS: $D^0 \rightarrow K^{*+}\pi^-$ CP: $D^0 \rightarrow \rho^0 K_S$

if $f = \overline{f} \Rightarrow$ populate same Dalitz plot; relative phases determined (unlike $D^0 \rightarrow K^+\pi^-$);

specific regions of Dalitz plane \rightarrow specific admixture of interm. states \rightarrow specific *t* dependence f(x, y);



"t-dependent Dalitz analyses"

Multi-body self conjugated states Principle example $D^{0} \rightarrow K_{S} \pi^{*} \pi^{*}$

t-dependent decay ampl. depends on Dalitz variables $m_{\pm}^{2} = m^{2}(K_{s}\pi^{\pm});$ contains D^{0} and \overline{D}^{0} part (due to mixing) that propagate differently in time $\lambda_{1,2}=f(x,y);$ see equations on p. 1/6 (n.b.: $K^{+}\pi^{-}$: dependence on x'^{2}, y')

instantaneous amplitude: sum of intermediate states

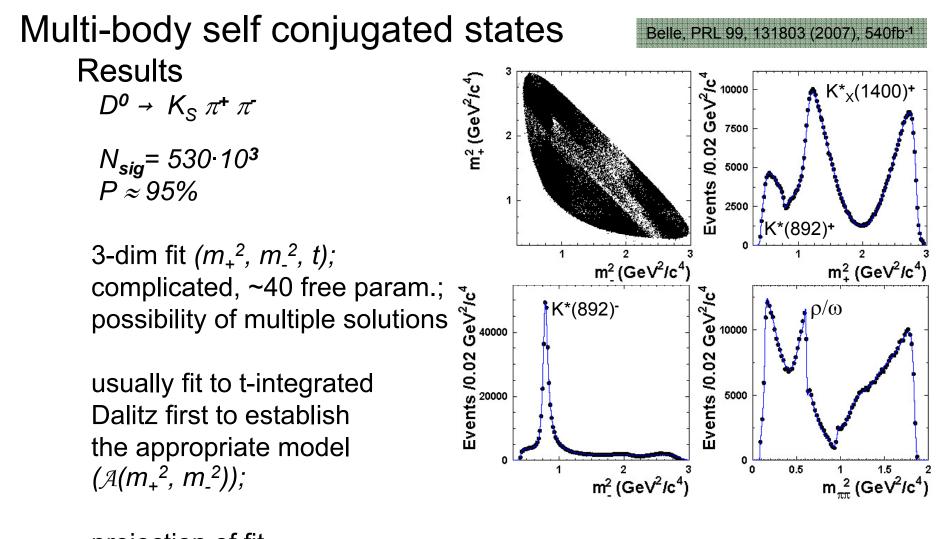
$$\mathcal{M}(m_{-}^{2}, m_{+}^{2}, t) \equiv \left\langle K_{S} \pi^{+} \pi^{-} \left| D^{0}(t) \right\rangle = \frac{1}{2} \mathcal{A}(m_{-}^{2}, m_{+}^{2}) \left[e^{-i\lambda_{1}t} + e^{-i\lambda_{2}t} \right] + \frac{1}{2} \overline{\mathcal{A}}(m_{-}^{2}, m_{+}^{2}) \left[e^{-i\lambda_{1}t} - e^{-i\lambda_{2}t} \right]$$

$$\begin{aligned} \mathcal{A}(m_{-}^{2}, m_{+}^{2}) &= \\ &= \sum_{r} a_{r} \ e^{i\Phi_{r}} B(m_{-}^{2}, m_{+}^{2}) + a_{NR} \ e^{i\Phi_{NR}} \\ &\overline{\mathcal{A}}(m_{-}^{2}, m_{+}^{2}) = \\ &= \sum_{r} a_{r} \ e^{i\Phi_{r}} B(m_{+}^{2}, m_{-}^{2}) + a_{NR} \ e^{i\Phi_{NR}} \\ & \text{Breit-Wigner} \end{aligned}$$

BAS 2011, KEK, Feb 2011

Additional material

Introduction Mixing phenomenology Mixing measurements



projection of fit in Dalitz plane

Multi-body self conjugated states Results $D^{o} \rightarrow K_{S} \pi^{*} \pi^{*}$

projection of fit in t distrib.

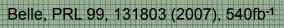
 $x = (0.80 \pm 0.29 \pm {}^{0.13}_{0.16})\%$ $y = (0.33 \pm 0.24 \pm {}^{0.10}_{0.14})\%$

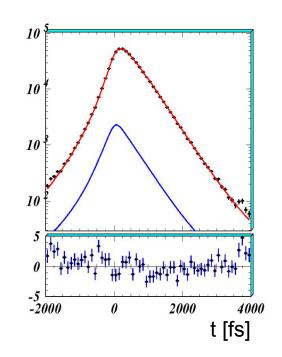
dominant syst.: model dependency (param. of resonances); Dalitz model for bkg.;

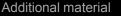
Results

other analogous modes: $D^{o} \rightarrow K_{S} K^{+} K^{-}$ $\pi^{o} \pi^{+} \pi^{-}$

sensitivity to *x*, *y* depends on relative phases of interm. states (interference); difficult to predict







Introduction Mixing phenomenology Mixing measurements

Mixing measurements

EPCP 2010

1.900 ± 3.300 ± 0.566 %

 $0.800 \pm 0.290 \pm 0.170 \ \%$

 $0.160 \pm 0.230 \pm 0.144 ~\%$

CLEO 2005/2007

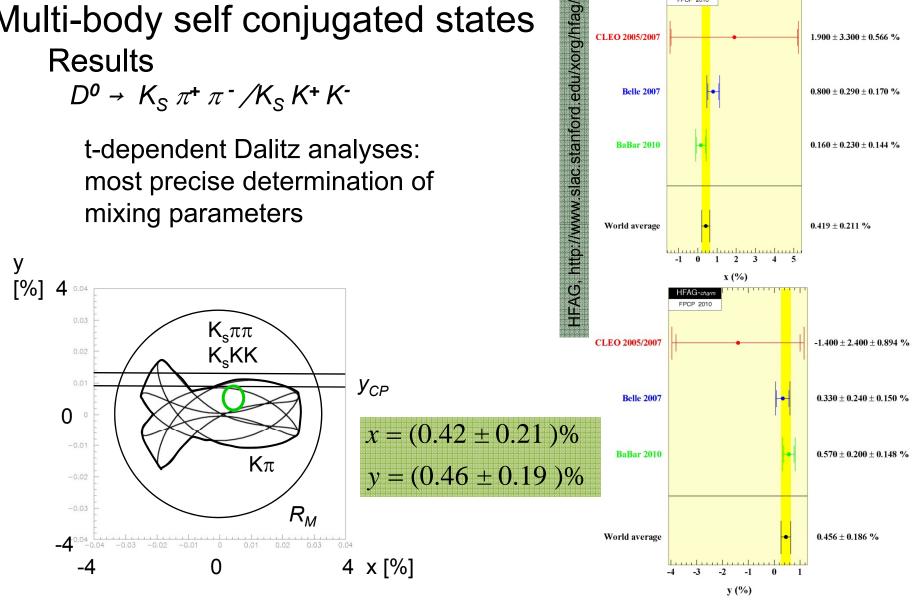
Belle 2007

BaBar 2010

Multi-body self conjugated states Results

 $D^0 \rightarrow K_S \pi^+ \pi^- / K_S K^+ K^-$

t-dependent Dalitz analyses: most precise determination of mixing parameters



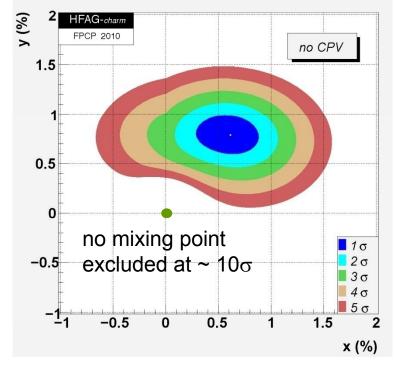
Mixing measurements

Averages Results

HFAG, http://www.slac.stanford.edu/xorg/hfag/

 χ^2 fit including correlations among measured quantities

Parameter	No CPV
x (%)	$0.61^{+0.19}_{-0.20}$
$y \ (\%)$	$0.79\ \pm 0.13$
δ (°)	$26.6^{+11.2}_{-12.1}$
$R_D~(\%)$	$0.3317^{+0.0080}_{-0.0081}$
$A_D~(\%)$	_
q/p	_
ϕ (°)	_
$\delta_{K\pi\pi} \ (^{\circ})$	$21.6^{+22.1}_{-23.2}$



n.b.: $x(D^0) \approx 0.01$; $x(K^0) \approx 1$; $x(B_d) \approx 0.8$; $x(B_s) \approx 25$;

(x,y)≠(0,0): 10 σ;

 $\mathbf{x} \propto \mathbf{m}_1 - \mathbf{m}_2, \mathbf{y} \propto \Gamma_1 - \Gamma_2; \mathbf{D}_1: \mathbf{CP}$ =+1;

x, $y > 0 \Rightarrow$ CP even state heavier and shorter lived;

(unlike K⁰ system)

Additional material

Introduction Mixing phenomenology Mixing measurements

B. Golob, D Mixing & CPV 36/35

Flavor physics

Questions (to SM)

Why are we humans and not anti-humans?

Why are some large and some small?

Why am I massive?

You always admire what you really don't understand.

B. Pascal (1623 - 1662)

Sakharov, CP violation; CPV in SM small

Hierarchy, three generations

Origin of EW symmetry breaking; beyond SM theories may explain, but at what scale? Precission needed

Introduction

Charm physics

Dual role

- experimental tests

 of theor. predictions
 (most notably of (L)QCD);
 improve precision of CKM
 measurements (B physics);
- standalone field of SM tests and searches for new phenomena (SM and/or NP);

Charm is... a way of getting the answer yes without having asked any clear question.

A. Camus (1913 - 1960)

example: leptonic decays of D mesons → decay constants, tests of LQCD;

example: mixing and CPV in D⁰ system

Introduction Mixing phenomenology Mixing measurements

Introduction

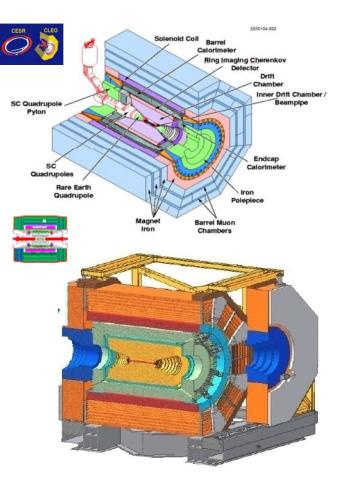
Experiments

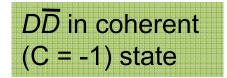
Charm-Factories Cleo-c @ CESR Cornell

BESIII @ BEPC-II IHEP

e⁺e⁻ → $\psi(3770) \rightarrow D^{0}\overline{D}^{0}, D^{+}D^{-}$ Cleo-c: ~800 pb⁻¹ of data available at $\psi(3770)$; 2.8x10⁶ $D^{0}\overline{D}^{0}$ $N_{rec}(D^{0} \rightarrow K^{-} \pi^{+}) \approx 150x10^{3}$ (single tag) BES-III: ~900 pb⁻¹ of data (?)

available at $\psi(3770)$;





Experiments

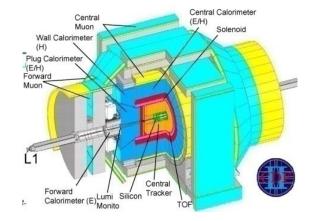
(pp) Colliders D0, CDF @ Tevatron Fermilab $\sim 6 \text{ fb}^{-1}$ available $N_{rec}(D^{*+} \rightarrow D^0 \pi^+ \rightarrow K^- \pi^+ \pi^+) \approx 7 \times 10^6$

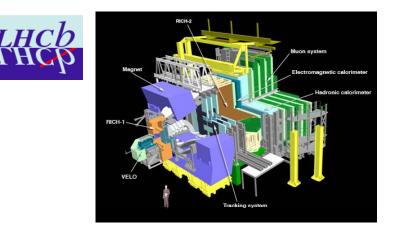
LHCb @ LHC CERN

For 2 fb⁻¹ (currently 1 pb⁻¹) $N_{rec}(D^{*+} \rightarrow D^0 \pi^+ \rightarrow K^- \pi^+ \pi^+) \approx 15 \times 10^6$

diverse exp. conditions to study charm physics We all live with the objective of being happy; our lives are all different and yet the same.

Anne Frank (1929 -1945)



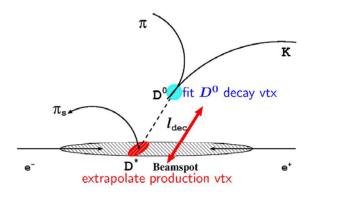


huge statistics in more requiring exp. environment

Experimental methods

B-factories decay time *D*⁰ decay products vertex; *D*⁰ momentum & int. region;

 $p^*(D^*) > 2.5 \text{ GeV/c}$ eliminates D^0 from $b \rightarrow c$

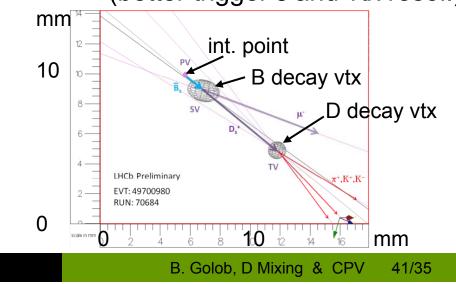


BAS 2011, KEK, Feb 2011

hadron machines

Tevatron: transverse decay length LHCb: decay length between $B (B \rightarrow D^*X)$ and D^0 vtx

Tevatron: impact param. distribution LHCb: using D^0 from B (better trigger ε and vtx resol.)



au

Decays to CP eigenstates

Principle $D^{0} \rightarrow (K^{+}K^{-}) K_{s}$ $(D^{0} \rightarrow \phi K_{s}, a_{0}(980) K_{s},...)$ mixture of CP= ±1 states

$$\tau(\phi K_{\rm S}) = 1/\Gamma_2 > 1/\Gamma_1 = \tau(K^+K^-)$$

 $D^{o} \rightarrow (K^{+}K^{-}) K_{s}$ is topologically different than $D^{o} \rightarrow K^{-}\pi^{+}$;

small biases in the τ measurement would not cancel in the ratio $\tau (K^{-}\pi^{+}) / \tau (K^{+}K^{-}K_{s})$

measure τ for $K^+K^-K_s$ only in different $m(K^+K^-)$ regions

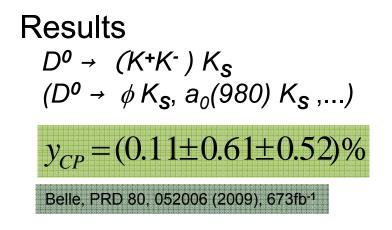
$$\tau' = f_{CP=+1} \frac{\tau}{1 + y_{CP}} + (1 - f_{CP=+1}) \frac{\tau}{1 - y_{CP}}$$

$$\int_{1}^{\infty} \frac{-CP = -1}{CP = -1} (\phi K_s) - CP = +1 (a_0(980)K_s)$$

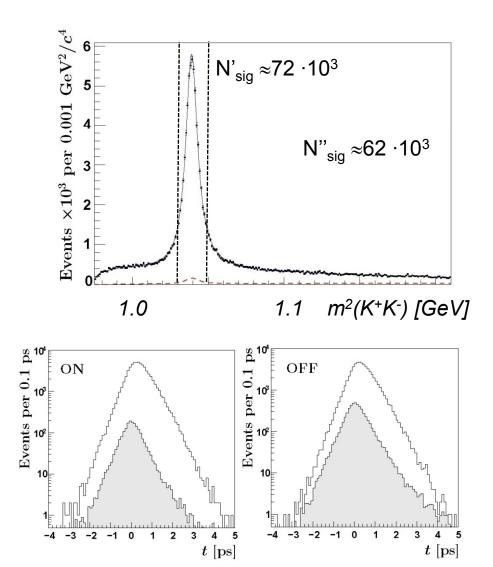
$$\int_{100}^{\infty} \frac{\tau'' - \tau''}{\tau' - \tau''} \frac{\tau'' - \tau''}{\tau' - \tau''} \frac{\tau'' - \tau''}{\pi' - \tau''} \frac{\tau'' - \tau''}{\pi' - \tau''} \frac{\tau'' - \tau''}{\pi' - \tau'' - \tau''} \frac{\tau'' - \tau''}{\pi' - \tau'' - \tau''} \frac{\tau'' - \tau''}{\tau' - \tau'' - \tau'' - \tau''} \frac{\tau'' - \tau'' - \tau''}{\tau' - \tau'' - \tau'' - \tau'' - \tau''} \frac{\tau'' - \tau'' - \tau''}{\tau' - \tau'' - \tau''$$

au

Decays to CP eigenstates



main syst.: residual biases in $\boldsymbol{\tau}$



WS 2-body decays

Results

Mixing measurements

 $D^0 \rightarrow K^+ \pi^-$

CDF: divide data into 20 t bins;

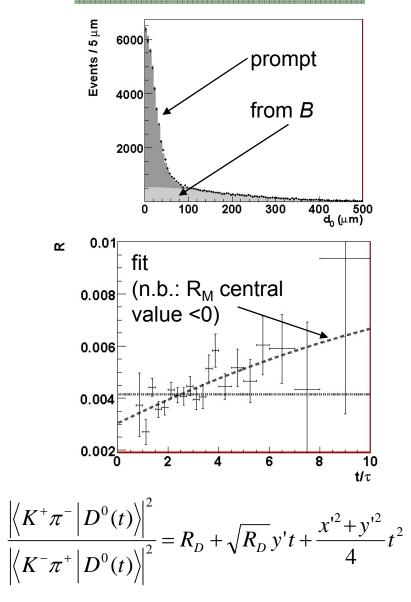
in each bin determine yield of prompt (not from *B*) RS and WS events, based on imp. parameter distr.;

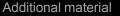
plot WS/RS ratio in bins of *t*;

fit the distribution;

Mixing measurements

CDF, PRL 100, 121802 (2008), 1.5fb⁻¹





Multi-body self conjugated states BaBar, arXiv:1004.5053, 470 fb⁻¹ Results 6000 d) simultaneous: Events / 0.024 GeV²/c⁴ Events / 0.024 GeV²/c⁴ 5000 4000 $D^0 \rightarrow K_S \pi^+ \pi^- / K_S K^+ K^-$ 4000 3000 profit from resonances that 2000 2000 are present in both final states, 1000 1.8 m_² (GeV²/c⁴) 1.4 1.6 1.8 e.g. *a₀(980)* 1.2 $m_{+}^{2^{s_{+}(GeV^{2}/c^{4})}}$ $x = (0.16 \pm 0.23 \pm 0.12 \pm 0.08)\%$ f) 25000 CeV²/C⁴ $y = (0.57 \pm 0.20 \pm 0.13 \pm 0.07)\%$ Events / 0.024 15000 10000 5000 first error stat., second syst., third model $m_{KK}^{1.4} m_{KK}^{1.6} m_{KK}^{1.8}$ 1.2 +Data 10⁴ b) $\begin{array}{c} \neg Data \\ \hline Signal \\ \hline Random \pi_1 \\ \hline Misrecon. D^0 \\ \hline M \\ \hline D^0 \rightarrow K_s^0 K_s^0 \\ \end{array}$ Events / 0.08 ps 10⁴ 0.08 ps 10² 10² 10² Events / 0.08 bs 10² 10 10

10

-2

Û

 $K_{\rm S} \pi^+ \pi^{-\rm t\,(ps)}$

10

-2

0

K_S K+ K^{- t (ps)}

2

Combinatorial

2

Additional material

Multi-body flavor specific states

Principle $D^{0} \rightarrow K^{+} \pi^{-} \pi^{0}$

> properties: mixture of 2-body WS ($K\pi$) and t-dependent Dalitz ($K_S\pi\pi$);

WS: interference mixing/DCS; t-dependence similar as for $K\pi$;

WS and RS Dalitz distribution; in each relative phases determined;

one unknown relative phase between chosen point in RS and WS Dalitz plane;

 $f = K^{-} \pi^{+} \pi^{0}$ $\left| \left\langle K^{+}\pi^{-}\pi^{0} \left| D^{0}(t) \right\rangle \right|^{2} \propto \left[\left| A_{\bar{f}} \right|^{2} + \left| A_{\bar{f}} \right| \left| \overline{A}_{\bar{f}} \right| (y_{K\pi\pi} \cos \delta_{f} - x_{K\pi\pi} \sin \delta_{f}) t + \left| \overline{A}_{\bar{f}} \right|^{2} \frac{x_{K\pi\pi}^{'} + y_{K\pi\pi}^{'} + y_{K\pi\pi}^{'} t^{2}}{4} \right] e^{-t}$ $x_{K\pi\pi} = x\cos\delta_{K\pi\pi} + y\sin\delta_{K\pi\pi}$ $y_{K\pi\pi} = y \cos \delta_{K\pi\pi} - x \sin \delta_{K\pi\pi}$ $A_{\bar{f}}, \overline{A}_{\bar{f}}$ and $\delta_{f} = \overline{\delta} - \delta$ functions of $m_{\kappa\pi}^{2}, m_{\pi\pi}^{2}$

 $\delta_{K\pi\pi}$: unknown strong phase DCS/CF; not directly measurable at B-factories; directly accesible at charm-factories

Multi-body flavor specific states

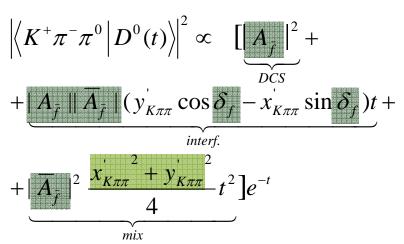
Principle $D^{0} \rightarrow K^{+} \pi^{-} \pi^{0}$

mixing parameters from WS t-dependent Dalit distrib.

Results

$$x'_{K\pi\pi} = (2.61 + 0.57)_{-0.68} \pm 0.39)\%$$

$$y'_{K\pi\pi} = (-0.06 + 0.55)_{-0.64} \pm 0.34)\%$$



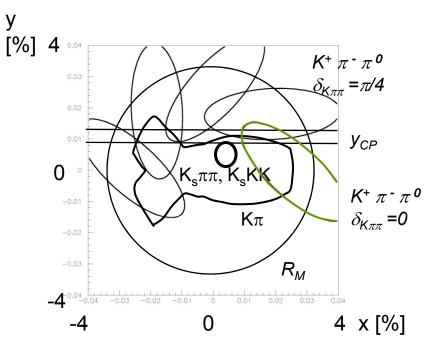
BaBar, PRL 103, 211801 (2009), 384 fb⁻¹

Resonance	a_j^{DCS}	δ_j^{DCS} (degrees)	f_j (%)
$\rho(770)$	1 (fixed)	0 (fixed)	39.8 ± 6.5
$K_2^{*0}(1430)$	0.088 ± 0.017	-17.2 ± 12.9	2.0 ± 0.7
$K_{0}^{*+}(1430)$	6.78 ± 1.00	69.1 ± 10.9	13.1 ± 3.3
$K^{*+}(892)$	0.899 ± 0.005	-171.0 ± 5.9	35.6 ± 5.5
$K_0^{*0}(1430)$	1.65 ± 0.59	-44.4 ± 18.5	2.8 ± 1.5
$K^{*0}(892)$	0.398 ± 0.038	24.1 ± 9.8	6.5 ± 1.4
$ \rho(1700) $	5.4 ± 1.6	157.4 ± 20.3	2.0 ± 1.1

results of Dalitz fit for WS decays

Multi-body flavor specific states

Results $D^{0} \rightarrow K^{+} \pi^{-} \pi^{0}$ $x'_{K\pi\pi} = x \cos \delta_{K\pi\pi} + y \sin \delta_{K\pi\pi}$ $y'_{K\pi\pi} = -x \sin \delta_{K\pi\pi} + y \cos \delta_{K\pi\pi}$



B. Golob, D Mixing & CPV 48/35

Charm-factories

Principle coherence of $D^0\overline{D}^0$ pair affects t-integrated rates; example: $f_1 = K^-\pi^+$, $f_2 = e^-X$

$$\begin{aligned} & \operatorname{formula \ on \ p. \ l/15}^{\text{derived from master formula \ on \ p. \ l/15}} \\ & = \frac{1}{2} |a_{-}|^{2} \left(\frac{1}{1 - y^{2}} + \frac{1}{1 + x^{2}} \right) + \frac{1}{2} |b_{-}|^{2} \left(\frac{1}{1 - y^{2}} - \frac{1}{1 + x^{2}} \right) \\ & A_{f1} \equiv A, \ \overline{A}_{f2} \equiv A_{e}; \quad \overline{A}_{f1} = -\sqrt{R_{D}} e^{-i\delta} A, \ A_{f2} = 0 \\ & a_{-} = AA_{e}; \quad b_{-} = \frac{q}{p} \sqrt{R_{D}} e^{-i\delta} AA_{e} \approx \sqrt{R_{D}} e^{-i\delta} AA_{e} \\ & \Gamma(V \to D^{0} \overline{D}^{0} \to K^{-} \pi^{+}, e^{-} X) = \\ & = \frac{1}{2} |AA_{e}|^{2} \left\{ 2 + x^{2} (1 + R_{D}) - y^{2} (1 - R_{D}) \right\} \end{aligned}$$

for $D^0 \to f_1$ and $\overline{D}{}^0 \to f_2$ ("double tagged", DT $\Gamma(V \to D^0 \overline{D}{}^0 \to K^- \pi^+, e^- X) = |AA_e|^2 \left\{ 1 + \frac{x^2 - y^2}{2} \right\}$ events); sensitivity to *x*, *y* is in 2nd order only

BAS 2011, KEK, Feb 2011

Additional material

Introduction Mixing phenomenology Mixing measurements

Charm-factories Principle

one can also reconstruct only single final state, e.g. $K^-\pi^+$ ("single tagged", ST events);

each event contains D⁰ and D⁰, inclusive singe tag rate equals the rate of non-coherent decays;

sensitivity of ST events to $\sqrt{R_D}$ *y* cos δ is in 1st order;

DT/ST ratio (ST provides sensitivity to mixing parameters, DT normalization)

derived from master *f*= *K*⁻π⁺ formula on p. I/15 $\frac{1}{2e^{-t}} \left(\left| \left\langle f \right| P^{0}(t) \right\rangle \right|^{2} + \left| \left\langle f \right| \overline{P}^{0}(t) \right\rangle \right|^{2} \right) \approx$ $\approx \frac{1}{2} |A|^{2} \left[1 + \sqrt{R_{D}} y''t \right] + \frac{1}{2} |A|^{2} \left[R_{D} + \sqrt{R_{D}} y't \right]$ $\Gamma(V \to D^0 \overline{D}^0 \to K^- \pi^+ X) =$ $=\frac{1}{2}\int \left|\left|\left\langle f\right|P^{0}(t)\right\rangle\right|^{2}+\left|\left\langle f\right|\overline{P}^{0}(t)\right\rangle\right|^{2}\left|dt\approx\right|$ $= |A|^2 \left[1 + R_D + 2\sqrt{R_D} y \cos \delta \right]$ f= e⁻ X $\frac{1}{2e^{-t}} \left(\left| \left\langle f \right| P^{0}(t) \right\rangle \right|^{2} + \left| \left\langle f \right| \overline{P}^{0}(t) \right\rangle \right|^{2} \right) = \left| A_{e} \right|^{2}$ $\frac{\Gamma(K^-\pi^+, e^-X)}{\Gamma(K^-\pi^+)\Gamma(e^-X)} \approx 1 - R_D - 2\sqrt{R_D} y \cos\delta$

Charm-factories

Principle

various decay modes, effective rates;

- S_{\pm} : CP= ±1 eigenstate
- e⁻ : semileptonic state

$$r : \sqrt{R_D}$$

state	Cleo, PRD 78, 012001 (2008), 281pb ⁻¹	
Mode	Correlated	-
$K^-\pi^+$	$1 + R_{\rm WS}$	ST;
S_+	2	Γ (f)
S_{-}	2	Γ ^{uncorr} (f)
$K^-\pi^+, K^-\pi^+$	$R_{ m M}$	
$K^-\pi^+, K^+\pi^-$	$(1+R_{\rm WS})^2 - 4r\cos\delta(r\cos\delta + y)$	
$K^-\pi^+, S_+$	$1 + R_{\rm WS} + 2r\cos\delta + y$	
$K^-\pi^+, S$	$1 + R_{ m WS} - 2r\cos\delta - y$	DT;
$K^-\pi^+, e^-$	$1 - ry\cos\delta - rx\sin\delta$	$\Gamma(f_1, f_2)$
S_+, S_+	0	$\Gamma^{\text{uncorr}}(\mathbf{f}_1) \Gamma^{\text{uncorr}}(\mathbf{f}_2)$
S,S	0	· (·)/· (·2/
S_+,S	4	
S_+, e^-	1+y	
S_{-}, e^{-}	1-y	-

Charm-factories

$$\begin{array}{c} \rightarrow \frac{\Gamma(K^{+}\pi^{+})}{\Gamma^{\text{uncorr}}(K^{+}\pi^{+})} & 1+R_{\text{WS}} \\ \hline \Gamma^{\text{uncorr}}(K^{+}\pi^{+}) & \Gamma^{\text{Uncorr}}(K^{+}\pi^{+}) & 1+R_{\text{WS}} \\ \hline \Gamma^{\text{uncorr}}(K^{+}\pi^{+}) & \Gamma^{\text{uncorr}}(e^{-X}) & 1-\sqrt{R_{D}} x \sin\delta - \sqrt{R_{D}} y \cos\delta \\ \hline \Gamma^{\text{uncorr}}(K^{+}\pi^{+}) & \Gamma^{\text{uncorr}}(e^{-X}) & 1-\sqrt{R_{D}} x \sin\delta - \sqrt{R_{D}} y \cos\delta \\ \hline \Gamma^{(V} \rightarrow D^{0}\overline{D}^{0} \rightarrow K^{-}\pi^{+}X) = & \Gamma^{\text{uncorr}}(D^{0} \rightarrow K^{-}\pi^{+}) = \\ = \frac{1}{2} \Big(\Gamma(D^{0} \rightarrow K^{-}\pi^{+}) + \Gamma(\overline{D}^{0} \rightarrow K^{-}\pi^{+}) \Big) & = \frac{1}{2} \Big(\Gamma(D^{0} \rightarrow K^{-}\pi^{+}) + \Gamma(\overline{D}^{0} \rightarrow K^{+}\pi^{-}) \Big) \\ \rightarrow & \Gamma(V \rightarrow D^{0}\overline{D}^{0} \rightarrow K^{-}\pi^{+}X) = (1+R_{\text{WS}})\Gamma^{\text{uncorr}}(D^{0} \rightarrow K^{-}\pi^{+}) = \\ = (1+R_{\text{WS}})\frac{1}{2} \Big(\Gamma(D^{0} \rightarrow K^{-}\pi^{+}) + \Gamma(\overline{D}^{0} \rightarrow K^{+}\pi^{-}) \Big) = \\ = \frac{(1+R_{p} + \sqrt{R_{D}}y' + R_{M})}{\Gamma^{\text{uncorr}}(D^{0} \rightarrow K^{-}\pi^{+}, e^{-X})} = \frac{|AA_{e}|^{2} \Big(1 + (x^{2} - y^{2})/2\Big)}{|A|^{2} \Big(1 + \sqrt{R_{D}}y'')|A_{e}|^{2}} \approx \end{array}$$

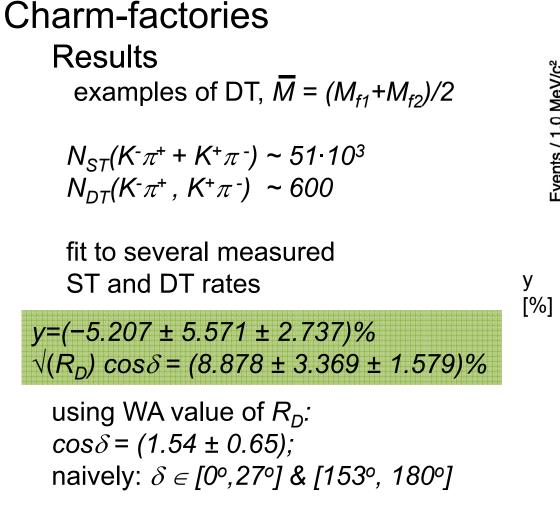
 $\approx 1 - \sqrt{R_D} y'' = 1 - \sqrt{R_D} y \cos \delta - \sqrt{R_D} x \sin \delta$ derived from equations on p. I/49, 49

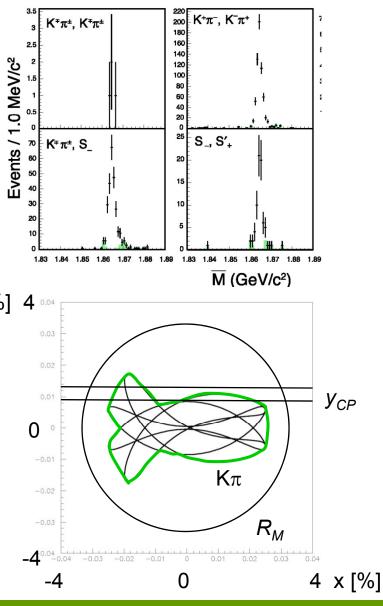
Additional material

Introduction Mixing phenomenology Mixing measurements

Mixing measurements

Cleo, PRD 78, 012001 (2008), 281pb⁻¹





B. Golob, D Mixing & CPV 53/35