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2.1 Introduction 
 
To start the discussion on particle physics we need to first define what are the elementary  
particles - basic building blocks - in the nature. A reasonable definition would be to define  
those as the uncomposed particles. This definition, however, depends on the experimental  
methods available in each period of time. In the introduction to Part 1 we mentioned  
the idea of ancient Greeks that all matter in the nature is composed of earth, water, fire  
and air. In the absence of experimental methods and based on (some) observation of the  
nature and philosophical ideas these elements were believed to be the basic building  
blocks of nature.  
 
Jumping to the present time clearly the experimental methods available are much more  
sophisticated. Nevertheless we must be aware of their limitations. Optical microscopes,  
for example, are able to distinguish details in the structure of matter the dimensions of  
which are at least of the order of the wavelength of the visible light (l ~ 700 nm = 7 ·10-7 m).  
The light does not scatter or reflect significantly on the structure with dimensions less  
than this. One can overcome the limitation by using the electron microscope. In the electron  
microscope instead of a visible light an accelerated beam of electrons is used. Quantum  
mechanically such a beam can be described as a wave with the de Broglie wavelength  
 
                     .  For electrons accelerated to kinetic energies comparable or larger than their  
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2.1 Introduction 
 
rest energy mc2, a relativistic energy-momentum relation must be used,  
 
                                                              , where T represents the kinetic and E the total energy  
of the particle. Electrons with T=100 keV have cp = 300 keV and hence the wavelength  
of 4 ·10-12 m. Clearly with such a “light” much finer details in the structure of the matter  
can be observed than with the optical microscope. Indeed the electron microscopes enable  
visualization of single atoms.  
 
                                                 Picture of lithium cobalt oxide taken by the electron  
                                                 transmission microscope (from www.photonics.com).  
               
                    
                                                 Going few steps further, one can think of today’s particle  
                                                  accelerators as microscopes, accelerating particles to very  
                                                 high energies and thus small wavelengths, to provide an insight  
                                                 into the smallest details of matter as observed nowadays.  
                                                 Modern particle accelerators provide particles with energies of  
the order 100 GeV. This translates into the wavelengths of 10-18 m which determines the  
size of objects for which we nowadays believe are the contemporary uncomposed particles  
                   (see also Part 1, p. 4). 
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2.1 Introduction 
 
Table of elementary particles as observed nowadays:  
 
charged leptons           e-,                 m -,                       t - 

                                      electron     muon       tau lepton (tauon) 
neutral leptons            ne ,                                      nm ,                      nt 

                                     electron neutrino       muon neutrino   tau neutrino 
quarks                           u,             c,                 t 
                                     up        charm             top 
                                       d,                 s,              b 
                                     down     strange          bottom 
 
carriers of                    g,                            W+,                               Z0,                     g 
interactions              photon     charged weak boson  neutral weak boson   gluon 
 
All leptons and quarks are fermions (particles with half integer spin). Their spin  
is ½. All interaction carriers are bosons (particles with integer spin). Their spin is 1. 
 
Beside the particles listed each particle has also its anti-particle. Anti-particle has  
similar properties as the particle (same mass), but opposite quantum numbers  
(like electric charge).  
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2.1 Introduction 
 
The anti-particle of an electron is a positron (e+) with a positive basic charge.  
 
All particles that feel the strong nuclear force are called hadrons. They are all composed  
of quarks. Contrary to leptons, which are all fermions, hadrons are fermions and bosons.  
Almost all hadrons observed so far are (in the simplest model) composed of three quarks   
 - baryons - or a quark and an anti-quark - mesons. Baryons are fermions (well known  
examples are protons and neutrons) while mesons are bosons (examples are pions,  
composed of u and d quarks and anti-quarks).  
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2.2 Electromagnetic Interaction and Photons, Coupling Constants 
2.2.1 EM Interaction and photons 
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Plot on the right represents a Feynman diagram of an electron  
radiating a photon. A Feynman diagram is a pictorial  
representation of a given process. It helps in calculation of   
an amplitude for the process under consideration by relating  
factors appearing in the amplitude to specific parts of the process,  
like lines of individual particles, intersections of several particle lines  
(called vertices), etc.  
 
There is a problem with the process depicted in the figure. Energy-momentum is not  
conserved in this particular process. However, this doesn‘t mean that such a process  
cannot proceed at least as a part of  
a more general process. One should not forget  
the Heisenberg uncertainty principle, which in  
one of the forms reads  
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For our particular example this means that the  
photon can exist for a short time (t)  
in which the energy may not be conserved. After  
this short period of time the photon is absorbed  
by another particle – for example another electron.  
By this we get the Feynman diagram representing a different process which now  
all together does conserve energy and momentum. The process is the EM scattering of  
two electrons. The sum of energies and momenta of initial state electrons equals the  
sum of energies and momenta of final state electrons. The intermediate photon does not  
conserve energy and momentum and lives for a very short period of time, in accordance with  
the Heisenberg uncertainty principle. Such a photon is called a virtual photon. The EM  
 interaction between the two electrons is mediated by the exchange of the photon.  
 
 
The matrix element for EM scattering of two electrons will be proportional to e2/4e0 (the  
Coulomb potential between two particles with an elementary charge e),  
 
 
                                                                  where a is the fine structure constant.  
 
This factor entering the matrix element can now be assigned to vertices of electrons and  
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photon in the Feynman diagram (there is no reason to  
prefer either of the e- g vertices, and hence a  is assigned  
to each of them). Each e- g  interaction (vertex) contributes  
a to the amplitude (matrix element) for the process;  
probability for the process per unit of time (Fermi golden rule,  
see part 1, p. ??) is proportional to matrix element squared and  
hence to a2.  
The dimensionless factor determining the probability of a process which is a consequence  
of a specific interaction is called the coupling constant of the interaction. For the EM  
interaction the coupling constant is a.  
In the above description we started from the description of the EM scattering  
through the Coulomb potential. How can one quantitative describe the same process  
through the exchange of a photon?  
 The relativistic relation between energy and momentum reads  
 
 
Replacing the observables by operators in quantum mechanics leads to   
 
 
The mass operator       is just multiplication by m. On the other hand the energy and  
momentum operators are not trivial. The easiest way to check the form of those is to  
consider a plane wave  
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Here, k and x are the four vectors                                                          . 
 
The product of the two is                                                                 
                                                                                                               . 
 
Hence                                             . 
 
If we operate on  with the operator of the form               we get 
 
                                                     ,  and hence                    . 
 
Similarly, using the operator                we get   
 
from which it‘s obvious that                         . By inserting operators    and      into the  operator  
relation on the previous page we arrive at  
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The derived equation is called the Klein-Gordon equation. It is an analogy of the  
Schrödinger equation in the sense that it represents a quantum mechanical description  
of a system with the wave function , but with the distinction that while the Schrödinger  
equation describes non-relativistic systems the Klein-Gordon equation describes relativistic  
particles (since it was derived from the relativistic energy-momentum relation).  
 
If for the moment we neglect the mass term (i.e. m=0) the Klein-Gordon eq. reduces to 
 
                                         , which is just the wave equation describing  wave (e.g.  
 
electromagnetic  wave) propagation. This is an example of the so called wave-particle  
(wave-corpuscular) duality; the equation describes a relativistic particle of energy E and  
zero mass (photon) or a propagation of an EM wave.   
 
In case of a stationary (time independent) field the solution of the equation  
 
 
 
is                   .  The constant g, multiplied by an appriopriate factor to be dimensionless,  
 
is the coupling constant of the interaction. For g=e/4e0, U is just the electrostatic potential 
of a point like charge e.  The particle described by the Klein-Gordon equation (photon in this  
particular case) represents the EM potential of the particle which emitted it (electron).  4/22/2014 11 B. Golob 
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The idea can be evolved further by considering massive particles. Considering the mass  
term the solution of the (time independent) Klein-Gordon eq. is  
                                                                                                                                              ,  
 
with R= /mc. This can be interpreted in a similar manner as the massless photon being the  

carrier of the electromagnetic interaction. A massive particle carries an interaction with a  
finite reach, the latter being determined by R.  
 
This lead Hideki Yukawa in 1935 to propose the idea of the strong interaction (which holds  
nucleons bound inside the nuclei) being mediated by a particle he called a meson (the name  
follows from Greek mesos meaning middle, intermediate; it relates to the mass of such a  
particle). The Feynman diagram of the strongly interacting particles could thus look like  
 
 
                                                                denotes the meson mediating the interaction, and n  
                                                               is any nucleon. Like in the case of EM interaction the  
                                                               meson can only live for the time interval t in accordance 
                                                               with the Heisenberg uncertainty principle:  
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Inserting for tc a typical nuclear distance  (few fm) one arrives at the order of magnitude  
estimate for the mass of the meson  
 
 
 
The mesons called pions () are nowadays of course well known, their mass being  
~139 MeV/c2. We also know today that the strong interaction among quarks inside the  
nucleons is mediated by particles called gluons. However, at the energies achievable in  
the first half of the 20th century the description of the effective interaction among the  
nucleons as being mediated by pions was successful and, moreover, represented an  
important breakthrough in quantum mechanical interpretation of individual interactions.  
 
                                                                      Hideki Yukawa was the first Japanese to receive the  
                                                                      Nobel prize, in 1949 (following the experimental  
                                                                      discovery of pions in 1947) 
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If the incoming and outgoing particles are described as plane waves the cross section of a  
specific process (it may be helpful to think about e- e- EM scattering, for example) is  
proportional to |f|2 where  
 
                                                                                                      , 
 
                                             q is the wave vector of the exchanged particle (q=k-k‘)              
                                              (verify this with the expression for calculation of the  
                                              matrix element for Coulomb scattering of a projectile on a charge  
                                              distribution, Part 1, p. ??).  
 
If for U(r) we now use the solution of the Klein-Gordon eq. with m  0:  
 
                                                                                                                                            . 
 
In the last step we used R= /mc and q=p/  with p the momentum of the exchanged particle  

(sometimes also called the momentum transfer).  
 
The result tells us that for the EM scattering, the cross section is                                       , 
 
in accordance with eq. Part 1, ??:   
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- 

In case of a massive particle mediating the interaction, and if mc2 >> cp, one should be  
aware that the measured cross section reflects not the „bare“ coupling constant g  
of the corresponding interaction, but rather g2/(m2c4 +c2p2)2 ~ g2/m4c8 . This becomes  
evident especially in the case of weak interaction, as explained below.  
 

2.2.2 Charge Screening and Vacuum Polarization 
 
Any electric charge in media is the source of polarization of the latter:  
 
 
 
                                          
                                                                           The size of the observed charge thus depends on  
                                                                            how close to the charge the probe reaches, for  
                                                                            example – if one probes the charge through EM  
                                                                            interaction – how close to the charge the  
                                                                            projectile can penetrate. The size of the charge   
                                                                            depends on the energy of the projectile. The  
                                                                            phenomena is called the charge screening.   
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A similar thing happens also in vacuum. The EM interaction is described by radiation of  
g‘s, which in turn can yield new e-e+ pairs. An electron, travelling through the vacuum, could  
thus be represented as   
 
 
 
 
 
 
 
 
 
Similarly as in some media positrons in e-e+  pairs tend to be closer to the original e- than  
electrons. Such a cloud of photons and e-e+  pairs is of course subject to the Heisenberg  
uncertainty principle and extends on the average   
 
 
 
 
away from the original electron. If one observes the electron charge at distances    103 fm  
the measured value would be the „usual“ electron charge, -e0=-1.6x10-19 As. Closer to the  
charge its value is larger. This phenomena is called the vacuum polarization.  
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The vacuum polarization causes the elementary charge and by this also the EM coupling  
constant a to be energy dependent (in terms of the energy of a projectile used to probe the  
charge or in other words in terms of the energy at which an EM scattering takes place).  
 
 
                                                                                 A similar vacuum polarization also takes place  
                                                                                 in weak and strong interaction. In these cases  
                                                                                 the coupling constants of these interactions  
                                                                                 depend on the energy (because of the  
                                                                                 „screening“ of appropriate „charges“  
                                                                                 rersponsible for the two interactions –  
                                                                                  analogies of the electric charge in case of  
                                                                                  EM interaction). However, in the vacuum  
                                                                                  polarization related to the strong and weak  
                                                                                 interaction there is an important difference  
                                                                                 with respect to the EM interaction: while  
                                                                    photon itself does not carry an electric charge,  
gluons and weak bosons do carry the corresponding strong and weak charges. The  
consequence is that the picture drawn for en electron travelling through the vacuum is  
sligthly different in the case, for example, of a quark.     
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 A complete analogy of the EM vacuum polarization for the case of strongly interacting  
quark is:  
 
 
 
 
 
 
 
 
where q represents quarks and g gluons.  
But due to the fact that gluons (g) itself carry the strong charge, also gluon loops are  
possible:  
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Despite the fact that graphically this doesn‘t seem to be a large difference it carries far  
reaching consequences.  
In 1973 D.J. Gross, H.D. Politzer and F. Wilczek have shown that a consequence of the  
posibility shown in the last figure (gluon-gluon interaction) is an „anti-screening“; the  
coupling constant of the strong interaction increases with the distance (decreases with  
energy), rather than decreases as in the case of EM interaction. This fact is called  
                                                                        asymptotic freedom since quarks at high enough  
                                                                        energies behave as free particles (this is not  
                                                                        to be confused by possible observation of free  
                                                                        quarks; the latter does not happen since quarks are 
                                                                        always bound inside hadrons).  
                                                                        The three above mentioned physicists received  
                                                                        Nobel prize for their discovery in 2004.  
 
                 
                                                                         Increase of the strong interaction coupling as the  
                                                                         energy decreases is the source of an important  
                                                                         problem in particle physics: at low enough energies 
(typically at energies involved in processes among quarks bound inside hadrons) as becomes  
too large in order to use a common approach of calculating variables using the perturbation  
theory (based on Taylor series in coupling constant). Hence other approaches must be used  
leading to significant uncertainties in calculations of processes of strong interaction at low  
energies.  4/22/2014 19 B. Golob 
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Increase of as at large distance also means that the quarks always remain bound inside  
hadrons (as the distance between two bound quarks increases also the strong potential  
increases). At large enough distance it becomes energetically favourable to produce  
a new quark – antiquark pair instead of enlarging the distance further. Schematically:  
 
 
 
 
 
 
 
In the above sketch arrows denote the strong field lines, qi are quarks and Hi hadrons.  
This results in another property of strong interaction: despite the fact that gluons are  
massless (and hence one would, in accordance with p. ?? expect an infinite range of the  
interaction) the interaction has a finite range.   
 
Coupling constant of the weak interaction qualitatively depends on the energy in the  
same manner as the strong coupling constant. Also for the weak interaction interactions  
of the type   
                                                                            are possible, also leading to the decrease  
                                                                        of the coupling constant of weak interaction,  
                                                                               aw , with energy.  
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Coupling constants of various interactions are thus not really constant but depend  
on the energy at which the process takes place.  
 
At energies E~O(100 GeV) the value of aEM ~ 1/128 (note that at E~O(1 MeV) aEM ~ 1/137).  
The range of the interaction is infinite (photon is massless).  
 
At this energy as ~ 20 aEM. Hence indeed one can say that the strong interaction is  
„stronger“ than the electromagnetic one. The range of the interaction is limited despite  
the fact that gluons are massless because of the reasons explained on the previous page.  
 
On the other hand aw ~ aEM, and thus bare coupling constant of weak interaction is not  
smaller than the electromagentic one. However, bearring in mind that the probability of  
weak interaction processes  aw

2/m4(see p. ??) the weak interaction appears „weak“  
because of the high mass of weak bosons (~ 80 GeV/c2).  The range of the interaction is  
of the order of ct ~ 2  c/mWc2 ~ 0.01 fm.  

 
 

4/22/2014 21 B. Golob 



Energy dependence of coupling constants as measured by various experiments:  
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Based on the energy dependence of the coupling constants it is not difficult to  understand  
the source of the idea about the „unification of interactions“. The idea states that all  
interactions observed at the processes observed so far (i.e. at presently available energies)  
are just a low-energy manifestations of a single interaction. Computation of the energy  
eviolution of the coupling constants within the Standard Model of interactions predicts:  
 
 
 
 
 
 
 
 
 
 
 
It is thus easy to imagine that perhaps at some higher energy scale all the coupling constants  
become equal. Detailed calculations, however, show that this is not exactly true (as seen in  
the above figure left). Extensions of the Standard Model theory, specifically the so called  
Supersymmetric models, predict further (yet unobserved) elementary particles. Detailed  
calculations of the energy evolution in such models yield the right figure above, where all  
the coupling constants do reach exactly the same value at a certain energy. This represents  
one of the strongest motivations for Supersymmetric models.  4/22/2014 23 B. Golob 
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2.3. Symmetries and Conservation Laws 
2.3.1 Constant observables 
Consider a state (wave function) described at an initial time t=0 by                      . 
 
Time evolution of the system is governed by the time dependent Schrödinger equation: 
 
                                         , where      is the Hamilton operator. Formally, the solution can be  
 
written as                                                       , or,  
 
       
                                                                                   .  We can write the expectation value of an  
observable x, which is conserved (i.e. it is time independent): 
 
                                                                                                                                    ,  
where in the last step we took into account the fact that x is constant and denoted it‘s value  
by x0. Hence                           , and since         is a unitary operator                           we get  
 
                        .   Derivation over t yields 
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Since                                 and                                  we arrive at  
 
 
                                                                              (which has to be zero since x is a constant).  
                                                                               
 
                          at this place  
                          we insert identity 
 
The second term thus reads                                        .  
 
 
 
 
 
 
 
 
Hence  

4/22/2014 25 B. Golob 

UU

U
H
ixUUxU

H
i

t

x

x
ˆˆ

0ˆ
ˆ

ˆˆˆ
ˆ

00



 


















U

Hi

t

U
U

Hi

t

U ˆ
ˆˆ

ˆ
ˆˆ



0ˆ
ˆ

ˆ U
H
iUx


H
HitHit

H
itHit

H
it

H

HitHit
H

it
H

HitHit
H

it

eHeUHU tHitHi

ˆ
!2

ˆ)(ˆ)(ˆ
!2

ˆ)(ˆˆ

)
!3

)ˆ(

!2

)ˆ(ˆ1(ˆ)
!3

)ˆ(

!2

)ˆ(ˆ1(

ˆˆˆˆ

2

32

2

32
2

2

32
2

3

3

2

2

3

3

2

2

/ˆ/ˆ





 


















  0,ˆ
ˆˆ





xH

iH
xix

H
i

t

x





The last equation tells us that in the case that an operator (x) commutes with the  
Hamiltonian (H) then the expectation value of this operator is constant.  
 
Example: the operator of the third component of angular momentum commutes with the  
Hamiltonian. Hence the third component of the angular momentum is conserved.  
 
                                                                            Homework 2: prove that the operator of rotation  
                                                                                                     around the z-axis can be written in  
                                                                                                     terms of the z-component angular  
                                                                                                     momentum oprator.  
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We can do one step further in  
exploring the relation between the  
Hamiltonian and the conservation of  
specific observables. The third component  
of the angular momentum actually represents  
the operator of the rotation around the z-axis.  
Hence any system which is rotationally symmetric around the z-axis (i.e. it‘s Hamiltonian is  
invariant to the rotations around the z-axis) will preserve the third component of  
the angular momentum.   
 
The rather familiar example of the angular momentum and rotations is actually just a  
specific example of a more general law: any symmetry of Hamiltonian reflects in  
a conservation law (i.e. in conservation of some observable).   
 
We will meet operators performing rotations in other than the usual 3-dimensional space  
(for example in the space of spin) and see that their expectation values are conserved.  



2.3.2 Baryon and Lepton Number Conservation 
 
Let us define a new quantum number, the baryon number. All baryons (composed of three  
quarks) carry the baryon quantum number B = +1, all anti-baryons (composed of three anti- 
quarks) carry the baryon number B = -1. All other hadrons and leptons have B = 0.  
For example  
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particle symbol quark 
composition 

B 

proton p uud +1 

neutron n udd +1 

lambda L uds +1 

anti-proton p uud -1 

anti-lambda L uds -1 

pion  ud 0 



All interactions conserve the baryon number. Some examples of processes:  
 
               p   p      p     p    p     p  
        B: +1 +1         +1  +1   +1   -1             allowed process (if all other conservation laws, for  
                                                                                                    example energy conservation, are  
                                                                                                     satisfied) 
 
           p   p      p     p          
    B: +1 +1         +1  -1      0      0              forbidden process (despite the fact that other  
                                                                                                      conservation laws, for example  
                                                                                                      charge conservation, are satisfied) 
 
If we consider baryons as being composed  
of three quarks (a picture which proves to be too  
naive in some cases, but for our purpose works well)  
the conservation of the baryon number is in principle  
just the conservation of the number of quarks, or in  
other words, it is only possible to produce the same  
number of quarks and anti-quarks. This can also be  
seen  from the sketch on the right for the first process 
listed above.  
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In a similar manner as the baryon number we define also the lepton number L. All leptons  
have +1, their anti-particles have L = -1, and all the hadrons have L = 0. All interactions  
conserve the lepton number. Some examples of processes:  
               e+   e-      t +   t -  
        L :  -1  +1         -1     +1                allowed process 
 
               p    p      e+   e +     
        L :   0    0          -1     -1                 forbideen process (violates both, conservation of baryon  
        B:  +1  +1          0       0                 and lepton number) 
  
Homework 3: Determine whether   +    m+   nm     
                          is an allowed process.  
 
In 1960‘s experiments used neutrinos produced in and collide those with neutrons in various  
targets:  
                nm    n    p   m – 

         L :  +1    0        0    +1 
        B:     0   +1       +1    0             This is an allowed, experimentally confirmed process. What  
                                                         is interesting is that – from the point of view of baryon and  
lepton number conservation – also allowed process nm    n    p   e–  was never observed.  
Such and similar experiments confirmed that a muon neutrino in the initial state always  
leads to a muon in the final state, never to an electron or a tau lepton.  
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Based on these experimental facts one concludes that each generation of leptons can  
be assigned its own lepton number (denoted by Le, Lm and Lt) which is also always  
conserved. For example,  
 
m+  e+ g 
 
is not an allowed process because it does not conserve separately Le  and Lm  (although it  
conserves the general lepton number L). The above conservation is frequently referred to  
as the lepton flavor conservation (to be distinguished from the general lepton number  
conservation).  
 
Homework 4: determine whether the following process are allowed or forbidden:  
0  e+ e-          p n e+ ve            K

+ n   S + 0        K- p   S 0 0  
 

Quark composition of some particles appearing above:  
0 : uu;   K+: us;  S + : uus   
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2.3.1 Wave function symmetry 
 
Wave function describing a system of two indistinguishable particles should satisfy 
 
 
 
since all the experimental facts one can tell about the system depend on the probability  
density (i.e. ||2) and since the two praticles can not be distringuished this can not depend  
on the order of particles denoted above by arguments 1 and 2. It follows that  
 
 
The wave function of the two particle system can be expressed as the product of one particle  
states  
 
 
Let‘s assume that either of the particles can be found in only two states, denoted by a and b.  
In this case the two-particle wave function satisfying the condition above can be written in  
two (and only two) ways (denoted as A and S):  
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A  is anti-symmetric upon the exchange of the two particles, while S  is symmetric.  
If the two possible states are equal, a=b, then  
 
 
Pauli exclusion principle tells us that two identical fermions can not occupy the same state.  
Hence the wave function for a system of identical fermions must be anti-symmetric (A).  
On the other hand bosons do not fulfill the Pauli exclusion principle and hence the wave  
function for a system of identical bosons must be symmetric (S ).  
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2.4 Quark Model of Hadrons 
2.4.1 Isospin 
 
The quark model explains the „periodic“ system of experimentally observed hadrons based  
on their quark content. The full system of hadrons composed of 6 quarks is complicated but  
we can start with three quark flavors that were known in the 1960‘s at the time when  
Gell-Mann and Zweig proposed the quarks.  
 
To begin with we will start with baryons which are fermions composed of three quarks.  
In order to compose a fermion from quarks (more than one quark, that is) the lowest  
number of ingredients is three (taking into account the fact that a p has the electric charge  
of +e0 this also means that the quarks must carry third(s) of the elementary charge;  
furthermore since there are baryons with zero electric charge one needs quarks with  
charge +1/3 and quarks -2/3 of the elementary charge). From three quarks with three  
different flavors one can construct 33 = 27 possible combinations.  
 
We start with the completely symmetric combination composed of only u or d quarks:  
 
 
Before proceeding we should discuss a new quantum number called isospin. p and n in  
nuclei are bound together by the strong interaction. While p and n carry a different  
electric charge there is no distinction between them in terms of the strong interaction.  
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This lead Werner Heisenberg in 1932 to the idea that as far as the strong interaction is  
concerned, protons and neutrons are identical particles (in a similar manner as two fermions   
are identical in having the spin value = ½, for example). He introduced the quantum number  
called isospin which is the same for p and n. They both have the isospin value of I =  ½. They  
differ only in the third component of the isospin (like do the before mentioned fermions):  
I3 = +1/2 for p and I3 = -1/2 for n.  
 
Since p and n experience the strong interaction in exactly the same manner this means  
that the strong interaction (Hamiltonian) is invariant to the rotations in the isospin space  
(transforming the I3 = +1/2 component, that is a p, into the I3 = -1/2 component, that is a n,  
and vice-versa).  
Remembering about the relation between the symmetry of the Hamiltonian and conservation  
laws (p. ??) this means that the isospin value is conserved in the processes of strong  
interaction.  
 
One can define operators of increasing (     )and decreasing (       ) the third component of the  
isospin through:  
 
 
 
 

4/22/2014 34 B. Golob 

0ˆ,ˆ

ˆ,0ˆ









nIpnI

npIpI

Î Î



Coming back to the quark composition of baryons it is rather easy to conclude that  
a proton must be composed of two quarks with the charge +2/3 e0  (u quark)  and one quark  
with the charge -1/3 e0 (d quark). Requiring a usual summation of the third component of the  
isospin (like the summation of the third component of spin) we arrive to the conclusion that  
the u quarks have I3 = +1/2 and d quarks have I3 = -1/2. The effect of the operators        and   
is thus                                                        
                                                                      . 
 
From the basic wave functions                               one can obtain some other states  with  
symmetric wave function by applying         and        to those:     
 
 
  
 
 
 
 
Note that in the above equation operators affect all quarks in a row, i.e.  
 
actually represents                                     ,  with the factor 1/  3 being an approriate  
 
normalization of the state.  
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2.4.2 Strangeness 
 
The strange (s) quark was discovered through the studies of hadrons exhibiting „strange“  
properties. These hadrons (like neutral kaons, K0, or Lambda baryons, L0) are always  
produced in pairs, for example in  
 - p  K0 L0 
 
Their lifetimes are much longer than the lifetimes of hadrons decaying through the strong  
interaction  
 L0   - p (t(L0) = 10-10 s), as compared to  
 0   - n (t(0 ) = 10-23 s).  
 
Nowadays we know that the first decay above proceeds through the weak interaction which  
does not conserve a new quantum number strangeness (S) assigned to hadrons composed of  
s quarks. Strangeness is an analogy of isospin carried by u and d quarks. s quarks have S= -1  
and s quarks have S=+1. The Hamiltonian of the strong interaction (but not of weak  
interaction)  is invariant to the rotations in the space of isospin and strangeness and hence  
the two quantum nimbers are conserved in the strong interaction.   
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What happens if we enlarge the set of four completely symmetric baryon states  
composed of u and d quarks with an addition of an s quark? If we take care to preserve the  
symmetry of the wave function we get : 
 
 
 
 
 
 
 
 
 
 
 
 
We can continue by replacing the remaining u quarks in the resulting states by an s quark  
to get 
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If we replace the last u quark in the above states we of course get                                . 
 
This rounds up the set of symmetric states composed of u, d and s quarks to 10 states  
(decuplet) denoted by Si. From the rest of 27-10 = 17 combinations there is only one  
wave function (A1) which is completely anti-symmetric. It is composed of an anti-symmetric  
u and d combination, to which we add an s quark in a symmetric manner:  
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The remaining 16 wave functions do not have a well defined symmetry, they are neither  
symmetric or anti-symmetric with respect to the interchange of particles. An example of such  
a function is  
                                                                                     . 
 
It has a mixed symmetry, but it is anti-symmetric w.r.t. the interchange of the first two quarks  
(hence the notation MA). There exists also a wave function composed of the same quarks  
which is symmetric w.r.t. the interchange of the first two quarks. It has to be orthogonal to MA1 

as well as to all other wave functions composed of two u and one d quark. We can write  
 
 
 
and determine a, b and c from the requirements  
 
 
 
We get 
                                                                                                .    
 
In summary for baryons composed of u, d and s quarks we get 10 symmetric combinations of  
quark flavors (S1-S10), 1 anti-symmetric combination (A1), 8 combinations of mixed  
symmetry which are antisymmetric to the exchange of the first two particles (MA1-MA8) and  
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8 mixed symmetry combinations which are symmetryc w.r.t. the exchange of the  
first two particles (MS1-MS8).  
 
Upon the inspection of the wave functions that we wrote so far we can observe a relation  
among the electric charge of baryons (Q) and other quantum numbers preserved by the strong  
interaction (I3, S, B): 
 
Q= I3 + (B+S)/2 
 
In the above clasification we have only considered the quark structure of the baryons, or  
what is usually called the flavor part of the wave function. In order to describe a baryon state  
we next need to consider its spin. Since each of the quarks in the baryon carries a spin ½, and  
hence the 3rd component of the spin of ±½, we have 23 = 8 possibilities for the spin part of the  
wave function.  One of the spin parts is completely symmetric:                ,  where the notation  
        represents a quark with the 3rd component of spin +1/2, and the corresponding notation  
        will represent  quarks with the 3rd component of spin of -1/2. The written symmetric  
spin part of the wave function represents a baryon with the 3rd component of spin of J3 =+3/2.  
It is not difficult to write down other spin parts of the wave function for J=3/2 and |J3|  3/2.  
We can take the flavor parts of the wave functions composed of u and d quarks and change  
u         and d        . S1 – S4 represent a quadruplet of states with J=3/2. From the flavor  
parts of mixed symmetry there are four composed only of u and d quarks. MS1-MS2  
represent one dublet with J = ½ and MA1-MA2  another other dublet. The summary of the spin  
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part of the wave function is thus one quadruplet with J=3/2 which is symmetric and two  
dublets with J=1/2 with mixed symmetry.  
 
Are the flavor and the spin part of the wave function a complete description? Let‘s take the  
++ baryon with J=3/2 as an example. Considering the charge it has to be composed of 3 u  
quarks and hence its flavor part is symmetric. Furthermore since we know experimentally its  
spin is 3/2 also the spin part of the wave function is symmetric. The product of two symmetric  
parts of the wave function is also a symmetric wave function and in accordance with the  
discussion on p. ?? this is not possible (since ++ is a fermion). There is a need for another  
quantum number that provides the overall antisymmetric wave function. This quantum number  
is called the color (or color charge, or strong charge). The quark color can take three values,  
R – red, G – green and B – blue.  
 
All hadrons are colorless, i.e. they don‘t carry the color charge. Only quarks inside the hadrons  
carry color. This implies that the color part of the wave function of any hadron must be a  
singlet.  If it wouldn‘t be a singlet, a rotation in the color space would transfrom this particular  
color state into another – distinguishalble  - one, which would obvioulsy not be colorless.  
  
A singlet of three quarks carrying three possible values of quantum number is already  
composed: A1 for three quark flavors. Hence the color part of the wave function for baryons  
is A1 with the replacement u  R, d  G and s  B:  
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The color part of the wave function is antisymmetric and hence the whole ++ baryon wave  
function composed of the flavor, spin and color part is antisymmetric, as it should be for  
fermions.  
We have to remember that there is still one part of the wave function missing – the one  
describing the spatial coordinates of the three quarks or the spatial part. It turns out that the  

symmetry of the spatial part is (-1) l(-1) l ‘, where l and  l ‘ are the angular momentum quantum  

numbers of the two pairs of quarks inside the baryon. This follows from the spatial dependence  
being described by the spherical harmonics Yl m(q,)and Y l ‘ m‘ (q,) . The ground states of all  

baryons have l , l ‘ =0 and hence the spatial part of the wave function is symmetric, again  

leading to the overall antisymmetric wave function.  
 
We argued that the wave function of the ++ baryon composed of the symmetric flavor, spin  
and spatial parts and of an antisymmetric color part is antisymmeric. How about possibilities for  
other baryons? Clearly all products of the spin quadruplet and symmetric flavor decuplet are  
symmetric and the color part takes care of the global antisymmetry. This is called a decuplet  
of ground baryons with J = 3/2, of which ++ is one of the members, with the wave functions  
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One can check that the above wave function is indeed symmetric on the interchange of  
any two particles. Together with the symmetric spatial and antisymmetric color part it  
yields an antisymmetric overall wave function.  
 
These possibilities represent an octet of ground baryon states with J = ½, with the wave  
function of the form  
 
 

4/22/2014 43 B. Golob 

  

 



uuduududuudu

duuuduspinflavor MAMA

2

1
2

1
)()( 11 

There is another possibility for the antisymmetric wave function: product of flavor and spin  
parts with mixed symmetry yields a symmetric product if we take both spin and flavor parts  
to be MSi or both to be MAi . We can check this by writing out one example  
explicitly:   
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The decuplet and the octet of ground baryons can be nicely gathered into a „periodic“ system  
considering the quantum numbers (B+S) and I3:  

n p 

S- S0 S+ 

L+ 

X- X+ 

Y=B+S 

1 

-1 

I3 1 -1 

Chadwick 

1932 
Rutherford (?) 

1911-1932 (?) 

1959 

1962 

1963 

940 MeV 

1190 MeV 

1315 MeV 

1116 MeV 

S*- S*0 
S*+ 

++ 

Y 

1 

-1 

I3 
1 -1 

1960 

1530 MeV 

1670 MeV 

1232 MeV 

-2 

+ 0 - 

X*+ X*- 

- 

Fermi, Steinberger 

1940’s-1950’s 

1954-1964 

1380 MeV 

J = 1/2  
J = 3/2  
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Y = B + S is called the hypercharge. In the figure on the previous page also masses (mc2) of  
some of the baryons are given together with the discovery year and names of scientists  
most credited for their discovery.  
 
Homework 5: based on the hypercharge and the 3rd component of the isospin determine the  
quark composition of the following baryons: S-, X-, -, - 

 
Baryons composed of u, d and s quarks do not represent the full palette of baryons. Adding  
also a possibility of charm quarks content, additional quantum number (charm, C) must be  
added. c quark has C=+1, c quark C=-1, and all other quarks have C=0. By this the „periodic“  
system of baryons aquires additional axis (beside the I3  and the S - or Y) and now expands into  
3 dimensions as shown in the next figure.  
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decuplet of baryons composed  

of u, d and s quarks 

octet of baryons  

composed  

of u, d and s quarks 

 

C 
C 

Naming scheme of barions not completely  
unified, these two S+ barions are not the same; one has J=1/2,  
the other J=3/2; in Particle Data Group listings the former is  
denoted as S+, the latter as S(1385) 3/2+; sometimes also S*+ 

J = 3/2  J = 1/2  
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As an example of the quark model we can estimate the dipole magnetic moment of a proton.  
Protons have J=1/2 and hence the wave function of the form  
 
                                                                                                                                . 
Since a proton is composed from u, u and d quarks, the wave function is (for a proton with J3=½)  
 
 
 
 
 
 
 
 
 
 
 
Magnetic dipole moment operator of the i-th quark in the proton is                              ,  
with gs=2 (fermionic giromagnetic ratio, p. ??), or, for its third component  
(which as we said is usualy quoted as the expectation value)  
 
 
The expectation value of the proton magnetic moment is thus  
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Inserting the above p into this expression, assuming mu  md=mq , and taking into account the 
orthonormality of individual terms in p , we arrive at  
 
 
 
 
 
 
In order to compare this calculated value to the experimental measurement we must insert  
mq. Naively taking mq = mp/3 we get mp = 3e0/2mp , to be compared to mp = gs,p e0 s / 2 mp 

= 5.6/2  e0  / 2 mp  = 2.8 e0  / 2 mp alculated.  
Because of the unknown actual value of mq it is more reasonable to compare the ratio of the 
proton and neutron magnetic moments.  
 
Homework 6: calculate the dipole magnetic moment of a neutron within the quark model.  
 
 
                                                                , to be compared to the experimental value of -0.685.  
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So far we have encountered isospin and strangness, quantum numbers assigned to individual  
quark flavors. Every quark flavor has its associated quntum number given in the Table below: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note that top quarks do not form hadrons (their mass is so high that before hadronization  
they decay through the weak interaction).   

flavor spin baryon 
number 
B 

Charge 
Q 

3rd 
component of 
isospin I3 

strangn
ess S 

charm 
C 

beauty 
B 

topness 
T 

u ½  1/3  2/3  +1/2 0 0 0 0 

d ½ 1/3  2/3  -1/2 0 0 0 0 

s ½ 1/3  2/3  0 -1 0 0 0 

c ½ 1/3  2/3  0 0 +1 0 0 

b ½ 1/3  2/3  0 0 0 -1 0 

t ½ 1/3  2/3  0 0 0 0 +1 
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After discussing baryons we can move to description of mesons within the quark model.  
Mesons are composed of a quark and an anti-quark. Considering again only mesons  
composed of u, d and s (anti)quarks we are left with nine possible combinations.  
Before proceeding to the wave function composition we must discuss the transformation  
 
                       , i.e. the transformation of a particle into its anti-particle. The transformation is  
called the charge conjugation, and the coresponding operator is denoted by  
 
 
 
 
 
 
In the above equation we intorduced an unobservable phase  (since it can‘t be measured it‘s  
arbitrary). For simplicity we take  
 
 
 
 
This prescription influences the effect of the isospin 3rd component increase and decrease  
operators (see p. ??) on the            and          states: 
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In construction of mesons wave function we can start with the                  state (I3 = +1) and 
operate on it with the I- operator:  
 
 
 
Operating once again to the resulting state yields  
 
                                                                                                                                                 . 
 
We end up with a triplet of states (I=1, I3=0, ±1) composed of u and d (anti)quarks, called  
pions.  
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What about the symmetry of the flavor part of the wave function? In the case of mesons the 
symmetry of the wave function doesn‘t play a significant role (like it does in the case of  
baryons),  since in mesons one encounters a particle and an antiparticle and hence the two 
particles in the system are not undistinguishable. This leads to all 9 possible combinations  
of mesons (actually 18, considering the possibility of J=0 and J=1), as opposed to the case of 
baryons where out of 27 possible combinations we saw only 18 represent the actual baryon  
ground sates).  
 
We can now proceed by adding s quarks (i.e. replacing u or d quarks by s quark): 
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This results in two isospin dublets (I=1/2, I3 = ±½) with S= ±1, called kaons.  
All together we now have 4 kaons and three pions. Under the flavor transformations  
u  d, u   s or d   s these states transform from one into another (such transformations  
are also called SU(3) transformations, or rotations in the SU(3) flavor space, where SU denotes 
the properties of the group, and 3 the number of flavors).  
 
We can construct another combination with symmetric flavor part of the wave function,  
which is untransformed under the flavor transformations (and is hence called the flavor  
singlet):                                                            .  
 
The subscript 0 denotes that this state is a flavor singlet. Last out of 9 mesons composed of  
u, d and s quarks is constructed as a cobmination of                                  , but orthogonal  
to          (and all other states, for example           ):  
 
 
We get                                                                   .  
 
In this case the subscript 8 reminds us that under the flavor transformations this state is  
transformed into pions or kaons, and is hence a member of the flavor octet (together with    
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7 pions and kaons). 
 
The spin part of the meson wave function must encompass the spin 1 and spin 0 states. For  
J=1, J3 = +1 the only possibility is           . Applying an anology of isospin operators I+ and I- ,  
 
spin raising and lowering operators S+ and S- , we get  
 
 
 
Hence the mesons with spin 1 belong to the spin triplet: 
 
 
 
 
 
The spin 0 part can be obtained as a linear combination of  
which is orthogonal to the spin 1 wave functions. We get the spin  
singlet 
                                                .   
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We have 3 pions, 4 kaons, 0 and 8 with spin 0 as the ground state mesons, that can be  
grouped  into the flavor octet and flavor singlet. This are the mesons with J=0 (also called  
pseudoscalar mesons).  
These states can, similarly as baryons, be presented in a „periodic“ system depending on the    
3rd component of isospin and strangeness, as shown in the next page. As suggested in the  
figure, the states 0 and 8 appear in nature as linear combionations,  
  
 
 
 
The same flavor pattern is repeated for J=1 (vector mesons), where we have 3 r mesons  
(analogy of pions) and  4 K* mesons (analogy of kaons).  One also has the states corresponding  
to 0  and 8  with spin 1 (denoted by 0 and 8) and the two linear combinations  
 
 
 
 
(for the J=1 mesons, the mixing angle q ‘ is such that  is almost exactly the ss combination and  
w is composed of uu and dd only, i.e. q ‘  -0.615 rad).  
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These states can, similarly as baryons, be presented in a „periodic“ system depending on the    
3rd component of isospin and strangeness: 
 

K0 K+ 
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Inclusion of charm quarks again requires additional axis (C) in the periodic system: 
 

C 

spin 0 spin 1 
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Homework 7: Determine the relative rate of decays to e+e- for w, r,  and J/ mesons neutral  
vector (i.e. J=1) mesons.  
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2.5 Probability density and current, antiparticles 
2.5.1 Probability density and current 
 
Based on the classical relation between the energy and momentum, E = p2/2m, and replacing  
the observables by operators,  
 
 
 
we arrive to the Schrödinger equation,   
 
                                                  . 
 
The square of the absolute value of the wave function, r = ||2, is interpretted as the  
probability density, i.e. ||2dV represents the probability to find the particle described by   
in a space volume element dV.   
We can derive the current density of particle flow      (needed in evaluation of the cross section  
for a specific process, see p. ??) from the continuity equation: 
  
                                                                                                .  
 
First we write the complex conjugate of the Schrödinger equation 
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and multiply it by i from the right:  
 
                                                                 .  
 
We multiply the original Schrödinger equation by –i* from the right:  
 
                                                                   . 
 
 
We sum the two equations,   
 
                                                                                                                         ,  
 
and after some rearrangement obtain  
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Taking into account that r  * and comparing the last equation with the continuity  
equation we see  
 
 
 
In order to simplify the notation to some extent in the following, it is very common to introduce 
the so called natural units. Writing out, for example, the relativistic energy – momentum relation,  
E2 = m2 c4 + c2 p2, one notices it is easier to write if one simply takes c=1. Similarly, it is less  
bothering to write some wave vector instead of k = p/ rather in a form k = p, i.e. taking  =1.  

Writing out equations in a such a simplified form is definitely easier, but at the end of course  
one needs to take care that the derived quantities have correct units. This task is easier than  
it may look at the first sight. Assuming we know what units any quantity we are interested in  
should have, it consists merely of adding an  appropriate power of the conversion constants  
 c = 197 MeV fm and c = 3 108 m/s to the result, derived using the natural units.  

 
In natural units a plane wave can be written as  
                                                                                                                                      . 
 
For a plane wave the probability density is 1/V (not surprisingly, we have one particle in the  
normalization volume V), and the current density of the particle flow  is   
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The latter equation is also not really surprising, clasically any current density is just  
 
                                                            .  
 
In special theory of relativity we start with the appropriate energy – momentum relation and  
in a similar manner as for the Schrödinger equation we get the Klein-Gordon equation (p. ???): 
 
                                                       .  
 
 
Proceeding the same way as with the Schrödinger equation to obtain the current density,  
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By comparison to continuity equation we again identify the probability density and the  
particle flow current density as  
 
 
         
                                                                                                                  .  
 
For a plane wave this corresponds to  
 
 
 
We learn that for relativistic particles instead of normalizing to a single particle in the 
normalization volume V, we need to normalize to 2E particles in the normalization volume.  
One should not that in this case r transforms under a Lorentz transformation as the time 
component of the Lorentz vector (i.e. as E),   
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Hence the number of particles, r d3x, is invariant to the Lorentz transformation,  
 
                                                                                                             .  
 
 
        
As we will see later this means that also the density of final states remains unchanged under  
any Lorentz transformation.  
 

 xdcvxd
cv

xd

transform
Lorentz

3223

22

.

3 )/(1
)/(1

r
r

r 






4/22/2014 66 B. Golob 

 
Since we made a notation simplification using the natural units it is appropriate to mention  
that also the Klein-Gordon equation can be written in a more compact form, using the four-
vectors. Defining the derivatives four-vector,  
                                                                                                                ,  
 
and   
 
the equation can be written as                                         .  
 
Once can also define the current four-vector                          , and the contnuity equation is then  
written simply as  
 
 
Klein-Gordon equation is named after Oskar Klein and Walter Gordon. The former was a Swedish  
physicist also known for his contribution to the Kaluza-Klein theories. Walter Gordon was a 
German physicist working for some time with Max Planck and W.L. Bragg. It seems that  
Schrödinger was already aware of the equation since it has been found in his notes but never 
used it.  
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A comment regarding the four-vector notation is in place. For a general four-vector am, the 
notation is  
 
                                                                    ,  
 
for example                                           .                            
 
An exception in the notation is the derivative four-vector         (because of its properties under the 
Lorentz transformation):  
                                                                                                             .  
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2.5.2 Antiparticles 
 
Coming back to the Klein-Gordon equation, inserting a plane wave                                      ,  
 
where pm is the momentum four-vector and xm the coordinates four-vector,                         ,  
 
one of course gets the relation E2 = p2 + m2, the solution of which is   
  
                                                 .    An obvious question arises what the solutions with the negative  
 
energy are.  
We can write out the particle flow density of an electron with the energy E, momentum p and  
the charge –e0:                                 .  
 
This particle current can be re-interpreted as electromafgnetic current by inclusion of the  
particle‘s charge:                                         
                                     
 
The reason for this interpretation (without even bothering to use a different notation for such  
a current) will become obvious later when discussing the electromagnetic interaction in the  
context of the Dirac equation (p. ??), where such a current appears in the amplitude of a given  
process.  
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How about an analogous current for a positron with the same energy and momentum (and  
of course charge + e0)? We can write it as  
 
 
                                                                                                      
 
In the last step we emphasized that such an electromagnetic current for a positron can be  
written in exactly the same form like for an electron (using the charge of the latter, i.e. - e0), but  
with a negative energy and momentum. This is the basis of the Feynman – Stückelberg 
interpretation of solutions (of the Klein-Gordon, or to that matter of the Dirac equation, to be  
discussed later) with negative energy. Solutions for particles (electron) with negative energy can  
be interpreted as solution for antiparticles (positron) that have a positive energy.  
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Ernst Stückelberg was a Swiss physicist and mathematician. In 1941 (working at the University of 
Geneva and University of Lausanne) he proposed the interpretation of the antiparticles which is 
closely related to the methods of Feynman diagrams proposed later.  
                                          Interestingly enough, already in 1938 Stückelberg realizes that                  
                                          electrodynamics with a massive propagator would require an additional 
                                          scalar boson which later became known as the Higgs boson.  
 
 
                                        Richard Feynman is probably one of best known physicists, not only due to     
                                         his important discoveries but also for his character. He is known to public  
                                         by his autobiographic books „Surely You're Joking, Mr. Feynman!“ and  
                                         „What Do You Care What Other People Think?“.  
During the 2nd World War he participated in the Manhattan Project (USA nuclear bomb project) 
under the leadership of Robert Oppenheimer, but due to his youth he was    
not a key person there.  
He did most of his scientific work at the  California Institute of Technology  
(Caltech). There he developed his theory of quantum electrodynamics  
for which he received the Nobel prize for physics in 1965 (together  
with Sin-Itiro Tomonaga and Julian Schwinger).  
He also developed the method of Ferynman diagrams, a pictorial  
representation of the perturbative claculations in particle physics.   
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2.6 Dirac Equation  
 
Paul Dirac tried to write an equation for relativistic particles which (contrary to Klein-Gordon  
equation) would include a first derivative over time. It is the second derivative over time  
that causes the probability density of a plane wave to be r = 2E /V, which could be negative  
for the solutions with E<0 (which we know now actually represent the solutions for antiparticles).  
 
Of course the equation would have to satisfy also  
 
 
 
to reproduce the relativistic energy-momentum relation. We know that the Hamiltonian includes 
the first derivative over time:  
                                                (note that any  can be written as a superposition of plane waves; for  
                                                 the latter the energy is always obtained by applying               to the )  
 
Hence Dirac tried to derive an equation linear in        but satisfying the relativistic energy-
momentum relation. While this can not be achieved using a scalar form of the wave function it  
turns out this is possible one assumes a more dimensional form of  :   
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where a and  are matrices, and  is a more dimensional vector. The notation       represents  
a vector of matrices,   
 
and hence  
 
 
It truns out that the requirements can be satisfied by 4 x 4 matrices a and  (and  is thus a 
vector with 4 compnents):  
 
 
 
 
where each of the matrices i , called Pauli‘s matrices, is a 2 x 2 matrix,  
 
 
                                                                                                                 ,  
 
and I in the  matrix also represents a 2 x 2 identical matrix: 
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Rewriting the equation  
 
 
in the form  
                                                                             ,  
 
inserting the momentum operator  
 
 
     
 
and multiplying it with  from the right, we get 
 
                                                                                        .  
 
Taking into account  2 = 1 and we can write it in the form 
 
 
 
 
We can now define a four-vector of matrices g m, called the Dirac gamma matrices:  
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Using the four-vector of derivatives         we can write the resulting equation in a very compact  
form:  
  
 
which is called a covariant form of the Dirac equation. After all the definitions one of course  
would like to know if the Dirac equation indeed satisfies  
 
 
We can check this by the explicit calculation 
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We see that the Dirac equation indeed satisfies the relativistic energy-momentum relation.  
 
From the properties of a and  matrices we also see that for the Dirac gamma matrices the anti-
commutation relation holds,  
 
 
with gmn denoting the antisymmetric tensor 
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2.6.1 Solutions of Dirac Equation  
 
In the Dirac equation  
 
 
 
the operator         represents the operator of the momentum four-vector, and hence  
 
 
 
Gamma matrices are 4x4 matrices and clearly the solution   must be a vector with four  
components. The solution ansatz is  
 
 
 
where                is called a bispinor. The equation becomes  
 
                                                .          Remembering that this eq. was obtained from  
                                                                                                                                                    ,  
the equation can actually be more obviously solved in its original form,  
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We rewrite the equation in the form  
 
 
 
 
  
The bispinor can be written in a form of two components,  
 
 
                                         , each of which (uA, uB) is called a spinor. Matrix quation   
 
 
 
 
 
yields two equations for spinors:  
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We need to be careful when dividing by (E+m) or (E-m) since these expression may equal 0. For 
example, in the rest frame of the particle E=m (obviously a solution with E>0). In this case we can 
take as two linearly independent solutions for uA: 
  
 
                                                                                                       ,  
 
and uB is expressed from the second equation above:  
 
 
  
 
Linearly independent solutions for the bispinor with positive energy are thus 
 
 
 
                                                                                                                              ,  
 
with N denoting a normalization constant.  
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and express uA from the first equation,  
 
 
  
 
Solutions for the bispinor with E<0 are thus  
 
 
 
 
 
In summary, the Dirac equation provides solutions for a particle in terms of a bispinors (4-
component vectors). As in case of the Klein-Gordon equation we get solutions with E>0 (u(1,2))  
and solutions with E<0 (u(3,4)), however, for each of the energy signs we get two linearly  
independent solutions.   
Next question to be resolved is why there appears an additional two-fold degeneracy for each  
solution with given energy E.  
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2.6.2 Commutators of Hamiltonian and angular momentum 
 
In order to shed light on the additional two-fold degeneracy of the Dirac equation solutions  
we should first investigate the commutator between the Hamiltonian and the orbital angular 
momentum operators:  
 
 
 
 
 
Since  is a constant (i.e. idependent of xi or derivatives of thereof): 
 
                                                    .  
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ai are independent of xi. p1 and p3 operators include derivatives over x1 and x3 and hence  
commute with x2p3. Hence all there is left from the fiorst commutator is  
 
 
 
 p3 commutes with p2 and x2 and hence  
 
 
 
The second commutator yields  
and hence  
 
 
In an analogous way other components can be checked leading to  
 
                                                              .    
 
The conclusion is that the Hamiltonian does not commute with the orbital angular momentum  
operator. The latter is thus not a good quantum number (see p. ???). This is a clear difference  
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between the Dirac equation on one and Schrödinger or Klein-Gordon equation on the other 
hand.  
In the next step let‘s check the following commutator 
 
 
                                                        .  
 
Calculation for one of the components yields  
 
 
 
 
 
 
One can readily check the Pauli matrices commutation rules:  
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   

 
 

  







S

SS

0,

,0
,

,ˆˆˆ,ˆ

1

1

1

13322111




a

aaaa

i

i

i

pppp


      1,2,,2,,2, 2

213132321  iiii 



4/22/2014 83 B. Golob 

Other components yield  
 
In addition by explicit multiplication of matrices it can be shown  
and hence  
 
 
Combining this result with the commutator for the orbital angular momentum we see  
 
                                 for  
 
A good quantum number is thus J, the sum of orbital angular momentum, and additional angular 
momentum, spin of the particle.  
 
We can also check that another good quantum number is          .  It represents the projection of  
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Solutions of the Dirac equation have a positive or negative helicity,  
 
                                                                                 .  
 
This can be checked by choosing the z-axis in the direction of particle‘s momentum,  
 
 
Then 
 
 
 
 
 
 
 
 
                                                                        This explains the two-fold solutions appearing in the  
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                                                                        solution particle‘s spin points in the direction of flight               
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2.6.3 Probability density and current in Dirac equation 
 
Writing the covariant form of the Dirac equation and following similar steps as in Sec. ???? we 
can derive expressions for the probability density and current:  
 
 
 
 
 
Hermitian conjugated (complex conjugated and transponsed) equation is  
 
                                                                                            ,  
 
where we used the property of gamma matrices                                                           .  
 
Multiplying the above equation by g 0 from the right we get 
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We now define an adjugated bispinor:  
 
 
and write the equation in the form 
 
 
 
 
 
 
 
The original Dirac equation we multiply by     from the left: 
 
                                               
Upon summation of the two equations we get 
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2.6.4 Interaction of a Dirac particle with electromagnetic field 
 
Electromagnetic potential is included into the Dirac equation by replacing the four-vector of 
derivatives         by the covariant derivative :  
 
                                                 ,  
 
where Am is the four-vector of potential,                               , with Maxwell equations 
 
 
 
 
The reason for the inclusion of the potential by replacing                        is non-trivial and  
is beyond the scope of these lectures. Let us only say that the Lagrangian (which through the 
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How do we know that the potential V should be defined as shown above? The first term on the 
left hand side of the equation, i.e. ig 0 0, is just g 0E. Hence also the right hand equation should  
(beside the kinetic energy term) include the potential with the same sign and multiplied by g 0.  
 
The potential is  
 
 
 
After inclusion of the electromagentic potential we can now see how the particles, described  
by the Dirac equation, interact through the electromagnetic interaction. The matrix element  
appearing in the Fermi golden rule (see p. ???) for the transition from an initial state i to a final 
state f is written as  
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In the last line we used the electromagnetic current following from the Dirac equations as 
derived on p. ???. The elctromagnetic current thus appears in the matrix element.  
Note that the inclusion of -i factor in the definition od Tfi is conventional. The above matrix 
element represents the following process depicted by a Feynman diagram:  
 
                                                                 Straight lines represent a Dirac particle, and the  
                                                                 wiggly line is the electromagnetic field (a photon). The latter        
                                                                 must originate from a source. Source can be for example   
                                                                 another charged Dirac particle. It also has to obey the  
                                                                 Maxwell equations. The latter can be written in a covariant 
form as 
                                               (see App. A), where jm is the electromagnetic current representing the 
source of the electromagnetic field.  In case this is another charged particle 
 
 
 
 
 
 
We see that the Maxwell equation is satisfied if  
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Inserting Am into the expression for the matrix element we get  
 
                                                                    ,  
 
 
which describes electromagnetic scattering of two Dirac particles 
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Paul Dirac (1902 – 1984) 
 
 
 
 
 
 
 
 
 
 
 

                                                  ~ 
 
 
 

                                                  ~ 
                                                   

P.A.M. Dirac, Proceedings of the Royal Society A, 117, 610 (1928) 

Nobel prize for physics  
in 1933 with E.  
Schrödinger „for the  
discovery of new  
productive forms of  
atomic theory„.  
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Next we will check how does the electromagnetic interaction described by the Dirac equation 
reflects in the low energy (non-relativistic) limit.  
The equation including the EM potential si  
 
                                                                    .  
 Inserting                                                                       
                                                                                                    we obtain  
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We get similar equations for spinors uA and uB as on p. ??? but now with the inclusion of the EM 
potential: 
 
 
 
 
 
 
 
Inserting the expression for uB into the first equation we get   
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Low energy limit implies  
 
 
 
 
where Enr denotes the non-relativistic energy of the particle. In this limit the equation for uA 
becomes   
 
                                                                                                                         .  
 
To simplify the notation let us use                             . For any vector pair     
 
                                                                  ,  which follows from properties of Pauli matrices. Hence 
 
                                                                        .   For ordinary 3-dimensional vectors                       .  
 However, p‘ should be regarded as an operator (involving derivatives) and hence some care  
must be taken in deriving the expression.  
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This reduces the equation for uA to 
 
 
 
 
 
 
 
 
 
The underlined factor is nothing but the clasical Hamiltonian for an electron in an 
electromagnetic field (see App. B). The term -eA0 is the electrostatic potential energy, and           
 is the classic interaction of a magnetic dipole moment with the magnetic field.  More precisely,  
the term                represents a classic interaction of a magnetic dipole moment, classically  
 
written as             , with       representing the dipole moment.    
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The dipole moment of a particle described by the Dirac equation is thus  
 
 
 
 
 
 
 
where we intorduced the spin gyromagnetic ratio gs =2 (see p. ???). From the commutator 
between the Hamiltonian and the angular momentum (p. ???) we know that             is the 
operator of spin, and hence  
 
 
with gs =2 which represents a big success of the Dirac equation.  
 
It should be noted, however, that gs=2 is the result of the lowest order in perturbation theory. In 
other words, the result following from the Dirac equation represents the electromagnetic 
interaction of a fermion with a single vertex:   
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There are higher order corrections to this interaction, represented by Feynman digrams involving 
more vertices (also called the loop diagrams), for example:  
 
 
This and similar processes cause the gs of a given  
fermion to slightly deviate from 2. This deviations  
represent on of the most thorough tests of calculations  
within the quantum electrodynamics (involving  
calculations of various loop diagrams as the one shown  
in the figure) and are compared to one of the most  
precise measurements in particle physics – those of the so called anomalous magnetic moment 
of the muon – the observable by which one means (gs(m) – 2)/2. The principle of this 
measurement is described in the following.  
 

g 

f 

f 



4/22/2014 98 B. Golob 

Schematics of the muon anomalous  
magnetic moment measurement:  

a) accelerated  
protons 

b) target 

c) ± 

appear  
among the  
products  

d) ± →m± n 
(weak int.) 

e) m- spin points  
in the directiction  
of its momentum 
(this is a property 
of weak int.) 

g) m – circulate in a magnetic field the  
direction of which is  to their spin 
(magn. dipole moment) 

B 

f) accumulation ring; 
because of the magnetic 
filed m circulate within the 
ring 

B


m


m magn. moment (spin)  
precesses around the  
direction of the external  
magnetic field;  

wp  gs-2 

h) detectors of 
e± from the 
m± →e± n 
decays 

1) 

1) 

in m± →e± n decay 
e± fly preferentially  
in the direction of the  
m spin (another  
property of weak int.) 

2) 

2) 
number of detected  
e± along the ring is  
proportional to m±   
average direction   
and by this to wp  
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Results of the measurement:  

accumulation ring 
(Brookhaven National Laboratory) 

number of detected e± after time t following  
the m± injection 

(gs-2)x 1010-11659000 

(gs-2)=11,659214 x 10-4 

(1±7x10-7) 
 
some discrepany 
between theory and 
measurement is still 
present 
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2.6.5 Spinor normalization and completness relations 
 
In discussion about the probability density following from the Klein-Gordon equation (p. ???) we 
argued it is correct to normalize a wave function describing a relativistic particle in such a way as 
to have 2E particles in an arbitrary normalization volume V. Since the Dirac equation also 
describes relativistic particles one must follow the same prescritpion also here,  
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We wrote the Dirac equation in a form  
 
 
It is custom to use another shorthand notation for any four-vector multiplied by the foour-vector  
of gamma matrices:  
 
 
 
and the Dirac equation is sometimes written in this form 
 
 
Using the properties of the bispinors we can check (see App. C) that the following identity is 
satisfied 
 
 
 
The equation is called the completness relation.   
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