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2.7 Electromagnetic interaction of Dirac particles 
2.7.1 e-m-  e-m- scattering 
 
Knowing that the Dirac equation describes relativistic particles with spin ½ let us calculate the 
cross section for the electromagnetic interaction between two such particles, an electron and a 
muon. The Feynman diagram of such a process is  
 
 
 
 
 
 
 
 
and the matrix element is 
 
 
where         and       denote the electromagentic current of the electron and muon, respectively: 
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Inserting the currents into the matrix element expression we obtain 
 
 
 
 
 
 
where in the last line we used the definition of a 4-dimensional delta function (the latter is just a 
consequence of energy and momentum conservation in the process).  It is again custom to 
separate the delta function out of the matrix element by defining the amplitude for the process           
            as  
 
 
 
with     
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Before proceeding with the calculation we need to determine what kind of the cross section we 
wold like to determine. The involved particles carry spin. Quite often the spin orientation (which 
in principle can be measured, i.e. one can distinguish between positive and negative helicity 
states) of particles is not measured. In this case one talks about the unpolarized cross section. It is 
defined as   
 
 
 
 
 
Factors (2si+1) represent possible spin states of the incoming particles (a and b). In the 
unpolarized cross section one averages over those possible spin orientations. For a particle of 
spin ½ this factor equals 2 (two possible spin orientations). The sum in the expression runs over 
all possible spin orientations of the spinors involved in the amplitude        . It should be noted that 
the sum runs over amplitudes squared whch is a consequence of the fact that in principle the 
spin orientations can be measured. The sum involves currents, for example the electron current  
                                which in the amplitude squared enters twice:  
 
 
 
Note that the indices of the gamma matrices are different; the first gamma four-vector is 
multiplied by the corresponding four-vector in the muon current and analogously the second 
one. Writing out the current product above  
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The sum over spin orientations implies 
 
 
 
 
 
 
where in the last line we explicitly wrote out the components of the spinors and gamma matrices 
to be multiplied (sum over the repeated indicies is implied). Each of the factors        and           is 
now a simple scalar and their products are commutative. Hence we can move the last factor      
                      to the beginning of the product thus obtaining  
 
 
 
 
The notation below the line denotes what we obtain by applying the completness relation, with 
me denoting the mass of electron. The sum is thus  
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Examining the matrix indices we realize that the above product is just the trace of the expression,  
 
 
 
The same can of course be obtained for the other (muon) current in the spin averaged amplitude. 
The latter reads  
 
 
 
 
It may be of some comfort to know that once we are aware of this result it is not necessary to 
repeat the derivation each time when calculating amplitudes for various processes. Already from 
the form of the amplitude          on p. ??? we can directly guess the expression for the spin 
averaged amplitude above.  
In proceeding with the calculation of              we use some known identities in calculation of 
traces without the need for explicit matrix multiplication. This identities are called the trace 
theorems.  
Specifically for the above example the following trace theorem can be used:  
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Upon using the same theorem for the traces of the muon current we obtain 
 
 
 
 
The most difficult part of the cross section calculation is by this accomplished. We obtained the 
spin averaged amplitude expressed in terms of four-momenta products (it should be noted that 
the products of four-vectors are Lorentz invariant).  
 
To obtain the cross section from the spin averaged amplitude we need to add a few further 
factors.  We defined the differential cross section (p. ???) as   
 
 
 
 
Density of final states rf was obtained from  
 
                                                                                          where we used r = 1/V to denote the   
                                                                                          probability density in Schrödinger equation.  
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The density of final states for relativistic particles must be written using   
 
 
                                            ,   taking into account the normalization to 2E particles in volume V.  
 
rf is proportional to d3p/E. A differential Lorentz transformation (in x direction) is  
 
 
 
 
 
and the Lorent transformed d3p/E factor is  
 
 
 
 
 
 
 
 
where we used E= (px

2+py
2+pz

2+m2) and hence dE/d3px = px/E. The density of final states 
proportional to d3p/E is Lorentz invariant.   
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The last factor needed for the cross section is the density of incoming particles, rivi. If the initial 
particle a is moving and particle b is resting (in a target) then   
 
 
 
 
 
 
If both initial state particles are moving, then      
 
 
 
 
Taking into account                                                                  the velocity difference can be written as  
 
 
                                                                and    
 
 
The latter expression can be written in explicitly Lorentz invariant form as shown.  
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The differential cross section can thus be written as a product of Lorentz invariant factors,  
 
 
                                      ,    with individual factors for the process a b  c d written as  
 
 
 
 
 
 
 
 
 
 
The above ingredients of the differential cross section take specifically compact form if written in 
the center-of-mass frame (CMS) of the initial and final state particles:  
 
 
 
 
                                                                                              If we are interested in the angular    
                                                                                 distribution of final state particles we can write   
     (note that pi and pf are not 4-vectors but the magnitudes of the corresponding 3-momenta): 
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and integrate over d3pd: 
 
 
 
 
 
Denoting the CMS collission energy by E (=Ea+Eb) we have   
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Upon integration over the energy E we get 
 
 
 
 
Substitution of pa and pb expressed in terms of pi into the expression for F yields 
   
 
The differential cross section in CMS is  
 
 
 
 
and the trivial integration over E (because of the delta function) yields 
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Returning to our example of the e-m-  e-m-  scattering, we can now write the differential cross 
sectiomn in the CMS in the ultrarelativistic limit :  
 
 
 
 
 
 
 
 
 
 
 
 
In rewriting the expression to obtain the units m2 as expected for the cross section one should 
take into account  = e2/4 c to obtain  
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2.7.2 Crossing, e-e+  m – m+ 
 
Having calculated the differential cross-section for the e-m-  e-m-  scattering, it is easy to obtain 
cross sections for some related processes involving the anti-particles. The procedure to do so is 
called the crossing. Let‘s sketch the original process e-m-  e-m- on the left-hand side, identifying 
the four-vectors of individual incoming (pa , pb) and outgoing (pc , pd) particles. Now we can 
replace one electron (e-) by its anti-particle positron (e+). In doing so in accordance with the 
Feynman- Stückelberg interpretation (see p. ??) the four-vector of the particle reverses its sign 
(i.e. k‘   -k‘). This includes the reversal of the three-momentum implying an outgoing particle 
becoming an ingoing one and vice-versa. We repeat the same procedure for one of the muons. 
The sketch of the crossed process which we get by this (e-e+  m – m+) is shown on the right-hand 
side.  
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By comparing the four-vectors of the incoming and outgoing particles for the original and the 
crossed process we see that the only difference between the two is the replacement k‘   -p. 
Hence we can get the cross-section for the crossed process using the calculated cross-section of 
the original process and performing the mentioned transformation. The amplitude for  
e-e+  m – m+) is thus (see p. ???): 
 
 
 
 
 
In the ultrarelativistic limit and in the CMS, by using the four-vectors  
 
 
 
 
(the same as for the original process), and  
 
 
we get  
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Integration of the differential cross-section yields  
 
 
 
 
For example at E=10 GeV the total cross-section is 
 
 
 
 
 
where barn (b) is an appropriate unit for measuring the cross-sections (1 b = 10-28 m2).   
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2.7.3 e-e-  e-e- , e-e+  e-e+  
 
In the ultrarelativistic limit there is no difference between the e- and m- (the only difference 
between the two particles is their mass which is neglected in the ultrarelativistic limit). Hence 
one expects in this limit the cross-section for the process e-e-  e-e-  to be the same as the one  
for the e-m-  e-m-  
However, in the former process one deals with two indistiguishable particles in the final state. 
Hence we can not distinguish between the two Feynman diagrams shown below:  
 
 
 
 
 
 
 
 
 
In words, one doesn‘t know whether the final state electron with the four-momentum k‘ arises 
from the vertex with the initial state electron of four-momentum k or p. Due to this one has to 
make the amplitude symmetric with respect to the interchange k‘  p‘.  Mathematically this 
corresponds to  
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We don‘t need to repeat the whole calculation but rather symmetrize the result for the  
e-m-  e-m- cross-section: 
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Having at hands the amplitude for the e-e-  e-e-   it is now straightforward to apply the crossing 
method to obtain the amplitude for the e-e+  e-e+ :  
 
 
 
 
 
 
 
 
 
 
The necessary transformation is p  p‘, and hence  
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Upon the inspection of the amplitude for the e-e+  e-e+ we realize there are still two terms in 
the xpression corresponding to         and          from the e-e-  e-e- . In the latter process two 
amplitudes were assigned to two indistiguishable Feynman diagrams (see p. ???). Indeed also for 
the e-e+  e-e+  we have two possible indistinguishable diagrams:  
 
 
 
 
 
 
 
 
 
Diagram on the left is sometimes called the scattering process and the one on the right the 
annihilation process.  
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The quantum electro-dynamics (QED) processes discussed above are among the experimentally 
most accurately measured processes, confirming the calculations in the framework of QED to 
high precission. These calculations involve not only the leading order calculations as shown here 
but also higher order processes (i.e. processes involving more vertices).  
 
Experimentally, the processes are accurately measured using the electron – positron colliders.  
 
                                                        Figure on the left shows an example of  

the e+e- collider (Super KEK-B) built in  
Tsukuba, Japan, to study the collissions at the  
CMS energies around 10 GeV.  
Electrons and positrons are accelerated  
using the standing electromagnetic waves  
produced in the radio-frequency cavities as  
the one shown on the figure below.   
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In order to make the trajectory of the accelerated particles (approximately) circular bending  
dipole magnets are used. Charged particles traveling through a magnetic field perpendicular to  
their velocity experience the Lorentz force which keeps them in a circular orbit.   

Apart from the dipole magnets other magnets are used in the  
accelerators, for example quadrupole magnets used to focus the  
beams of accelerated particles infront of the point where one  
wants the interactions to take place. Consequently, the accelerator  
is a complicated lattice of various magnets and accelerating cavities.  
 

Long bending magnets (in blue)  
used at the KEK-B accelerator.  

Part of the lattice for the KEK-B 
accelerator. Each yellow box  
represents a specific magnet  
used.  
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Particle accelerators are expensive infrastructure. Consequently there are only few infrustructure 
centers around the world at which particle physicist from all over the world perfrom various 
measurements. Some of the past and existing e+e- accelerators are shown in the map below:  
 
 
 
 
 
 
 
 
 
 
 
A very rough estimate for the costs of an e+e- accelerator can be obtained using the formula  
cost  a R + b E4 / R . The first term scales with the length of the accelerator (proportional to  
radius R) and roughly accounts for the price of the civil engineering work needed, number of 
magnets, etc. The second term accounts for the synchrotron radiation causing the accelerated 
(light) particles to loose their energy and hence takes into account the price of accelerating  
units, cooling equipment, etc. The parameters a and b can be estimated to approximately  
a  1,2 ∙ 105 $/m and b  1,3 ∙ 103 $m/GeV4 from approximate costs of the SPEAR (Stanford, USA, 
E=8 GeV, R=40 m, cost  5∙106 US$;) and LEP (CERN, Geneva, E=200 GeV, R=4,3 km, cost  109 
US$) accelerators.    
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The figure below on the left shows some of the earlier measurements of the total e-e+  m – m+  
cross-section at various CMS energies. The solid line is the leading order prediction as calculated 
on p. ???.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure on the right illustrates experimental tests of hihger order corrections to the e-e+  e-e+  
differential cross-section at E=29 GeV. The leading order calculation is shown by the solid red line. 
The measurements are accurate enough to exhibit the need for the corrections.  



The differential cross-section for e-e+  m – m+ is an even function of cos q (see p. ???). An 
example of measurements is shown below. The measurement cleraly exhibits an asymmetry in 
the angular distribution. This is a consequence of the weak interaction (which contributes to the 
process beside the pure electromagnetic interaction). The QED prediction is shown by the line 
denoted d/d|QED and the prediction taking into account also the weak interaction by the 
dasehd line (d/d|QED+WEAK).  
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2.7.4 e-e+  qq 
 
In the electron positron annihilation also pairs of quarks can be produced. The Feynman diagram 
is similar to the one for the production of the muon pair:  
 
 
 
 
 
 
 
 
 
 
 
 
Since quarks are fermions, like muons, the amplitude for the process e-e+  qq follows from the 
amplitude for the e-e+  m+m- process. The only difference is that in the latter one encounters the 
charge of the muon, which in the former should obviously be replaced by the corresponding 
charge of the quark. The cross-section (e-e+  m+m- )  |M|2 ee

2em
2 and hence  

(e-e+  qq )  ee
2eq

2 . The only other difference between the two cross sections arises from the 
quntum number assigned to quarks but not to muons, the color. Since quarks arise in three 
possible colors (see p. ??) the cross section must be multiplied by 3.  
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Hence the ratio of the two cross sections is 
 
 
  
 
where Qq denotes the charge of the quark in units of the elementary charge e0.  
As discussed on p. ??? produced quarks immediately „dress“ with other quarks in the process of 
so called hadronization, for example   
 
 
 
 
 
 
 
 
 
In the above illustration q and q denote the original quark pair, while qi are (anti)quarks  
produced from vaccuum. Quarks form hadrons, mesons (Mi) or baryons (Bi). The final result of 
the process are two jets of hadrons that can be detected in a particle detector, as shown in the 
next figure.   
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The production of quarks always results in various hadrons in the final state. Summing over all  
possible quark flavors one obtains the total cross section for the production of hadrons in  
electron positron annihilations:  
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Computer reconstruction of an e-e+  qq  
annihilation detected by the Opal detector at  
the Large Electron Positron collider (operating  
at Cern in the period 1989 - 2000; in the  
same tunnell nowadays the Large Hadron  
Collider is located) resulting in two  
back-to-back jets of hadrons. Blue lines  
represent detected charged hadrons in the  
detector.   
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Of course the centre-of-mass energy of the collission must be high enough for the production of a 
pair of specific quark flavor (more precisely it must be high enough for the production of at least 
two lightest hadrons composed of these two quarks). Over which quark flavors the sum runs over 
thus depends on the collission energy.   
Ratio of the cross section for the hadron and the muon pair production R is  
 
 
 
 
At the energies sufficient to produce pions only (composed of u and d quarks) the ratio is  
 
 
Once the energy becomes high enough for producing s quark pairs, the ratio becomes  
 
 
and at even higher energies  
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An example of measured ratio is shown in the figure below. Note that no e+e- accelerator has so 
far achieved energies to produce t quark pairs.  
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2.8 Weak interaction 
2.8.1 Introduction 
An obvious hint that beside the strong and the electromagnetic there must exist yet another 
interaction are lifetimes of charged and neutral pions:  
t( -) = 2.6 10-8 s 
t(0) = 8.4 10-17 s 
Why the two mesons, both composed of u and d quarks, have lifetimes differing by 9 orders of 
magnitude?  
Pions are the lightest hadrons and hence can not deacy through the strong interaction into lighter 
hadrons. The neutral pion can, however, decay through an electromagnetic process, 0gg. On 
the other hand electromagnetic decays with photons in the final state are not possible for the 
charged pion. The decay  -m –g, for example, is forbidden by the lepton number conservation.   
By far the most abundant decay mode of charged pions is  -m –m ,  proceeding through a 
(charged) weak interaction. The Feynman diagram of the decay is  
 
                                                                        The charged weak interaction propagated by charged    
                                                                         weak bosons W± is the only one that changes the flavor  
                                                                         of quarks (or in other words couples the quarks of  
                                                                         different flavors as seen in the pion vertex in the figure).    
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As mentioned already on p. ??? the weak interaction causes  decays of nuclei, for example  
10C  10B e+ e.  In this particular case a proton inside the initial nuclei decays into a neutron, 
positron and a neutrino. In 1932 Fermi wrote the matrix element for such a process in analogy 
with the electromagnetic interaction:  
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Because he didn‘t know what kind of particle propagates the interaction he skipped the 1/q2 term 
and changed the coupling constant (e2 or  for the EM interaction). The constant GF is nowadays 
known as the Fermi constant. Surprisingly enough the proposed description was successful in 
description of  decays. And indeed it only needs slight modification to account for some of the 
properties of weak interaction, most importantly the parity violation.  

 
2.8.2 Parity violation 
 
In 1950‘s the so called q-t puzzle was one of important unanswered questions of particle physics. 
It consisted of two different decays of what was at that time believed to be two different 
particles, q + and t + (note that t + has nothing to do with the contemporary t lepton):  
q +  + 0, t +   + + 0. Considering the properties under the parity operator P (reflection of 
spatial coordinates, see p. ???) pions (composed of a quark and an anti-quark) have a negative 
parity value. The parity is a multiplicative quantum number and hence the two pion final state 
has a P value of +1, while the three pion final state has a P value of -1. What was puzzling was 
increasing experimental evidence that the two particles, q + and t +, are the same (in terms of 
their mass and other properties). An obvious question was how could the same particle decay 
into final states with different parity? The electromagentic and strong interaction, experimentally 
already well known, conserved the parity, i.e. the parity of inital and final states were equal in all 
known processes proceeding through these two interactions.   
In 1956 Tsung Duo Lee and Chen-Ning Yang examined the available experimental data and 
suggested that they can be interpreted by the weak interaction causing the above and similar  
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decays to violate parity (i.e. the parity value of the initial and final states in the processes 
proceeding through the weak interaction are not necessary the same). They proposed an 
experiment carried out by Chien SHiung Wu, called the Cobalt-60 experiment.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
one is left with two extreme configurations of electron and neutrino spins and momenta as  
sketched in the figure. The result of the experiment, in which electrons were detected, showed  
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the large majority of electrons were flying in the direction oposite to the magnetic field and no 
electrons were found to fly in the direction of the magnetic field. This proved that the parity is 
indeed violated in  decays – a tipycal process proceeding through the weak interaction.  
Why is this violation of the P symmetry? We are facing the configuration shown on the left:  
 
 
 
 
 
 
 
 
 
 
 
 
Electrons fly in the direction oposite to the external magnetic field, i.e. in the direction oposite to 
the Co nucleus spin. Under the parity transformation the electron momentum revrses its sign. On 
the other hand the nucleus spin, being an axial vector, does not change sign. Hence the P 
transformed configuration is represented by electrons flying in the direction of the nucleus spin. 
This is experimentally not observed. This is an obvious asymmetry between the two 
configurations related by the parity operation. Hence the interaction responsible for such a 
system does not obey symmetry under the parity transformation.   
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Piece of paper with what is supposingly one of  
discussions between T.D. Lee and C.N. Yang about the  
parity violation. They shared the Nobel prize in  
physics in 1957 for the discovery of parity violation.  
T.D. Lee was at the age of 30 the third youngest Nobel  
prize laureate (after W.L. Bragg, 25 in 1915, and  
W. Heisenberg, 30 in 1932).  
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One can also have a slightly different look at the parity violation: in the Cobalt-60 experiment 
only positive helicity anti-neutrinos (R) were observed (see illustration on p. ???).  
 
 
  
 
 
Under parity transformation the aniti-neutrino with positive helicity transforms into an anti-
neutrino with negative helicity (L, because momentum changes sign and spin does not). 
However, the latter was not observed nor in the Cobalt-60 or any other experiment so far. 
Similar is true for neutrinos: while neutrinos with negative helicity exist, neutrinos with positive 
helicity are not observed.  
 
 
 
 
 
 
This implies that the weak interaction violates another symmetry: the symmetry under the 
charge conjugation C (which transfroms particles into anti-particles and vice versa). Namely, if 
one starts with a positive helicity anti-neutrino and performs the C transformation  

R P̂ L

L P̂ R
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the result is a non-existing positive helicity neutrino. Analogously, starting with  a negative 
helicity neutrino one arrives to a non-existing negative helicity anti-neutrino*.  
 
 
 
 
 
 
The weak interaction thus violates both, the P as well as the C parity simmetry.  
In 1957 Lev Landau proposed that the true symmetry which is preserved (also) by the weak 
interaction is the symmetry under a combined CP transformation:  
 
* Actually, the terminology here is not copmpletely correct. What one observes is that in the 
charged weak interaction only negative helicity neutrinos and positive helicity anti-neutrinos are 
involved. Since the neutrinos interact only through the weak interaction one can do a slightly 
sloppy generalization about the existence of the two mentioned states and non-existence of the 
other two.  

R Ĉ R

L Ĉ L
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The idea remained valid until 1964 when it was experimentally verified that also the combined 
CP symmetry is violated in charged weak inetraction (see p. ???).  
 

2.8.3  Theory of weak interaction 
 
E. Fermi in 1930‘s didn‘t know about the parity violation when writing down the amplitude for a 
process proceeding through the weak interaction (p. ???). It turns out that the correction 
needed in writing down the amplitude in order to account for this property of the weak 
interaction is reralively small:  

R ĈL
LP̂

L ĈR
RP̂
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All what is needed is an inclusion of the factor (1-g 5) as written above, where g 5 is a product of 
all four g  matrices:   
 
  
 
 
 
What does the inclusion of this factor mean?  
g 5 is called the handedness operator. Factor (1-g 5) projects the so called left- and righ-handed 
component of a bispinor:  
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What is important is the helicity of the left- and righ-handed components in the ultrarelativistic 
limit:  
 
  
 
 
 
 
where      is a unit vector in the direction of fermion‘s momentum. The helicity of uL is negative:  
 
 
 
 
Similarly one obtains  
 
In other words, the handedness (eigenvalue of the g 5 operator) coincides with the helicity 
(eigenvalue of the          operator) in the ultrarelativistic limit.  
One should also note that 
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and hence 
 
because  
 
 
 
 
 
(and similarly                                ).  
 
The effect of the (1-g 5) factor in the amplitude is thus 
 
 
 
where uf,i are bispinors of any final and initial state fermion involved in the process. The factor  
(1-g 5) projects out only left-handed component of the bispinors in the amplitude, and 
(reminding that the handedness coincides with the helicity in the ultrarelativistic limit, which is 
always fulfilled for neutrinos) only negative helicity neutrinos (and positive helicity anti-
neutrinos) take part in the weak interaction. By this the parity violation property of the weak 
interaction is properly accounted for.   
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A full amplitude for the process proceeding through the charged weak interaction is thus  
 
 
 
 
 
 
 
 
 
where instead of the Fermi constant we wrote out the „true“ weak interaction coupling constant 
gW as well as the factor exposing the interaction carriers, weak charged bosons W±, with the 
mass MW. In the limit MW

2>>q2 we see that the gW and MW yields the Fermi constant,   

i f 

i‘ f‘ 

W 







-











-
-








- '

5

'22

5 )1(
2

)1(
2

if
W

W

if
W uu

g

qM

g
uu

g
-i gggg 




M

2

2

2 W

W
F

M

g
G 



6/1/2014 43 B. Golob 

In 1960‘s A. Salam, S. Glashow and S. Weinberg published a series of articles in which they 
derived the properties of charged weak interaction and the Lagrangian for the description of the 
weak, electromagentic and strong interaction among elementary particles. In doing so they 
exposed relations pointing to the fact that the electromagnetic and weak interaction are actually 
just a low energy manifestations of a unified electroweak interaction. Furthermore they 
predicted the existence ow neutral weak interaction. Their work is nowadays regarded as the 
basis of the Standard Model of the weak, electromagnetic and strong interaction, one of the 
experimentally best verified physics theories. For their work they shared the Nobel prize for 
physics in 1979.  
 
 

S. Glashow          A. Salam              S. Weinberg 
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2.8.3  Muon decay 
 
As a specific example of a process proceeding through the charged weak interaction let us 
examine the decay of a muon, m-  e- e m . The Feynman diagram is  
 
 
 
 
 
 
 
 
where in parenthesis we denoted the four-momenta of particles. The diagram on the right is an 
analogous diagram where the anti-particle (e) is replaced by the particle (e) with a reversed 
sign of the four-momentum.   
The observable related to a particle decay is its total decay width, G = 1/t, where t is particle‘s 
lifetime (or, written in non-natural units, G = c/ct ). In calculating the decay width, the 

expression for the cross section (p. ???) is slightly modified:  
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where the factor F appropriate for the scattering process is replaced by 2E, the density of initial 
state particles (a single particle), and E is the enrgy of the initial state particle.  
The phase space dQ for the specific decay is written as  
 
 
 
 
where w and w‘ denote energies of the muon and electron neutrino, respectively. Considering 
the fact that neutrinos are difficult to detect, in the muon decay one is primarily interested in 
the electron energy spectrum (dG/dE‘). Hence one can integrate dQ over d3k, taking into 
account the following identity:  
 
  
 
 
q(w) in the equation above is the Heaviside function (=1 if w>0 and =0 if w<0). Hence  
 
 
 
 
which is trivial because of the 4(...) function: 
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The matrix element is  
 
 
 
 
 
 
 
where in the last line we introduced a bispinor of anti-particle (i.e. of a fermion with a negative 
energy), v(k‘), for easier notation. Remembering that the negative energy solutions of the Dirac 
equation are interpreted as anti-partilce solutions, i.e. we denote the solutions as  
 
 
 
 
While the compact form of the Dirac equation for bispinors u is  
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the form for the bispinors v is 
 
 
The other formal difference between bispinors u and v is in the form of the completness relation  
(see p. ???):   
 
 
 
 
 
The average matrix element for decays of unpolarized muons is  
 
 
 
 
 
 
The leading factor ½ arises from two possible spin orientations of the initial muon (1/(2sm+1)).  
Inspecting the third [...] factor we see  
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Similarly for the other [...]+ term one obtains  
 
 
 
The average square of the matrix element is thus  
 
 
 
 
 
 
 
 
 
The sum over spin configurations leads in the same manner as in the case of the elctromagnetic 
interaction using the completness relations (see p. ???) to traces of matrices: 
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For clarity masses of all particles were explicitly written in the above expression. In the 
ultrarelativistic limit we neglect masses of neutrinos and of the electron. On the other hand, 
mass of the muon can not be neglected (in the muon rest frame the total energy is just mm). 
However, one of the most usefule trace theorems states that the trace of the product of an odd 
number of g matrices always equal 0. By inspection one can see that all the terms with mm  
appears in products of an odd number of g matrices in the above expression (note that g 5 

should be counted not as one but as four g  matrices, because g 5= g 0 g 1 g 2 g 3). Hence also the 
terms with mm  yields 0:  
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One of the trace theorems (or an explicit calculation of the traces) yields:  
 
 
 
 
In the muon rest frame                              and  
 
 
 
 
 
 
 
 
 
 
 
Inserting the matrix element into the expression for dG we obtain 
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(we left out q(w) in the above expression since always w>0). The remaining differentials in dG 
can be written as  
 
 
 
where q denotes the agle between the electron and electron neutrino 3-momenta.  
The  function can be written as  
 
 
 
 
 
 
enabling a trivial integration over cosq :  
 
 
 
 
with an additional requirement following from the  function:  
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which yields the integration boundaries for the final integration over w‘.  
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Before continuing one has to clarify whether  
(2E‘-mm) > 0 or <0.  
If in the decay there would be only two particles  
in the final state, the electron would have an energy  
E‘ = mm /2 (in the ultrarelativistic limit). However, since  
three particles are produced, the electron energy is  
E‘  mm /2 . Hence  
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Finally, we arrive at 
 
 
 
 
 
 
 
 
 
The energy spectrum of electrons from muon decay looks like 
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One should note that the 
above expression is only valid  
to E‘ = mm /2, because the  
electron in the decay can  
not take larger energy.   
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The total decay width is  
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2.2 Homeworks Solutions 
Homework 1:  
the simplest way may be to consider the invariant mass  
of the initial electron; 
                                4-momentumof initial e- in its rest frame 
 
                                                         4-momenta of final e- and g in laboratory frame 
 
 
The magnitude of 4-vectors is invariant to Lorentz transformation. Hence the square  
of p (written in one frame) must be the same as the square of p in the laboratory frame,  
and this in turn must equal to the square of (p‘+k) (written in laboratory frame). 
 
 
 
 
           this mass is called the „invariant mass“ of the initial particle since  
it‘s calculated from energies and momenta of final state particles in another frame  
 
With some rearrangements of the above equation we arrive to  
 
                                                                  which is clearly impossible.  
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Homework 2:  
operator of infinitezimal rotation around the z-axis for an angle  is written as  
 
 
 
                                               ,     
 
where       is the z-component angular momentum operator,                                               .  
 
The above equation is jujst the first order in the Taylor expansion, the operator  
of rotation for a finite angle can be written as  
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Homework 3:  
operator of infinitezimal rotation around the z-axis for an angle  is written as  
           +    m+   m 
    L:   0          -1     +1 
    B:  0           0       0 
 
The process conserves lepton and baryon number. It conserves charge and is also  
energetically allowed since mc2 = 139.6 MeV, mmc2 = 105.7 MeV and m ~ 0.  
The above charged pion decay is indeed almost the only pion decay, proceeding through  
the weak interaction (99.99% of pions decay through this process, see p. ??).  
 
Homework 4:  
 0  e+ e-                   conserves B, L, Li, charge, allowed 
  p n e+ ve                 conserves B, L, Li, charge; since mp < mn it is only possible for p‘s bound  
                                inside nuclei (+ decay) 
  K+ n   S + 0         conserves B, L, Li, charge; it would be allowed, however, it turns out that  
                                strange quarks carry an additional quantum number – strangeness (see  
                                p. ??) which should also be conserved in processes proceeding through the  
                                strong interaction; hence this process is forbidden  
  K- p   S 0 0      conserves B, L, Li, charge; since it also conserves the above mentioned  
                               strangeness this process is also allowed.  
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Homework 5:  
S- : Since all baryons have B=1 the hypercharge value determines the strangeness and  
thus the s quark content.  For S- Y=0   S= -1  one s quark. There should be additional two  
d quarks in order to match the electric charge, which is also in agreement with I3 = -1.  
 
X- : Y=-1   S= -2  two s quarks, 1 d quark, in agreement with I3 = -1/2.  
 
D-: Y=1   S= 0  no s quarks, 3 d quark, in agreement with I3 = -3/2.  
 
-: Y=-2   S= -3  3 s quarks, no d quark, in agreement with I3 = 0.  
 
 

Homework 6:  
Neutron wave function is similar to the proton one with the exception of the flavor  
composition which is of course d, d, u.  
 
 
 
In the same manner as for the proton (see p. ??) one can determine  
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Homework 7:  
The flavor parts of the wave function for the mesons are 
 
 
 
                                                                                             (they are all vector mesons (J=1) and  
                                                                                              hence the flavor part is symmetric;  
                                                                                              furthermore w, f are linear  
                                                                                              combinations of f0 and f8 , but the  
                                                                                              mixing angle is such that f is entirely  
                                                                                              ss and w entirely uu, dd; similar is true 
                                                                                              for the J/) 
 
Feynman diagram of the process:  
 
                                                                      Each vertex in the diagram is proportional to the  
                                                                      charge of the fermions (electromagnetic interaction,  
                                                                      see p. ??). Hence the amplitude is proportional to   
 
                                                                                                          , where M is the corresponding  
    meson, and eq and ee are the operators of the quark and electron charges.  
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For the listed mesons we get 
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Ratios of decay rates are 
 
 
 
 
 
 
 
to be compared to the experimentally determined ratios of 1 : 11.8 : 2.1 : 9.3. The  
deviations point to defficiencies of the simplest quark model.  
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Homework 8:  
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Appendix A: Covariant form of Maxwell equations 
 
Classical form of Maxwell equations is  
 
 
 
 
 
If we introduce the scalar and vector potentials          and        : 
 
                                                                                                    ,  
 
then two of the Maxwell eqs. are automatically satisfied, since  
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Furthermore we can show that the other two eqs. can be written as  
 
                                                       , with the current four-vector defined as                            .  
 
To see this we write out the above covariant form of the equations:  
 
  
 
 
The time component of this equation is  
 
 
 
 
 
 
 
Inserting                                      into equation                   we obtain the same equation.  
 
An analogous test can be performed for the space component proving that the covariant form  
reproduces the equation                                         (in the derivation one can use the relation   
                                                                                                                                                         ) 
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On p. ??? we used the covariant form                                                       without the second term.  
 
The reason is that observable fields E and B are invariant to gauge transfromations of the type  
                                       , where  is any scalar function.  
 
This can be proven by explicit calculation of E‘ and B‘ fields, with 
 
 
 
 
 
and showing that E‘=E and B‘=B.   
 
Beacuse of this invariance we can always choose  such that  
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Appendix B: Classic Hamiltonian of a particle in electromagnetic field  
 
Force acting on a point charge q in electric field      and magnetic field      is  
 
                                              
One can see that tthe Lagrangian leading to this force is  
 
                                                 ,        where          and          are the scalar and vector potential  
 
introduced  on p. ???.    We can prove this using the Euler-Lagrange equation  
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The last term in the above equation follows from  
 
                                              
Taking into account  
  
                                                                  one indeed arrives at  
 
Hamiltonian is  
 
 
 
with  
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