2.7 Electromagnetic interaction of Dirac particles
2.7.1 e ;r — e’y scattering

Knowing that the Dirac equation describes relativistic particles with spin % let us calculate the
cross section for the electromagnetic interaction between two such particles, an electron and a
muon. The Feynman diagram of such a process is

"
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and the matrix element is Tﬁ = —ij ]5 —— j;d4x

where ]5 and ]; denote the electromagentic current of the electron and muon, respectively:

ji = e (kY u(k)e
Ji, ==em(p)y u(p)e " "



Inserting the currents into the matrix element expression we obtain

1

T, = —ie' ik yy,u(k) 5 Ja(p)y"u(p) [eltrtomrgty =

= —i[— e (k")y,u(k) —q% e (pY)y u(p)27)! 54 (k'+ p'—k - p)

where in the last line we used the definition of a 4-dimensional delta function (the latter is just a
consequence of energy and momentum conservation in the process). It is again custom to
separate the delta function out of the matrix element by defining the amplitude for the process

o as
T, = -27)* ' (k'+ p'—k — p)on

KV

_iM=[—eL7(k')7/"u(k) —gq—2 [—eﬁ(p')yvu(p)]

with
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Before proceeding with the calculation we need to determine what kind of the cross section we
wold like to determine. The involved particles carry spin. Quite often the spin orientation (which
in principle can be measured, i.e. one can distinguish between positive and negative helicity
states) of particles is not measured. In this case one talks about the unpolarized cross section. It is
defined as

_ 1 2
= e ™

orientations

Factors (2s+1) represent possible spin states of the incoming particles (a and b). In the
unpolarized cross section one averages over those possible spin orientations. For a particle of
spin % this factor equals 2 (two possible spin orientations). The sum in the expression runs over
all possible spin orientations of the spinors involved in the amplitude 9IL . It should be noted that
the sum runs over amplitudes squared whch is a consequence of the fact that in principle the
spin orientations can be measured. The sum involves currents, for example the electron current
L_t(k')j/Ku(k) which in the amplitude squared enters twice:

o] oc [@ (k") u k) Jir(k )y uio)|

Note that the indices of the gamma matrices are different; the first gamma four-vector is
multiplied by the corresponding four-vector in the muon current and analogously the second
one. Writing out the current product above



(ke yy o la ey uo)| = ity ut| w ) 7y ue)|=
) RO M R o
The sum over spin orientations implies

3 7 (kY u (o) J® (k) ut (k) |=

s,s'=1,2

= Z[ﬁa(s') (k')yaﬂ’(uﬂ(s} (k) 175(S) (k)yé'gaug(s') (k'):l

s,s'=1,2

where in the last line we explicitly wrote out the components of the spinors and ga(g}ma ma”grices
to be multiplied (sum over the repeated indicies is implied). Each of the factors U; and 7/1-]- is
now a simple scalar and their products are commutative. Hence we can move the last factor
ug(s') (k') t© the beginning of the product thus obtaining

(s 1y (5) QAT NG
> u R, )y w0 Ry,
$,8'=1,2 kem, kem,

The notation below the line denotes what we obtain by applying the completness relation, with
m, denoting the mass of electron. The sum is thus



' K (o2
(lé +me)ga70(ﬂ (k—l_me)ﬂ&y&
Examining the matrix indices we realize that the above product is just the trace of the expression,

Tr|(k+m, )y (k+m, )y |

The same can of course be obtained for the other (muon) current in the spin averaged amplitude.
The latter reads

1 e

‘@_I’C‘z :ﬁq—Tr[(lé +m ) "(lé+me)yakr[(p'+mﬂ)yK(p+mﬂ)7/0]

It may be of some comfort to know that once we are aware of this result it is not necessary to
repeat the derivation each time when calculating amplitudes for various processes. Already from
the form of the amplitude O){ on p. ??? we can directly guess the expression for the spin
averaged amplitude above. 0

In proceeding with the calculation of M| we use some known identities in calculation of
traces without the need for explicit matrix multiplication. This identities are called the trace
theorems.

Specifically for the above example the following trace theorem can be used:



Tr|(kem, )y (k +m, )y |=alk™ k7 + k7 k* = (k ke —m?)g™ |

Upon using the same theorem for the traces of the muon current we obtain
x| = 3 [(k'p Y(kp) + (k' p)(kp' Y —m?p' p—mk'k + 2m>m’ |

The most difficult part of the cross section calculation is by this accomplished. We obtained the
spin averaged amplitude expressed in terms of four-momenta products (it should be noted that
the products of four-vectors are Lorentz invariant).

To obtain the cross section from the spin averaged amplitude we need to add a few further
factors. We defined the differential cross section (p. ???) as

do _dW,/dQ dW, 2z

iQ  pv dQ_h‘ﬁ‘ dQ)

Density of final states p; was obtained from

3 3
AN =V d P _ 1 d P where we used p = 1/V to denote the
(272'71)3 P (27Z'h)3 probability density in Schrodinger equation.




The density of final states for relativistic particles must be written using
3
.V d
d*N = P

2F (27z'h)3 , taking into account the normalization to 2E particles in volume V.

pris proportional to d3p/E. A differential Lorentz transformation (in x direction) is

dp,'= y(dp, — BdE)
dp,'=dp,, dp.'=dp,
dE'=y(dE - pdp,)

and the Lorent transformed d3p/E factor is

d’p' y(dp, — BdE )dp dp, _dp,(1-BdE/dp,)

= = dp,dp, =
E ( 7(E;ﬂpx) E-pp, '

dp \1-BE/ p d’p
— x ) dp dp. =

E(1-fp,./E) PP T

where we used E= \/(sz+py2+pzz+m2) and hence dE/d®p, = p,/E. The density of final states
proportional to d®p/E is Lorentz invariant.



The last factor needed for the cross section is the density of incoming particles, pv.. If the initial
particle a is moving and particle b is resting (in a target) then

2B, 25
IOi I V a V
" —

currentdensity density of
of particles a target particles

If both initial state particles are moving, then

2FE 2F
— _ b |5 =
pivi:F_ - Va_vb‘
2 4
\% \% vC C
Taking into account — = IB = i = i T = —p the velocity difference can be written as
C yime  ymce E
. _. pE —DFE _ _ \/ 2 2 2
Vo =™V = BaZp —PrZe and [roc|p E, —pE,|= (papb) —m,m,

’ EaEb

The latter expression can be written in explicitly Lorentz invariant form as shown.
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The differential cross section can thus be written as a product of Lorentz invariant factors,

jow
1 do

F , with individual factors for the process a b — ¢ d written as

do =

F=4(p,p,) —mm’

d’p d’p

dO = (27)* 5* (fe'+ p'—k — : ‘

O=@n) o K p=k=P) 5 0E @n)2E,
[]db]

The above ingredients of the differential cross section take specifically compact form if written in
the center-of-mass frame (CMS) of the initial and final state particles:

y NPT Pi=D
P.=Pr =Py
_ If we are interested in the angular

distribution of final state particles we can write
(note that p; and p,are not 4-vectors but the magnitudes of the corresponding 3-momenta):

—ion =) | -




d’p = pjzpdpfdQ, dQ) =27 sin 6d O

and integrate over d®p:

d’ 1
j i 54(pc+pd_pa_pb) =—0o(E,+E,—E,—E,)

2E, - g . 2E,

3, _ _ _
=0(E +E;—E,—E,)0° (P.+Py—Pys—Pp)

Denoting the CMS collission energy by E (=E_+E,) we have

1 pjzfdpfdQ
dQ = O(E.+E,-F
i AEE, (Bt £y = £)
2 2 2 2
E=Ec+Ed=\/pf—|—mc+\/pf+md
dE _P; Py
dp, E. E,
1 Py

dO dQdES(E, + E, — E)

4r° ME +E))



Upon integration over the energy E we get

1 p
dQ = —~LdQ
4 4F

Substitution of p, and p, expressed in terms of p; into the expression for F yields

F=4pE
The differential cross section in CMS is

2
do o p,

= S(E.+E,-E
dQdE  64n°p.(E.+E,) (Ee+ £y —E)

and the trivial integration over E (because of the delta function) yields

do |9 p,
dQ  64rn’p.E’
In the ultrarelativistic limit m, << p, and p;=py,
2
do \@rz\

dQ  647°E’



Returning to our example of the e — e 1 scattering, we can now write the differential cross
sectiomn in the CMS in the ultrarelativistic limit :

k=(E/2,p,), kK'=(E/2,p;), p=(E/2=p;), p'=(E/2,—p,)
K'p=(E*/4)+p,p, =(E*/4)(1+cosb)
kp=(E*/4)+p.p,=E* /2

q> =(k'—k)* =(0,p, — p,)* =—(E*/2)(1-cos )

do e 4+(1+cosB)’

dQ  327%E?  (1-cos6)?

In rewriting the expression to obtain the units m? as expected for the cross section one should
take into account o« = e?/4r 7c to obtain

do a’(he)” 4+ (1+cos8)’
dQ  2E° (1-cos@)’




2.7.2 Crossing, e’e” = u~— 1

Having calculated the differential cross-section for the e'ir — e scattering, it is easy to obtain
cross sections for some related processes involving the anti-particles. The procedure to do so is
called the crossing. Let’s sketch the original process e 1r — e 11 on the left-hand side, identifying
the four-vectors of individual incoming (p,, p,) and outgoing (p., p,) particles. Now we can
replace one electron (e) by its anti-particle positron (e*). In doing so in accordance with the
Feynman- Stickelberg interpretation (see p. ??) the four-vector of the particle reverses its sign
(i.e. k* — -k“). This includes the reversal of the three-momentum implying an outgoing particle
becoming an ingoing one and vice-versa. We repeat the same procedure for one of the muons.
The sketch of the crossed process which we get by this (ee* — 1~ 1) is shown on the right-hand
side.

e —> el

incoming outgoing
Pq Py P Py

/k p k/ p/
k -k -p p’/




By comparing the four-vectors of the incoming and outgoing particles for the original and the
crossed process we see that the only difference between the two is the replacement k* < -p.
Hence we can get the cross-section for the crossed process using the calculated cross-section of
the original process and performing the mentioned transformation. The amplitude for

eet — u~ ') is thus (see p. ??7?):

~ |2 884 ' ' ' ' 170
‘@IZ‘ = ? [(—pp )—kk")+ (k' p)(kp') + mezp k +mflpk + 2m§mi]
In the ultrarelativistic limit and in the CMS, by using the four-vectors

E E E E
k: _aA' ’ k': _9A ’ — _9_Aj ’ '= _9_A
(2 D) (2 D) P (2 D) D (2 Py)

(the same as for the original process), and 2 2 2
q- =(k'-k)" > (p+k) =

after
crossing

we get

do « ?(hc)’
dQ AR’

(1+cos” 6)




Integration of the differential cross-section yields

4ra’ (he)’
O = 2
3E
For example at E=10 GeV the total cross-section is
2
o~ O2GEV M) g 1055 12 2 0.9 nb

" (137)-3-100 Gel?

where barn (b) is an appropriate unit for measuring the cross-sections (1 b = 1022 m?).



2.7.3ee —>ee,ee"—>ee’

In the ultrarelativistic limit there is no difference between the e and /s (the only difference
between the two particles is their mass which is neglected in the ultrarelativistic limit). Hence
one expects in this limit the cross-section for the process e'e” — e'e” to be the same as the one
fortheey —> e

However, in the former process one deals with two indistiguishable particles in the final state.
Hence we can not distinguish between the two Feynman diagrams shown below:

e(k’)
e(k) %/ e (k) e (k')
e(p) ") ) 7@q)

e(p)

% e'(p’)

2 28

In words, one doesn‘t know whether the final state electron with the four-momentum k‘ arises
from the vertex with the initial state electron of four-momentum k or p. Due to this one has to
make the amplitude symmetric with respect to the interchange k‘ <> p’. Mathematically this
corresponds to




M, o \f(k')y"u(k)}ﬁ(p')m(p)]
o, oc [ (p' )y ulk) [ (k"y, u(p)]

M =L, + 9L,
We don‘t need to repeat the whole calculation but rather symmetrize the result for the
e Ll —> e’ Ll cross-section:
~ |2 884 () ' ' 2 27 22
X[, =+ @ ) -l p' p ik 2l
e U
q,, =(k=k)
~ |2 864 (N ' ' 2 27 4
= (& pYkp) + (k' p)(hp"y~m? p' p—m2k ke +2m!
864 (N ' ' 270 2 4
|k k) + (0 YK = 2k p =2 p e+ 2m ]
q,, =(k'-k)+(p'=k)



Having at hands the amplitude for the e'e" — ee” it is now straightforward to apply the crossing
method to obtain the amplitude for the e'e* — ee*:

ee —ee ee”— ee’
incoming outgoing
e, k e, k’ Pa P Pc Pd

/ k p k/ p/

e, p e, p’

The necessary transformation is p <> p‘, and hence

4
o =2 [k p) k) + (K p ) hkp)—m ' p—mK'ke + 2
e e qe_e+
884 ' ' ' ' 270 .0 2 4
[k p)kp) + (0" p) KK — m2K' p'—m ph +2m” ]

q..=(k'-k)y+(p-k)

e e



Upon the inspection of the amplitude for the e’e* — e'e* we realize there are still two terms in
the xpression corresponding to and O). from the e.ee— ee . In the latter process two
amplitudes were assigned to two indistiguisﬁable Feynman diagrams (see p. ??7?). Indeed also for

the e.e* - e'e* we have two possible indistinguishable diagrams:

- \ e-
/4 /
e+
+ /VWNA
Diagram on the left is sometimes called the scattering process and the one on the right the
annihilation process.




The quantum electro-dynamics (QED) processes discussed above are among the experimentally
most accurately measured processes, confirming the calculations in the framework of QED to
high precission. These calculations involve not only the leading order calculations as shown here
but also higher order processes (i.e. processes involving more vertices).

Experimentally, the processes are accurately measured using the electron — positron colliders.

SuperBelle

Figure on the left shows an example of

the e*e” collider (Super KEK-B) built in
Tsukuba, Japan, to study the collissions at the
CMS energies around 10 GeV.

Electrons and positrons are accelerated

using the standing electromagnetic waves
produced in the radio-frequency cavities as
the one shown on the figure below.

New IR

Crab cavities

New beam pipe
& bellows

More RF sources . . .
e ———

1
9’

More RF cavities

. _?
Energy exchange W
C-band W da -

— o

Positron source
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In order to make the trajectory of the accelerated particles (approximately) circular bending
dipole magnets are used. Charged particles traveling through a magnetic field perpendicular to
their velocity experience the Lorentz force which keeps them in a circular orbit.

e

Apart from the dipole magnets other magnets are used in the
accelerators, for example quadrupole magnets used to focus the
beams of accelerated particles infront of the point where one
wants the interactions to take place. Consequently, the accelerator
is a complicated lattice of various magnets and accelerating cavities.

H=|Db||=‘=||ﬂ5||=|=||ﬂﬂ‘|l=|=‘|‘:w Part of the lattice for the KEK-B

accelerator. Each yellow box

H: JH]“DLHD‘N‘IDW#IIEHEI}M represents a specific magnet

used.

Long bending magnets (in blue)
used at the KEK-B accelerator.
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Particle accelerators are expensive infrastructure. Consequently there are only few infrustructure
centers around the world at which particle physicist from all over the world perfrom various
measurements. Some of the past and existing e*e” accelerators are shown in the map below:

Hamburg Novosibirsk
11 GeV 12 GeV

47 GeV l
Geneva l

\ 200 GeV
/ Ithaca \ Tokyo

Stanford 12 GeV

8 Gev 12 Gev
30 GeV
100 GeV Beijing

12 GeV 4 GeV

A very rough estimate for the costs of an e*e  accelerator can be obtained using the formula
cost~a R+ b E*/R . The first term scales with the length of the accelerator (proportional to
radius R) and roughly accounts for the price of the civil engineering work needed, number of
magnets, etc. The second term accounts for the synchrotron radiation causing the accelerated
(light) particles to loose their energy and hence takes into account the price of accelerating
units, cooling equipment, etc. The parameters a and b can be estimated to approximately
a~1,2-10°S/mand b ~1,3-103 Sm/GeV* from approximate costs of the SPEAR (Stanford, USA,
E=8 GeV, R=40 m, cost ~ 5-10° USS;) and LEP (CERN, Geneva, E=200 GeV, R=4,3 km, cost ~ 10°
USS) accelerators.



The figure below on the left shows some of the earlier measurements of the total e e* - u~ i
cross-section at various CMS energies. The solid line is the leading order prediction as calculated

onp. ?7?7.
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Figure on the right illustrates experimental tests of hihger order corrections to the e'e* — ee*

differential cross-section at E=29 GeV. The leading order calculation is shown by the solid red line.
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The measurements are accurate enough to exhibit the need for the corrections.
B. Golob
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The differential cross-section for e'e* — 1~ 1 is an even function of cos @ (see p. ???). An
example of measurements is shown below. The measurement cleraly exhibits an asymmetry in
the angular distribution. This is a consequence of the weak interaction (which contributes to the
process beside the pure electromagnetic interaction). The QED prediction is shown by the line
denoted do/d€Q2| o, and the prediction taking into account also the weak interaction by the

dasehd line (do/dQ| qepweak)-

12,0Tl:llllllJlllTrll!""'l_
i PETRA_
do/d 2 EheraLty
"90
B
6]
o
c
IOI(:
Tl
wn
* JADE do
30 - & MARK-J — -
L 4 PLUTO dQ OED+WEAK |
® TASSO
D AL 1 1 L J L L 1 1 l 1 1 L L l L 1 1 -
-10 -05 0 cos® 05

10
Ccos ¢
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2.7.4ee* > qq

In the electron positron annihilation also pairs of quarks can be produced. The Feynman diagram
is similar to the one for the production of the muon pair:

/

A >\

_i9N = [_ eeu(k')y’(u(k)(— gq’jj[— el (p')yvu(p)]

KV

IO = [— eeu(k')y/Ku(k)L— ngl[— €q1/_l(p')7/vu(l7)]

Y

Since quarks are fermions, like muons, the amplitude for the process e’e* — qq follows from the
amplitude for the e'’e* — 11 process. The only difference is that in the latter one encounters the
charge of the muon, which in the former should obviously be replaced by the corresponding
charge of the quark. The cross-section o(ee* — wfur ) oc | 9| %ec eeze#2 and hence

oleet - qq) « eezeqz. The only other difference between the two cross sections arises from the
guntum number assigned to quarks but not to muons, the color. Since quarks arise in three
possible colors (see p. ??) the cross section must be multiplied by 3.



Hence the ratio of the two cross sections is

oee g e
ole'e »>u'p) ele, !

where Q, denotes the charge of the quark in units of the elementary charge e,,.
As discussed on p. ??? produced quarks immediately , dress” with other quarks in the process of
so called hadronization, for example

fs\/%
q49 (qlq}

q5 M,

In the above illustration g and g denote the original quark pair, while g, are (anti)quarks
produced from vaccuum. Quarks form hadrons, mesons (M,) or baryons (B;). The final result of
the process are two jets of hadrons that can be detected in a particle detector, as shown in the

next figure.



Computer reconstruction of an e'e* — qq
annihilation detected by the Opal detector at
the Large Electron Positron collider (operating
at Cern in the period 1989 - 2000; in the
same tunnell nowadays the Large Hadron
Collider is located) resulting in two
back-to-back jets of hadrons. Blue lines
represent detected charged hadrons in the
detector.

The production of quarks always results in various hadrons in the final state. Summing over all
possible quark flavors one obtains the total cross section for the production of hadrons in
electron positron annihilations:

o(e'e — hadrons) = Za(e+e_ —qq)

qg=u,d,s,c...



Of course the centre-of-mass energy of the collission must be high enough for the production of a
pair of specific quark flavor (more precisely it must be high enough for the production of at least
two lightest hadrons composed of these two quarks). Over which quark flavors the sum runs over
thus depends on the collission energy.

Ratio of the cross section for the hadron and the muon pair production R is

o(e'e” — hadrons) 3 5

+ - + .- o Z Qq

0(8 e — lu lu ) qg=u,d,s,c...
At the energies sufficient to produce pions only (composed of u and d quarks) the ratio is

R=3((2/3)* +(1/3)*)=5/3

Once the energy becomes high enough for producing s quark pairs, the ratio becomes

R=3((2/3) +(1/3)* +(1/3)*)=6/3

and at even higher energies

R =

R=31(2/3)+(1/3)+(1/3)*+(2/3)* +(1/3)* |=11/3
\ ~ RO




An example of measured ratio is shown in the figure below. Note that no e*e” accelerator has so
far achieved energies to produce t quark pairs.

7 B 1 ] ] ] ] 1 1 | 1 ]

J /i h(28) T(15,28,35) ]
6 :_ F 3 A A AK _:
5F } -

3 4 5 6 7 8 910 20 30 40
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2.8 Weak interaction
2.8.1 Introduction

An obvious hint that beside the strong and the electromagnetic there must exist yet another
interaction are lifetimes of charged and neutral pions:

f7n)=2.610%s

7°) =8.410"V s

Why the two mesons, both composed of u and d quarks, have lifetimes differing by 9 orders of
magnitude?

Pions are the lightest hadrons and hence can not deacy through the strong interaction into lighter
hadrons. The neutral pion can, however, decay through an electromagnetic process, 7°—yy. On
the other hand electromagnetic decays with photons in the final state are not possible for the
charged pion. The decay 7— 1 ~y, for example, is forbidden by the lepton number conservation.
By far the most abundant decay mode of charged pions is 7"—x~v,, proceeding through a
(charged) weak interaction. The Feynman diagram of the decay is

The charged weak interaction propagated by charged
w- //u_v weak bosons W* is the only one that changes the flavor

%A
/' """"""" of quarks (or in other words couples the quarks of
d X different flavors as seen in the pion vertex in the figure).



As mentioned already on p. ??? the weak interaction causes f decays of nuclei, for example
10C — 19B e* v,. In this particular case a proton inside the initial nuclei decays into a neutron,

positron and a neutrino. In 1932 Fermi wrote the matrix element for such a process in analogy
with the electromagnetic interaction:

p\‘ V
/4 -9 = ¢’ [L_tpyxup _g—’j [ﬁe_;/vue_]
q
e \

? = ? -i%:f u,y u,| - 7 L_le_j/vue_]



Because he didn‘t know what kind of particle propagates the interaction he skipped the 1/g? term
and changed the coupling constant (e? or & for the EM interaction). The constant G, is nowadays
known as the Fermi constant. Surprisingly enough the proposed description was successful in
description of fdecays. And indeed it only needs slight modification to account for some of the
properties of weak interaction, most importantly the parity violation.

2.8.2 Parity violation

In 1950°s the so called 6—7 puzzle was one of important unanswered questions of particle physics.
It consisted of two different decays of what was at that time believed to be two different
particles, @* and 7* (note that 7+ has nothing to do with the contemporary rlepton):

Ot >r*nl vt — wtx*x0. Considering the properties under the parity operator P (reflection of
spatial coordinates, see p. ??7?) pions (composed of a quark and an anti-quark) have a negative
parity value. The parity is a multiplicative quantum number and hence the two pion final state
has a P value of +1, while the three pion final state has a P value of -1. What was puzzling was
increasing experimental evidence that the two particles, 8*and 77, are the same (in terms of
their mass and other properties). An obvious question was how could the same particle decay
into final states with different parity? The electromagentic and strong interaction, experimentally
already well known, conserved the parity, i.e. the parity of inital and final states were equal in all
known processes proceeding through these two interactions.

In 1956 Tsung Duo Lee and Chen-Ning Yang examined the available experimental data and
suggested that they can be interpreted by the weak interaction causing the above and similar



decays to violate parity (i.e. the parity value of the initial and final states in the processes
proceeding through the weak interaction are not necessary the same). They proposed an
experiment carried out by Chien SHiung Wu, called the Cobalt-60 experiment.

—

“Co “ Ni
J=5 J=4

Nuclei of ®°Co were put into
external magnetic field B at low
temperature. ®°Co nucleus has
a spin J=5 (spins are denoted by

in the figure). At low
tempreature almost all nuclei
oriented with spin parallel to the
external mag. field. The Cobalt
nucleus undergoes a - decay into
¢0Ni nucleus with J=4. Knowing
that the spin of electron and
neutrino is %2 and the fact that
fermions according to the Dirac
equation have positive or negative
helicity (projection of the spin to
momentum direction, see p. ???)

one is left with two extreme configurations of electron and neutrino spins and momenta as
sketched in the figure. The result of the experiment, in which electrons were detected, showed
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the large majority of electrons were flying in the direction oposite to the magnetic field and no
electrons were found to fly in the direction of the magnetic field. This proved that the parity is
indeed violated in fdecays — a tipycal process proceeding through the weak interaction.

Why is this violation of the P symmetry? We are facing the configuration shown on the left:

60 CO 60C0

J =95 J=5
Electrons fly in the direction oposite to the external magnetic field, i.e. in the direction oposite to
the Co nucleus spin. Under the parity transformation the electron momentum revrses its sign. On
the other hand the nucleus spin, being an axial vector, does not change sign. Hence the P
transformed configuration is represented by electrons flying in the direction of the nucleus spin.
This is experimentally not observed. This is an obvious asymmetry between the two
configurations related by the parity operation. Hence the interaction responsible for such a
system does not obey symmetry under the parity transformation.
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Piece of paper with what is supposingly one of
discussions between T.D. Lee and C.N. Yang about the
parity violation. They shared the Nobel prize in
physics in 1957 for the discovery of parity violation.
T.D. Lee was at the age of 30 the third youngest Nobel
prize laureate (after W.L. Bragg, 25 in 1915, and

W. Heisenberg, 30 in 1932).
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One can also have a slightly different look at the parity violation: in the Cobalt-60 experiment
only positive helicity anti-neutrinos (v;) were observed (see illustration on p. ??7?).

Vi }A) vy
= , > =

Under parity transformation the aniti-neutrino with positive helicity transforms into an anti-
neutrino with negative helicity (v,, because momentum changes sign and spin does not).
However, the latter was not observed nor in the Cobalt-60 or any other experiment so far.
Similar is true for neutrinos: while neutrinos with negative helicity exist, neutrinos with positive
helicity are not observed.

Vi P Vi
—EE= | > &&=

This implies that the weak interaction violates another symmetry: the symmetry under the
charge conjugation C (which transfroms particles into anti-particles and vice versa). Namely, if
one starts with a positive helicity anti-neutrino and performs the C transformation
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the result is a non-existing positive helicity neutrino. Analogously, starting with a negative
helicity neutrino one arrives to a non-existing negative helicity anti-neutrino™.

lay

Ve C Vi
—E&== | > —E&=

The weak interaction thus violates both, the P as well as the C parity simmetry.
In 1957 Lev Landau proposed that the true symmetry which is preserved (also) by the weak
interaction is the symmetry under a combined CP transformation:

* Actually, the terminology here is not copmpletely correct. What one observes is that in the
charged weak interaction only negative helicity neutrinos and positive helicity anti-neutrinos are
involved. Since the neutrinos interact only through the weak interaction one can do a slightly
sloppy generalization about the existence of the two mentioned states and non-existence of the
other two.

6/1/2014 B. Golob 37



<
=
~»>
<
I~
@
<
t~

== >*—| >*_H

The idea remained valid until 1964 when it was experimentally verified that also the combined
CP symmetry is violated in charged weak inetraction (see p. ??7?).

2.8.3 Theory of weak interaction

E. Fermi in 1930‘ didn‘t know about the parity violation when writing down the amplitude for a
process proceeding through the weak interaction (p. ??7?). It turns out that the correction

needed in writing down the amplitude in order to account for this property of the weak
interaction is reralively small:
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G - K‘V - ) S
: i ==L,y (1=, | -E a7 1=y, |
J2 g
All what is needed is an inclusion of the factor (1-y°) as written above, where 7~ is a product of

all four ¥ matrices:
e B
1 O

=T =y 0

2,3

—{|l

#=0,1,
What does the inclusion of this factor mean?

y>is called the handedness operator. Factor (1-y°) projects the so called left- and righ-handed
component of a bispinor:

1
ML=50—75% uR=50+75% U=u, +u,

1 1 1 _
y%ufwﬁgﬂiyﬂu=50§i@ﬂ3u=—50i75u=ﬂaﬂ
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What is important is the helicity of the left- and righ-handed components in the ultrarelativistic

limit: i i o |
op
u, =—1-yu=...=—| y—
=5 0=77) 2[1 E+mz} {_J
~ l[ _ &b ] I
LE;mzl PX 1

Similarly one obtains ﬁme X Up
E>>m
In other words, the handedness (eigenvalue of the y* operator) coincides with the helicity
(eigenvalue of the & p operator) in the ultrarelativistic limit.
One should also note that

1

}5(1 vy =u

L1
72

o+ 0
Uy =Up )y =U

=u %(ler )

=y =u}7°%(1+75)=



and hence

— L H = U — 7
Uy U, =Up Yy U TU YU R
because

Uy 7 Ui =y ;(H? b %(Hf)% = iﬁf(lws)(l—f)y”ui =

(and similarly @, "u;; =0).
The effect of the (1-y°) factor in the amplitude is thus
N 5 N N
uﬂ/ﬂ (1_7/ )ui — uﬂ/# 2ui,L — 2uf,L7/uui,L

where u,; are bispinors of any final and initial state fermion involved in the process. The factor
(1-y°) projects out only left-handed component of the bispinors in the amplitude, and
(reminding that the handedness coincides with the helicity in the ultrarelativistic limit, which is
always fulfilled for neutrinos) only negative helicity neutrinos (and positive helicity anti-
neutrinos) take part in the weak interaction. By this the parity violation property of the weak
interaction is properly accounted for.



A full amplitude for the process proceeding through the charged weak interaction is thus

: gy — « 5 gKV Ew — v 5
- =| =2=u 1—v)u. || — u.v. (1-v u.

where instead of the Fermi constant we wrote out the ,true” weak interaction coupling constant
g, as well as the factor exposing the interaction carriers, weak charged bosons W*, with the
mass M. In the limit M,2>>q? we see that the g,, and M,, yields the Fermi constant,

G, =8
"oam}



In 1960°s A. Salam, S. Glashow and S. Weinberg published a series of articles in which they
derived the properties of charged weak interaction and the Lagrangian for the description of the
weak, electromagentic and strong interaction among elementary particles. In doing so they
exposed relations pointing to the fact that the electromagnetic and weak interaction are actually
just a low energy manifestations of a unified electroweak interaction. Furthermore they
predicted the existence ow neutral weak interaction. Their work is nowadays regarded as the
basis of the Standard Model of the weak, electromagnetic and strong interaction, one of the
experimentally best verified physics theories. For their work they shared the Nobel prize for
physics in 1979.

S. Glashow A. Salam S. Weinberg

6/1/2014 B. Golob 43



2.8.3 Muon decay

As a specific example of a process proceeding through the charged weak interaction let us
examine the decay of a muon, = —>e v, V,.- The Feynman diagram is

M4/(q)< v :  Wq)
V (k')

Ve(-k’)
where in parenthesis we denoted the four-momenta of particles. The diagram on the right is an
analogous diagram where the anti-particle (v,) is replaced by the particle (v,) with a reversed
sign of the four-momentum.

The observable related to a particle decay is its total decay width, /"= 1/7, where zis particle’s
lifetime (or, written in non-natural units, /"= 7c/ct). In calculating the decay width, the

expression for the cross section (p. ??7?) is slightly modified:

e(p’)

df—%dQ
- 2E



where the factor F appropriate for the scattering process is replaced by 2E, the density of initial
state particles (a single particle), and E is the enrgy of the initial state particle.
The phase space dQ for the specific decay is written as

3 3 370
do=—2P2 X __dK_(ony54(p— pk—Kk)
Q7)Y 2E 27) 20 27) 20

where @ and @' denote energies of the muon and electron neutrino, respectively. Considering
the fact that neutrinos are difficult to detect, in the muon decay one is primarily interested in
the electron energy spectrum (d//dE‘). Hence one can integrate dQ over d3k, taking into
account the following identity:

ﬂ = j d*kO(w)5(k*)

6(w) in the equation above is the Heaviside function (=1 if @>0 and =0 if w<0). Hence

40~ d’p' d’k
(272) 2E' 20

|d*k6(@)o(k*)5* (p— p'—k—k)

which is trivial because of the &?...) function:



1 d’p' d’K

dQ = O(E - E-a")S((p - p'—k')?)

2r) 2E 20
The matrix element is
on = % @ (y" (1-y)up) ey, (01— 7 k) |=

=%[ﬁ(k)yﬂa—ﬁ)a@)][ﬂp'm(l—75>v<k'>]

where in the last line we introduced a bispinor of anti-particle (i.e. of a fermion with a negative
energy), v(k’), for easier notation. Remembering that the negative energy solutions of the Dirac
equation are interpreted as anti-partilce solutions, i.e. we denote the solutions as

;. E>0
UG Z ,CD . B

u(l,Z)e—ipx

While the compact form of the Dirac equation for bispinors u is

(p—mu=0



the form for the bispinors v is

(p+mﬁ=0

The other formal difference between bispinors u and v is in the form of the completness relation

(see p. ??7): o) _s)
D u(pa(p)=p+m
s=1,2
2 V(P (p)=p-—m
s=1,2

The average matrix element for decays of unpolarized muons is
| =22 @y -y )| laphr, a -y )]
7" (1-y )] @)y, -y W) |

The leading factor % arises from two possible spin orientations of the initial muon (1/(25ﬂ+1)).
Inspecting the third [...] factor we see

@)y -y u(p)] =u (p)A-y*) ¥ (k)" =




=u" (p)A=7")y7 y ulk)=—u"(p)y" A+ ")y " u(k) =
=—u(p)y” (1= Yulk) =u(p)y’ (1-y )u(k)

Similarly for the other [...]* term one obtains

@ (p)y, (1— 7 W) | =5y, (1= 7 u(p')

The average square of the matrix element is thus

o =22 S faor 0=y ) faor a-yu)
S )y, (= Wik [F ey, 4= 1up))

spins

The sum over spin configurations leads in the same manner as in the case of the elctromagnetic
interaction using the completness relations (see p. ???) to traces of matrices:



R G S TR A

Trl (p+m,)y, (=) k-m, )y, (1-7)

— sign because of different
completness relation for v

For clarity masses of all particles were explicitly written in the above expression. In the
ultrarelativistic limit we neglect masses of neutrinos and of the electron. On the other hand,
mass of the muon can not be neglected (in the muon rest frame the total energy is just m ).
However, one of the most usefule trace theorems states that the trace of the product of an odd
number of y matrices always equal 0. By inspection one can see that all the terms with m,
appears in products of an odd number of ¥ matrices in the above expression (note that y>
should be counted not as one but as four ¥ matrices, because y>= y% y1 ¥2 ¥3). Hence also the
terms with m, yields 0:

) = 4F Irlky" (1= py” =y frrlp'7, -7y, -]



One of the trace theorems (or an explicit calculation of the traces) yields:

2
o[ =22 2560k (K

In the muon rest frame P = (Wlﬂ,o) and

(p=k')* =(p'+k) = p° + k2 +2p'k

2
me2 ~0 My 0

1
Pk~ 5(19—16')2

—_— 2 R
‘@K‘ = 32G§~ (p —k')z(pk') = 32G;(mﬂ _ a)',—k')zmﬂa)'z
2.2
=32Gm @' (m, —2')
Inserting the matrix element into the expression for d/ we obtain

1 d’p'd’k' ,
o\(p—=p'—k'
(2x) 2E' 20 ((p Pk )

dl’ =16G,m,0'(m, —2")



(we left out O(w)in the above expression since always @>0). The remaining differentials in d/”
can be written as

d’p'=47E" dE'
d’k = 270" dw'd(cos9)

where @ denotes the agle between the electron and electron neutrino 3-momenta.
The o function can be written as

S((p-p—k')?)=...= 8(m> —2m,E'2m,0'+2E' &' (1 - cos 9) ) =
1
=5(...4+2E'w'cos 9) = —— (... +cos 3)
2F' o'
enabling a trivial integration over cos@:
G2
dl’ = 2;3 m,0'(m, -20")dE'do'
with an additional requirement following from the ¢ function:
mfl —2m, E'-2m &'

CoS % = +1

2F' @'



which yields the integration boundaries for the final integration over @',

—1<cosé<1
2 " '
Ly 2mﬂE Zmﬂa)go
/ 2F' o ~_
m
@' (2E'-m )> (2E' m ) w>—-—+—F

2

Before continuing one has to clarify whether .
This corresponds to the decay (6=0)

(2E°-m ) > 0 or <O0.

If in the decay there would be only two particles
in the final state, the electron would have an energy @ ”,7/1 E
E'= mﬂ/z (in the ultrarelativistic limit). However, since @
three particles are produced, the electron energy is

E‘'< mﬂ/z . Hence

I'4

A
vy

/

w'<——
2
This corresponds to the decay (6=x)
Gk o ’

vy

E
@



Finally, we arrive at

G2 %
dF=27:3 m, J.a)'(mﬂ—2a)')da)
ar  G. 5. AE"
i 1 E T
Y7,

The energy spectrum of electrons from muon decay looks like

dl/dE’

'

One should note that the
above expression is only valid
toE’'= mﬂ/2, because the
electron in the decay can

not take larger energy.

mﬂ/z 3mﬂ/4 E



The total decay width is

G

=
1277
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. e, p " »
2.2 Homeworks Solutions e p / \ )

Homework 1: > ;
the simplest way may be to consider the invariant mass Z\/Lk ¥
of the initial electron;

p= (mcz,O) 4-momentumof initial e in its rest frame

p'z(\/m2_64+02p'2,6]3)
k = (ck,ck)

4-momenta of final e and yin laboratory frame

The magnitude of 4-vectors is invariant to Lorentz transformation. Hence the square
of p (written in one frame) must be the same as the square of p in the laboratory frame,
and this in turn must equal to the square of (p‘+k) (written in laboratory frame).

(mc”,0)° = (\/mzc4 +c2p? +k,cp+ck)’
szzc4 =m’c* +c’p 4k’ + 2k\/m2c4 +c’p” —p>—k*—c’pkcos6

this mass is called the ,invariant mass” of the initial particle since
it’s calculated from energies and momenta of final state particles in another frame

With some rearrange he above equation we arrive to

> 1

cost = which is clearly impossible.



Homework 2:
operator of infinitezimal rotation around the z-axis for an angle ¢is written as

~ 0 0
REWw(x,y,2)=y(x+ey,y—ex,z) = w,y,z2)+e(y——x (X, p,z)=
Taylor series ax ay

(-6l y(xp2)

where ¢ is the z-component angular momentum operator, {=rxp=—ihrxV .
Z

The above equation is jujst the first order in the Taylor expansion, the operator
of rotation for a finite angle can be written as

lé(g)w(x,y,z) =(1 —igzz +.. %i +..)w(x,y,z)= e_igzz/hl//(x,y,z)

h



Homework 3:
operator of infinitezimal rotation around the z-axis for an angle ¢is written as

The process conserves lepton and baryon number. It conserves charge and is also
energetically allowed since m ¢?=139.6 MeV, mucz =105.7 MeV and m, ~ 0.

The above charged pion decay is indeed almost the only pion decay, proceeding through
the weak interaction (99.99% of pions decay through this process, see p. ?7?).

Homework 4:
P —>ete conserves B, L, L, charge, allowed
p—>netv, conserves B, L, L, charge; since m,<m, itis only possible for p‘s bound
inside nuclei (£* decay)
K*n— X*7° conserves B, L, L, charge; it would be allowed, however, it turns out that
strange quarks carry an additional quantum number — strangeness (see
p. ??) which should also be conserved in processes proceeding through the
strong interaction; hence this process is forbidden
Kp— 2%97° conserves B, L, L, charge; since it also conserves the above mentioned
strangeness this process is also allowed.



Homework 5:

2" : Since all baryons have B=1 the hypercharge value determines the strangeness and

thus the s quark content. For 2" Y=0 = S=-1 = one s quark. There should be additional two
d quarks in order to match the electric charge, which is also in agreement with /;=-1.

E :Y=-1 = §=-2 = two s quarks, 1 d quark, in agreement with /;=-1/2.
A Y=1 = 5= 0= no s quarks, 3 d quark, in agreement with /,=-3/2.

Q):Y=-2 = 5=-3 = 3 s quarks, no d quark, in agreement with /;=0.

Homework 6:
Neutron wave function is similar to the proton one with the exception of the flavor
composition which is of course d, d, u.

1
wn:E[z‘deTu¢>—‘dTdiuT>—‘d¢dTuT>+...]

In the same manner as for the proton (see p. ??) one can determine

2 e,

Mo = 3 2m,




Homework 7:
The flavor parts of the wave function for the mesons are

1 M _ —
w)=—|uu)+ ‘ dd>]
)= b
1 (they are all vector mesons (J=1) and
,00> _ ﬂ dd> _ ‘ Ul >] hence the flavor part is symmetric;
\/5 furthermore o, ¢ are linear
¢> _ ‘S§> combinations of ¢, and ¢ , but the
mixing angle is such that ¢is entirely
J/l//> — ‘CE> ss and w entirely uu, dd; similar is true
for the J/w)
Feynman diagram of the process:
q e’ Each vertex in the diagram is proportional to the

- ) charge of the fermions (electromagnetic interaction,
9 Y € see p. ??). Hence the amplitude is proportional to

< e|€ € > , Where M is the corresponding
meson, and e, and e, are the operators of the quark and electron charges.

eqe



For the listed mesons we get

— N N + J—
<SS ‘eqee‘e e >o<: ——

—
-
Q>
<
Q>
s
Q
CbI
\/
||

AAAAA

<J/z//‘éqée‘e+e_> =(cc eqee‘ e'e > oc =
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Ratios of decay rates are

‘<a) e,e, e+e_> 2 : <p ee, e+e_> 2 : <¢ e.e, e+e_> 2 : <J/wéqée e+e_>
L:l:l:izl 9:2:8
2.9 299

to be compared to the experimentally determined ratios of 1:11.8:2.1:9.3. The
deviations point to defficiencies of the simplest quark model.

2



Homework 8:

00,4, = (a—z—v j Leu(p )j/ﬂu(p)equj
o’ q
- el )yﬂu@)[@——v ]

| 0’ it
=q—eu(p )y u(p) ——V =

=qLeU(p )nu(p)( qo +|d )e =q—eu(p V7, u(p)-q° e =

=—eu(p')y u(pe

igx

=j,
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Appendix A: Covariant form of Maxwell equations

Classical form of Maxwell equations is

VE=p, VB=0

_  _ OB _ _ JPE _
VxE+a— 0, VxB—a——j
ot ot
If we introduce the scalar and vector potentials 4° and A:
A" =(A°, A), E——Z—A—VAO, B=VxA4,
5

then two of the Maxwell eqgs. are automatically satisfied, since
VB=V(VxA4)=0
0B [ 0A4

—_

T 0

P _Jx ——VA°]+(§><Z1)=

ot ot ot

E+
g(VxA VxA) @x(@Ao)zo



Furthermore we can show that the other two eqgs. can be written as
0'0,4" —0" (@VAV): J“, with the current four-vector defined as  j* =(p, j).

To see this we write out the above covariant form of the equations:

e e M A P E )

ot ot

The time component of this equation is

2 40 2 40
(8/1 _vaoj_[aA +am]:p

ot ot* Ot
O - _
—V’A"—=VA4=p
ot
I B o . .
Inserting £ = _6— — VAO into equation VE = pwe obtain the same equation.
5
An analogous test can be performed for the space component proving that the covariant form
reproduces the equation - B of - (in the derivation one can use the relation

VB TS Uk d)=-v2 A+ (Vi)



On p. ??? we used the covariant form @VaVA/" — 8“(8VAV): j/" without the second term.

The reason is that observable fields E and B are invariant to gauge transfromations of the type
A > A"+ 0"y where y is any scalar function.

This can be proven by explicit calculation of E“and B*fields, with

A" =(4°", 4" =(A0+2—};,2—W}
B G4 B-Vxa
and showirfg that E‘=E and B’=B.

Beacuse of this invariance we can always choose y such that

0,4" —0,4" +0,0" =0



Appendix B: Classic Hamiltonian of a particle in electromagnetic field

Force acting on a point charge g in electric field E and magnetic field B is
= q(E +VxB)
One can see that tthe Lagrangian leading to this force is

1 —
L:Emvz—qA0+q\7A’ y

where Ao and A are the scalar and vector potential

introduced on p. ???. We can prove this using the Euler-Lagrange equation

d{@L}_@L:O O g, Lo g g
dtl av. | o Oxl. Ox, Ox, Ox,
- o4, 04,
[mv +qA]+qal qv; ox =0
ma.+qui+qu —qv, o4, =0
C ot OX, 7 ox,
04, 04 04,

J

F=—q—- Ltgv, —L
T e T e
F:—qz—f—qVA +qvx(Vx A)




The last term in the above equation follows from
Vx(VxA)=V(vd)- A(V¥) =vVA
=0
Taking into account

E=——-VA, B=VxA oneindeed arrivesat F = q(E+\7><B)
ot
Hamiltonian is
H = Zpi ¢, — L(x;,x;)
, oL
with  p,=—= p. =mv, +qA,
OX,
1 _
H = Z(ml.vl. +qA)v, —Emv2 +qA, —qvA =
1
=—mv’ + g4,
2 —_—

potential energy

= —qA
ﬁ:mv+qA:>v:p 7 S H=
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