
Nuclear and Particle Physics 
 
Introduction 

What the elementary particles are: a bit of history 

The idea about the elementary particles has changed in the course of history,  
in accordance with the human’s comprehension and later observation of nature. 

Ancient Greeks believed that the world is made of four  
basic elements: air, fire, water and earth. 

Demokritos, 4th century B.C.: the world is composed  
of the smallest indivisable parts – atoms.   

12/03/2014 1 B. Golob 



A bit of history: 

D. Mendeljejev, 1869: periodic system of elements 
 
JJ. Thompson, 1897: discovery of electron 
                                     (e-) 

Ernest Rutherford, 1911: 
explains the structure of an atom with the atomic  
nucleus 

student 

Geiger, Marsden: they do the experimental work 

students 

E. Rutherford: “All science is either physics  
or stamp collecting.” 

In this laboratory J. Chadwich in 1932  
                        discovered neutrons (n) 

Ernest Rutherford, 1911: discovers that all  
nuclei consist of the Hydrogen nucleus, which 
is considered as the discovery of the proton  
(p) proton: greek word for “first”, πρῶτον. 
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M. Gell-Mann, G. Zweig in 1964 suggest that n  
and p are composed of quarks  
quark: J. Joyce, Finnegans Wake 
 
 
 
J.I. Friedman, H.W. Kendall in R. Taylor  
“repeat” the Rutherford experiment (see  
p. 23) in 1967-73 
 
 
 
They experimentally confirm the existence of quarks  
and live to get the Nobel prize in 1990.  

Gell-Mann receives the Nobel prize  
in physics in 1969, for the classification  
of the elementary particles; Zweig  
does not get the Nobel prize 
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A bit of history: 



Composition of the world as seen today: 
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size in m size in 10-18 m 

atom 

nucleus 

proton 

quark electron 



Part 1, Nuclear Physics 
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1.1 Basic properties of nuclei 
 
1.1.1 Mass 
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Semi-empirical mass formula (Weizsäcker formula):  
 
“empirical”: written with the intention of describing the experimental data 
“semi”:         there are phenomenological reasons for inclusion of individual terms in the  
                      equation 
 
mass of a nuclei with Z protons and (A-Z)=N neutrons (p, n = nucleons): 
 
 
W: binding energy of nucleons in the nuclei, W < 0; 
      negative binding energy is a consequence of the strong nuclear force binding  
      the nucleons inside the nuclei; alternatively, the binding energy is a consequence of  
      a attractive potential among the nucleons 
 
1) the average binding energy per nucleon is approximately constant:  
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Semi-empirical mass formula (Weizsäcker formula):  
 
2) deviations from the average value are seen at low A; this is a consequence of the fact that  
    for low A there are relatively more nucleons at the “surface” of the nuclei and are hence  
    less bound (because of a lower number of neighbouring nucleons); the effect is  
    a positive term in the binding energy, proportional to the surface, i.e. a term  
    proportional to r2 

  
3) deviations are seen also at high Z values; this is a consequence of the Coulomb repulsion  
     among positively charged protons; the effect is a positive term in the binding energy,  
     proportional to the electrostatic potential energy of Z protons, i.e. proportional to  
     Z2/r 
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Semi-empirical mass formula (Weizsäcker formula):  
 
4) it is energetically favourable for nuclei to have the same number of n and p; if we consider  
    energy levels of nucleons in the nuclei (similarly at the energy levels of electrons in the  
    atom):  
 
                                                                                 p and n are fermions (spin 1/2 particles);  
                                                                                 in accordance with the Pauli exclusion  
                                                                                principle each energy level is occupied with 
                                                                                two identical fermions differing in the 3rd  
                                                                                component of the spin 
 
         if in the above picture one n is replaced by a p, it must occupy a higher energy level  
         which means it is less bound; the effect is a positive term per nucleon in the binding  
         energy proportional to (Z/A - 1/2)2 (a quadratic effect since it is less favourable for a  
         nuclei to have a larger number of p or n); for the total binding energy this is  
         A (Z/A - 1/2)2  (2Z - A)2/A 
 
5) it is experimentally observed that nuclei with an even number of p and n  
    (even-even nuclei) are stronger bound than the nuclei with an odd number of either p or n 
    and even stronger bound than the nuclei with an odd number of both p and n;  
    this is a consequence of the Pauli exclusion principle, similarly as mentioned under 4);  

n                          p 
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Semi-empirical mass formula (Weizsäcker formula):  
 
the effect is a term in the binding energy proportional to 
 
 
 
 
 
There are terms in the binding energy depending on the “radius” of a nuclei;  
experimentally (as described on p. 24) we can see that the “radius” of nuclei is  
given approximately by r=r0 A1/3, with r0 1.2 fm.  
  
Summing all the mentioned terms the binding energy is  
 
 
 
 
Constants w0-4 are determined to describe data, typical values found are  
 w0=15.6 MeV, w1=17.2 MeV, w2=0.7 MeV, w3=23.2 MeV, w4=12 MeV 
 
Such a formula describes well experimentally observed values:  
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Semi-empirical mass formula (Weizsäcker formula):  
 
 
 

 experiment 
    formula 

A 
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Homework 1: calculate masses for some  
of the nuclei in the chart 
 
Homework 2: estimate which nucleus of  
a given mass number is the most stable;  
compare to the chart below 

stable 
nuclei 

N=Z 

Z 

N 



1.1 Basic properties of nuclei 
 
1.1.2 Charge distribution 
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EM scattering  

 
Let’s consider an experiment where a charged projectile  
is scattered off the nuclei due to the Coulomb force (electromagnetic  
potential; an experiment similar to the one which Rutherford did to discover the atomic  
nuclei) 
 
 
 
 
 
 
 
 
 
 
we write the quantum mechanical (but classical - as opposed to relativistic) expression for  
probability of scattering the projectile through a scattering angle q 

(interval of solid angle dW = 2 sinq dq) 
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EM scattering  
 
Fermi golden rule: 
 
 
Wfi: probability for a system (in our case projectile) transition from an initial state i to a  
final state f per interval of time (units s-1) 
Vfi: matrix element for the i→ f transition 
rf(Ei): density of final states at the energy of the initial state Ei 

 
initial state i: projectile with the velocity , described by the wave function yi(r) 
final state f: projectile with the velocity , described by the wave function yf(r) 
wave function: |y|2 is the probability density, integrated over a volume gives  
probability of finding the state in this volume;  
 
 
 
the simples approximation is to describe the projectile (far away from the scattering  
centre) as a plane wave: 
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EM scattering  
 
 
Vn is the normalization volume, the wave function is normalized as 1 particle per Vn;  
Vn is arbitrary and has to cancel in any final expression describing any observable 
k is the wave vector:  
l: de Broglie wavelength  
 
 
number of final states in a volume element of space and momentum: 
 
 
 
rf: density of final states 
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EM scattering  
 
 
Vfi : matrix element; expectation value of the potential causing the i→ f transition 
 
 
 
 
 
From the Fermi golden rule we construct a new observable, more directly related to the  
measurement - the differential cross-section: 
 
it represents the probability for the  
transition per unit of time and interval  
of the solid angle W, normalized to the incoming  
flux of projectiles rivi; since we introduced the normalization volume Vn, the  
density of incoming particles is just 1/Vn 

 

units for ds/dW:  
 
  
  

12/03/2014 16 B. Golob 

 rdrrVrV iffi

3)()()(*


yy

ii

fi

v

ddW

d

d

r

s W


W

/

2

3 //1

/1
m

smm

s




EM scattering  
 

the differential cross-section can be measured in the following way: 
 
 
 
 
 
 
 
  
 
 
 
 
number of scattered projectiles in the interval of the solid angle dW: 
 
                                                                                   by measuring the number of scattered  
                                                                                   projectiles into the solid angle interval  
                                                                                   dW and knowing the properties of the  
                                                                                   target rt, Z, M (mass of nucleus), l,  
                                                                                   one can determine ds/dW 
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EM scattering  
 

to calculate the matrix element  
 
 
we first insert the plane wave approximation for the wave functions: 
 
 
with q=ki-kf 

 
Then we make use of the Green’s formula: 
 
 
 
where we take  
 
The potential energy of the projectile and the nucleus is  
 
 
and the potential U(r) is related to the electric charge distribution in the nucleon by  
                                                         r(r) is normalized so that  
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EM scattering  
 

far away from the nucleus we can assume 
 
and hence the right hand side of the Green’s formula equals 0.    
The left hand side, taking into account  
 
 
yields  
 
 
 
 
 
The matrix element Vfi is thus related to the charge distribution in the nucleus, more  
precisely to its Fourier transform, which we denote by F(q) and call the form factor.  
Now we insert all the ingredients to the expression for the differential cross-section: 
 

12/03/2014 19 B. Golob 

0)(),(  
r

rVrV


rqirqi eqe
r

erV


22

0

2 ,
)(

)( 


r

)()(

0)()(

2

0

3

2

0

323

0

qF
qV

e
rdre

qV

e
V

rdrVeqrdre
e

n

rqi

n

fi

rqirqi






r



r








 

3

2
2

2

2

0 )2(
)(

2/





 



r

s f

i

n

nii

fi mp

v

V
qF

qV

e

v

ddW

d

d










W


W



EM scattering  
 

after rearrangement we can write a more compact form 
 
 
 
 
 
in case of elastic scattering (Ei=Ef), q

2 equals  
 
 
 
 
 
 
and so  
 
 

12/03/2014 20 B. Golob 

3

2

2

2

0 )2(

1
)(

2





 

s
qF

q

me

d

d










W

2
sin4;

cos2)(

2

2

2
2

2

2
22

2222







p
q

p
kk

kkkkkkq

fi

fififi





2

4

2

2

0

)(

2
sin

1

8
qF

p

me

d

d 


s










W



EM scattering  
 

in case of a point-like nucleon, an assumption valid if 
where R is the size of the nucleus,  
charge distribution is just 
 
and the form factor is   
 
 
 
 
the differential cross-section is   
 
 
 
 
and describes what is called the Rutherford scattering (most of projectiles at  
small scattering angles, some also at large).  
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EM scattering  
 

We can use a Taylor expansion in the form-factor expression: 
 
 
 
 
 
 
 
 
 
 
 
By measuring ds/dW  we can determine the average square radius of the charge distribution  
within the nucleus. This is how one can experimentally verify the previously given  
relation r = r0 A1/3 (p. 12). 
 
One can of course do more, and try to determine the shape of r(r) more precisely.  
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EM scattering  
 

for an assumed r(r) in the form of a step function 
 
 
 
 
                                                 the calculated |F(q)|2 is: 
 
 
 
 
 
The measurement of 450 MeV e- scattering on  58

28Ni nuclei gives      
                                                                         one can try various r(r) ansatzs and the one which  
                                                                         fits the measured data best is  
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r(r) 

 4     r [fm] 

|F(q)|2 

q [MeV/c] 

q  

q [MeV/c] 

|F(q)|2 

 r [fm] 

r(r) 

homework 3: calculate this |F(q)|2 

r calculated  
from  
r = r0 A1/3 
for A=58 



1.1 Basic properties of nuclei 
 
1.1.3 Spin 
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Principle of Schrödinger equation solving – shell model of nuclei 
 
1) assume an average potential felt by nucleons 
2) solve the Schrödinger equation  
3) nucleons fill the calculated energy levels in accordance with the Pauli exclusion  
      principle 
4) check the magic numbers (Z and N of nuclei exhibiting larger than the  
       average binding energy 
5) in case of discrepancy with the experimental data correct the potential  →1) 
 
Some possible potential shapes:  
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Principle of Schrödinger equation solving 
 
Schrödinger equation 
 
: reduced mass of a  
nucleon and the rest of  
the nucleus,  = mnmN/(mn+mN)  mn 

solutions of the equation are E’s - single nucleon energy levels 
solutions are typically searched for by the ansatz 
 
with Ylm denoting the spherical harmonics 
 
 
                                                                                   with      denoting the operator of the square  
                                                                                   of the angular momentum 
 
                                                                                     The angular momentum term acts  
                                                                                                    as an additional potential 
The Schrödinger equation simplifies to                Homework 4: verify that with 
                                                                                     eq.                     reduces to this form!  
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Principle of Schrödinger equation solving 
 
solutions for the potential well: solutions for E and y depend on the main quantum number  
                                                         n (due to the boundary conditions) and orbital angular  
                                                         momentum quantum number l 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
individual solutions are marked by nl, with l=0 marked as s, l=1 as p, l=2 as d, .... 
for higher l the nucleons are “pushed” to higher radii 
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Principle of Schrödinger equation solving 
 
solutions for the harmonic oscillator (- V0 +(1/2)mN2r2): En,l  =(2n+ l -1/2)h  

 
for the harmonic oscillator the first three magic numbers (see p. 33, left column) are in  
accordance with the measurements (2,8,20; separately for n and p), the higher are not.  
 
Using a finite potential changes the energy levels to some extent although the situation  
with the magic numbers remains the same (the magic numbers are those,  
where there are larger energy gaps between groups of energy levels; see p. 33, middle  
column).  
 
To better explain the energy levels and hence the magic numbers of nuclei one needs  
to consider the spin-orbit interaction. This is an additional term in the potential arising  
from the interaction between the total spin of two nucleons and their relative orbital  
angular momentum. It takes the form           
 

where l denotes the orbital angular momentum and s the spin.   
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Principle of Schrödinger equation solving 
 
Inclusion of the spin-orbit term in the potential changes the quantum numbers by which 
the individual solutions can be labelled; instead of good quantum numbers n, l, lz, s and sz  
(good quantum numbers determine the expectation values of the corresponding operators,  
in the above case of the operators of energy, magnitude and 3rd component of the  
orbital angular momentum,              , and the magnitude and the 3rd component of the spin,  
            ; these operators commute with the Hamiltonian operator, and hence the  
expectations values of those operators are conserved) one has good quantum numbers  
n, j, jz, l, and s (due to the fact that the Hamiltonian now includes the             term, it does not  
commute any more with the operators               ; it does, however commute, with the  
magnitude of the total angular momentum magnitude and its 3rd component               ).  
 
In order to understand the solutions of the Schrödinger eq. with the inclusion of  
the spin-orbit term in the potential, first one needs the relation between the total  
angular momentum       and              : 
 
 
note:               : operators 
                        : quantum numbers 
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Principle of Schrödinger equation solving 
 
the last line in the equation was derived using the fact that  
 
 
 
if one deals with fermions (like nucleons), s=1/2, and hence the total angular momentum  
of a nucleon can be only j = l ± ½:  
 
 
 
 
Every energy level with a given l is now splits into two levels, one with j=l+1/2 and one with  
j=l-1/2 (apart from the level with l=0).  
 
With this inclusion of the spin-orbit interaction the calculated magic numbers using the  
finite potential agree with the measured ones (see p. 33, right column).  
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numbers 

l =0    s 

l =1    p 

l =2   d 

l =3    f 

l =4   g 

: 
: 
 

notation: n l j 

sz=±1/2,  
2 nucleons 

lz= -1,0,+1,  

sz=±1/2,  
6 nucleons 

jz=±1/2,  
2 nucleons 

jz=-3/2,-1/2,+1/2,+3/2   
4 nucleons 

2(2 l +1)  

nucleons/level 

(2 j +1) 
nucleons/level 

notation: n l Schrödinger equation 
solutions for various  
potentials 

notation: 

s





 2
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Spin of nuclei within the shell model 

The total angular momentum of the nucleus (also called the nucleus spin) is a vector sum of  
the angular momenta of individual nucleons.  
 
Individual orbits (energy level determined by a given set of values n, l, j ) fully filled by  
nucleons have the total angular momentum equal to zero. This is easy to see since at such  
energy level all the sublevels (degenerated, i.e. all having the same energy) corresponding  
to the 3rd component jz=-j, -j+1, ....., j-1, j are equally populated and hence the vector sum  
of those nucleons is zero.   
 
Moreover, if the nucleus has a single nucleon more than needed to fully populate  
the lower energy orbits, spin of the nucleus is determined by the total angular momentum  
of this additional nucleon. Similar is true for nuclei which have one nucleon less than the  
number required to fully populate energy orbits.  
 
Example: let’s take the 17

8O nucleus (one of oxygen isotopes). It has 8 protons and 9 neutrons.  
Looking at the energy levels shown at the right column of the scheme on p. 33, we see that  
8 protons fully populate the  1s1/2, 1p3/2 and 1p1/2 levels. The same is true for 8 neutrons. The  
additional neutron populates the 1d5/2 level. Since the first three energy levels are fully  
populated, the nucleus spin is 5/2, as a consequence of the additional neutron on j=5/2 level.  
Homework 5: check the energy level population for some other nuclei, e.g. 13C, 39K, 101Sn,  
and try to determine their spin.   
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Interesting facts related to the nuclear shell model 

Maria Goeppert-Mayer, Hans Jensen: Nobel prize in physics in 1963 for the  
nuclear shell model  
(shared with Eugene Wigner) 
 
Hans Jensen: participated in the development of centrifuges for Uranium separation in  
Germany during the WWII  
Eugene Wigner: one of the initiators of the Manhattan project in the U.S.  
 
Wikipedia: huge amount of information, e.g. on the Epsilon operation; a U.S. operation  
to seize the leading German physicists, including Werner Heisenberg , with the aim of  
gathering information on the German nuclear program. Heisenberg later cleared Jensen  
of accusations of cooperation with the Nazis.  
 
Nobel prize H. Jensen, 1963: 
"for his contributions to the theory of the atomic nucleus and the elementary particles,  
particularly through the discovery and application of fundamental symmetry principles“ 
 
Nobel prize M. Kobayashi, T. Maskawa, 2008: 
"for the discovery of the origin of the broken symmetry which predicts the existence of at  
least three families of quarks in nature" 
 



1.1 Basic properties of nuclei 
 
1.1.4 Dipole magnetic moment 
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Dipole magnetic moment 
 
classic dipole magnetic moment of  
circulating charge:  
 
 
 
                                                                                                      The correspondence principle  
                                                                                             in quantum mechanics tells us that the  
                                                                                            quantum mechanical description of an  
                                                                                            observable can be obtained by  
                                                                                            exchanging  classical quantities by  
corresponding operators; for the above case this means that  
 
 
 
 
B: Bohr’s magneton 
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Dipole magnetic moment 
 
What if the charged particle carries also spin beside the orbital angular momentum?  
According to the correspondence principle one would assume  
 
 
However, this is not the case. The reason for this is that spin (intrinsic  
angular momentum of a particle) does not have a classical equivalent, and hence  
the correspondence principle can not be applied.  
 
The evaluation of the dipole magnetic moment of a spin ½ particles (fermions)  
is actually a big success of the equation named after Paul Dirac – the Dirac equation.  
The equation (see p. ???) is a relativistic equivalent of the Schrödinger equation (which is  
non-relativistic) for description of fermions. It can be shown (see p. ???) that it predicts  
the dipole magnetic moment for such particles to be   
 
 
 
where gs is called the spin gyromagnetic ratio and gs=2 for fermions (and not 1 as would be  
implied by the correspondence principle).  
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Dipole magnetic moment 
 
A consequence of  is that for a charged fermion having a non-zero orbital angular momentum  
the dipole magnetic moment does not point in the direction of the total angular  
momentum: 
 
 
 
In the above equation we introduced gl, an equivalent of the gs for the orbital angular  
momentum, which equals 1 for charged and 0 for neutral particles.  
 
Nucleons (p and n) are fermions and hence one would expect : 
 
                                                                                   Surprisingly, the measured dipole magnetic  
                                                                                   moments of p and n give 
 
 
                                                                                     The unexpected dipole moments of p and n  
                                                                                     are due to their constituents; p and n are not  
                                 elementary fermions but particles composed of quarks and can not be  
                                 described by the Dirac equation.     
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Dipole magnetic moment 
 
Hence the spin dipole magnetic moment eigenvalues of nucleons are  
 
 
 
 
 
with                  called the nuclear magneton.  
 
As the dipole magnetic moment of a nucleus one usually quotes the 3rd component of  in  
the direction of an external magnetic field, at the maximal spin projection. In terms of an  
expression for the expectation value this means 
 
 
where we used the short-hand notation |JJz> for the nucleus state (wave function) of total  
angular momentum J and its 3rd component Jz. < JJz| represents the conjugate wave function.  
The above expression is hence a short-hand notation for the expectation value  
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Dipole magnetic moment 
 
Due to gl ≠ gs the dipole magnetic moment of a nucleus does not point in the same direction  
as the total angular momentum (spin) of the nucleus. One can nevertheless define an  
effective gyromagnetic ratio g so that  and J are parallel:  
 
 
 
 
 
 
 
If the nucleus has a single nucleon out of the otherwise fully populated orbits the nucleus spin  
is determined by the total angular momentum of this unpaired nucleon (see p. xx). We can  
write either 
 
or 
 
 
 
where j denotes the total angular momentum of the unpaired nucleon.  
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Dipole magnetic moment 
 
The effective gyromagnetic ratio g can be determined by evaluating the expression  
 
 
 
 
On one hand, using the definition of g, this equals to  
 
 
 
 
On the other hand, using gl and gs, this is  
 
 
 
 
To evaluate the later expression we need to determine  
 
                                        and 
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Dipole magnetic moment 
 
Using a shortened notation we can get the following expressions:  
 
 
 
 
 
 
 
 
 
 
The                we have evaluated already before (see p. xx). Using this we get  
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Dipole magnetic moment 
 
Finally, we arrive at 
 
 
 
 
 
 
 
 
Equating this expression and the one obtained using g (p. xx), we get to the effective  
gyromagnetic ratio 
 
 
 
 
with  
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Dipole magnetic moment 
 
For nucleus with a single unpaired nucleon j=l ± ½, and  
 
 
 
 
 
 
So for nuclei with odd Z (one unpaired p) the dipole magnetic moment is 
 
 
 
 
 
while for the nuclei with odd N (one unpaired n) the dipole magnetic moment is 
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Dipole magnetic moment 
 
The expressions for the dipole magnetic moment of nuclei as a function of the nuclear spin J  
are known as the Schmidt lines. The measured dipole magnetic moments for various nuclei  
lie between those lines (since not all of them have  only a single unpaired nucleon): 
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/N 

J 

lines: expected  for nuclei with   
J = l± ½ (Schmidt lines) 

/N 

J 

odd Z odd N 
/N =j+2,3 

/N = 
[j(j+3/2)-2,8 j]/(j+1) 

/N =-1,9 

/N =1,9 j/(j+1) 

Homework 7: determine  
the dipole mag. moment of  
13C and 39K. 



Interesting facts: 
in basic science it happens often that the discoveries made there find their way to various 
applications, although such an outcome can not be foreseen before the purely scientific  
research is carried out. Such applications are called “spin-off”.  
 
Example 1: www (World Wide Web) was developed at  
Cern due to communication needs of  
international scientific collaborations  
 
 
 
Example 2: knowing what the dipole  
magnetic moments of nuclei are, their  
measurements through the Nuclear Magnetic Resonance (NMR)  
technique represent a nowadays essential diagnostic technique in  
the medicine.  
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Tim Berners-Lee 

Robert Cailiau 

first server 

part of today’s computing  
center at Cern 

NMR diagnostic 
apparatus  
(B 1,5 T) 

NMR pictures of various tissues 



1.2 Nuclear decays 
 
1.2.1 a decays 
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a decays 
 
In a decays the initial nucleus reduces its energy by emitting a He nucleus: 
(Z,A)  → (Z-2,A-4) + 42He 
(He nucleus is also known as the a particle; it’s the same particle as used by  
Rutherford , Geiger and Marsden in the experiment exposing the atomic  
nuclei, see p. xx yy) 
 
The energy conservation in this process is: 
m(Z,A) c2 = m(Z-2, A-4) c2 + mac2 + Ta + TZ-2,  
where Ta, Z-2 denotes the kinetic energies of the a particle and final state nucleus.  
Conservation of momentum requires  
pZ-2 = pa and hence Ta = pa

2/2ma
2 = TZ-2 m(Z-2,A-4)/ma.  

Since usually ma << m(Z-2,A-4) one can neglect TZ-2 in the energy conservation  
equation.  
The decay is energetically possible if  
Ta = -|W(Z,A)| + |Wa| + |W(Z-2,A-4)|  ≥ 0 
where we expressed the masses of nuclei by the bounding energy (as given by the  
semi-empirical mass formula, p. xx).  
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a decays 
 

We can now estimate from which mass number A the a decay is possible by assuming  
A, Z >> 1, treating A and Z as continuous variables and re-writing the above condition  
as a differential:  
 
 
 
 
with Z=2 and A=4. Differentiating the semi-empirical mass formula yields  
 
 
 
 
 
In the above condition we have two independent variables, Z and A. In order to obtain  
a condition expressed as a function of A only we make a further approximation, by including  
the relation between A and Z as valid for stable nuclei, i.e. the expression obtained from  
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a decays 
Homework 8: check the precision of the Z(A) relation for various nuclei by comparing the  
calculated values with the chart of known stable nuclei.  
 
This expression gives Z of nuclei which for a given A are most stable. Clearly this is not  
correct for the nuclei which undergo the a decay, but is sufficient to obtain a rough  
estimate.  By inserting the above Z(A) relation into the condition for a decays following  
from the energy conservation one obtains a non-trivial expression that cannot be  
solved for A analytically but can be solved numerically, for example by drawing the  
dependence as a function of A taking into account the experimentally determined value  
|Wa|=28.3 MeV.     
 
 

12/03/2014 49 B. Golob 

Ta [MeV] 

25   50   75  100       150       200        A 

A155 
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-8 

We can see that  
from the rough  
estimate one expects  
nuclei with A ≥ 155 to  
decay through an emission  
of  a particles.  

A-Z 

Z 

chart of  
known stable 
nuclei 



a decays 
 

The estimate is not confirmed  by experimental data. The latter proves a decays for  
nuclei heavier than 207

82Pb. This should not be surprising given the approximations  
we made. Moreover one needs to include quantum mechanical picture in order  
to understand at least qualitatively the lowest mass number from which the a decays are  
observed. If we imagine the initial nucleus composed of a He nucleus and the rest of the  
nucleons, the potential experienced by the a particle looks qualitatively as shown in the plot  
below:   
 
At small distances between the a particle  
and the rest of the initial nuclei the potential  
is attractive (negative) due to the strong nuclear  
force binding the nucleons. At larger distances  
the repulsive (positive) Coulomb potential between  
the two positively charged entities becomes  
important. Hence the a particle with a positive  
kinetic energy Ta has to tunnellate through the  
positive potential barrier in order to escape from the  
initial nucleus.  
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a decays 
 

We can estimate the tunneling probability by first considering tunneling through a potential  
barrier:  
 
 
 
 
 
 
The first step is solving the Schrödinger equation 
for the two body problem (of a particle and  
the rest of the nuclei) with the reduced mass  
 and momentum operator p2 as  
written; the solution can be found using the  
ansatz involving the spherical function Yl,m  
(see p. xx). The solution for the radial part has  
three distinct intervals:  
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a decays 
 

The boundary conditions from which one determines the unknown coefficients  
A,B,... are 
 
 
 
 
 
From these one obtains                                                                     called also the  
                                                                                                               barrier transmittancy.  
 
In the case of a decay the barrier height is not constant; we can approximate this  
by dividing the Coulomb barrier into thin slices: 
 
The transmittancy can then be written as  
 
 
 
Taking into account the Coulomb barrier dependence we get  
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a decays 
 

Taking into account the Coulomb barrier shape we get 
 
 
 
 
The above expression depends on R‘; we estimate R‘ as the distance at which Ta becomes  
larger than V(r), i.e. V(R‘) = Ta. The result of the integration is  
 
 
 
 
 
 
 
 
The  probability for tunneling  
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homework 9:  
typical Ta for known  
decays is 5 MeV;  
compare this to the  
value of Coulomb 
potential at some  
typical nuclear distance. 



a decays 
 

Since                               we arrive at  
 
We can read off two properties of the result:  
 
- probability for tunneling and thus for decay increases with the mass number A;  

 
 
 

- probability for a decay (inverse of the nuclei lifetime) depends specifically on Ta; the  
latter dependence is also known as the Geiger-Nuttal rule.  
 
For a decays of nuclei with A ~ 155 (for which the decay becomes energetically possible)  
the tunneling probability is too low for decays to be observed; it becomes sizeable only  
for nuclei with A  207. 
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a decays 
 

Geiger-Nuttall’s law:  
 
Red dots represent experimental data on probability  
for a decays of various nuclei. Line denoted  
„Geiger-Nuttal“ represents a fit with a straight line  
to the data.   
Blue dots (blue horizontal scale) denotes the same  
data but in different scale to distinguish them from  
blue dots. The straight line through those  
dots represent the prediction obtained from the  
above described calculation (tunneling through  
a potential barrier) which represents a good  
description of experimental data.  
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1.2 Nuclear decays 
 
1.2.2 b decays 
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b decays 
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In b decays the initial nucleus reduces its energy by emission of an electron and  
electronic anti-neutrino: 
(Z,A) → (Z+1,A) e- ne 

 
Neutrinos are particles discussed in more details in the elementary particles section.  
For now it should be sufficient to know that these particles interact only via the weak  
nuclear force and have mass almost equal to zero (anti-neutrino is an anti-particle of  
a neutrino, similarly as the positively charged electron, called positron, is an anti-particle  
of an electron).  
 
The above decay is called a b - decay due to a presence of the electron in the final state.  
At the level of nucleons  
n → p e- ne 
 
Since (mn - mp)c2 = 1.29 MeV such a decay of a free neutron is actually possible. Neutrons  
are unstable and decays through a b - decay with a lifetime of around 880 s.  



b decays 
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The b - decay is energetically possible if  
 
 
Taking into account the above neutron - proton rest energy difference and the rest energy  
of an electron, mec

2 = 0.51 MeV, the condition reads 
 
 
 
Another type of b decay is a b+ decay:  
(Z,A) → (Z-1,A) e+ ne 
 
with a positron in the final state. At the nucleon level this is  
p → n e+ ne 
 
Due to the mass difference between the p and n such a decay of a free proton  
is not possible. It can only take place for the p and n which are bound inside the  
nuclei. The nuclear b+ decay is energetically possible if  
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Proton is the lightest known baryon (particle composed of three quarks, see Part II, p. ???) 
Since the baryon number (see Part II, p. ???) is conserved in all so far known processes  it  
follows that the proton does not decay. However, in order for the Universe to evolve from the  
Big Bang to the present state there are strong arguments that in the early stages of the  
Universe the baryon number conservation had to be violated (see Part 2, p. ???). Hence many  
theories which are experimentally not confirmed predict the decay of a p with lifetime  
p ≥ 1036 years. It is thus understandable that a search for possible p decays should be  
experimentally performed.  
 
One of the most sensitive experiments in  
this search is the SuperKamiokande  
experiment in Kamioka in Japan.  
It is placed in the cavern in the mountain  
to protect the experiment from various  
background sources such as the cosmic  
rays.  
 

Tokijo 

Kamioka 
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The experiment consists of  
a reservoir with 50·103 tons of  
ultra-purified water, surrounded  
by 13·103 photomultipliers  
for detection of single photons.  
 
 
 
 

~40 m 

~40 m 

50·103 t ultra-purified water 

13·103 photomultipliers   
for photon detection 
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One of potential (but unobserved) p decays is p → e+ 0, shown in the sketch below: 
 
 
 
 
 
 
 
 
The decay can be searched for   
by detecting the photons of the Cherenkov light produced by the e+ in the water, and by  
detecting photons from the 0 decays.  
 
So far no significant signal of such decay was observed. The current limit on the p lifetime  
is p > 1034 years. Of course this does not mean that the experiment needs to be operated  
for 1034 years. The p decays - if existing - would obey the exponential decay law, the number of  
p decaying in a time interval [t, t+dt] would be dN/dt = N0(1/p) e-t/p , where N0 is the number  
of all p being observed. Hence the large p is compensated by the waste amount of p in  
50·103  t of water.  
Homework 9: estimate the number of expected p decays in 50·103 t of water in one year if the  
                         expected p lifetime is 1034 years.  
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In 2001 the SuperKamiokande detector was hit by an accident: due to the implosion of  
few multipliers the shock-wave propagating through the water destroyed 6600 of  
photomultipliers (the price of each at the time was 3000 US $). With huge efforts  
the detector was repaired in 2006 (SuperKamiokande II).  
 
The experiment is not dedicated only to a search for the p decay but also to the study of  
another interesting phenomena - oscillations of neutrinos. 
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In 1934 Fermi gave the following description of the nuclear b decay, starting from  
the his golden rule (p. 14):  
 
 
 
Since Fermi did not know any details about the (weak) interaction causing the decays he  
wrote  
 
where obviously no details of potential are written and all the details of the interaction are  
described by a constant GF, nowadays called the Fermi constant. yf, yi, fe and fn  
are the wave functions of the initial and final nucleus, and of electron and neutrino,  
respectively.  As an initial approximation one can use plane waves to describe the latter two,  
 
                                  , and the matrix element becomes                                                        
 
with k=ke+kn . Since typical e± energies in b decays are of the order of MeV, and electron rest  
energy is mec

2 = 0.51 MeV, one must use a relativistic relation between the momentum and  
energy:                                            
                                                       .     The constant                                 is a useful conversion  
                                                              constant worthwhile to remember.   
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The integration in the matrix element is performed over full space, however since the  
nucleus wave functions are substantial only in the region of the nuclei, i.e. in the region  
with R~ few fm, we can see                                        
                                                                                                      .   Hence we can make a Taylor  
series expansion of the exponential in the matrix element:   
 
                                                                        .   Considering that the exponential factor arises  
 
due to the e-n wave function, and that the individual terms (kr)l/l! have the angular  
dependence of a spherical harmonic Ylm(q,f), which is the eigenfunctions of the orbital  
angular momentum operator (see p. 26), we can associate each term in the expansion to a  
probability that the e and n in the final state carry the orbital angular momentum                     .  
 
The largest term in the matrix element is (kr)0, if this term is non-zero. In the latter case  
the largest term would be (kr)1, and so on. According to the exponent of the first non-zero  
term in the series we call the decays allowed ((kr)0), once forbidden ((kr)1), twice forbidden  
((kr)2), etc.  
Moreover, for the allowed decays there is no dependence of the matrix element on the energy  
of e - n system (since they involve (kr)0). Hence the dependence of the decay probability on  
this energy arises only from the density of final states (see p. 15). For the forbidden decays  
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there is some energy dependence in the matrix element, however it proves to be rather mild  
compared to the dependence arising from the density of final states. Contrary to the  
scattering discussed in 1.1.2., in b decays we have three final state particles. Due to the  
momentum and energy conservation only two are independent  in terms of the momentum,  
and hence the density of final states can be written as  
 
 
 
 
where in the last step we integrated over the directions of both e and n. Since n’s are difficult  
to detect  the observable of interest is the e± energy distribution. We can replace the  
independent variable pn by the total energy of the electron-neutrino system E: 
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The electron momentum distribution is dWfi /dpe  drf /dpe 

 
 
 
 
 
If one plots the [(dWfi /dpe) / pe

2]1/2 as a function of the electron energy (i.e. in observing  
decays of some b source, a sample of nuclei undergoing the b decay, we plot the number  
of detected e± with a given momentum, divided by this momentum squared, as a function of  
the e±  energy) the dependence is linear. Such a plot is called the Fermi-Kurie plot.  
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The electron energy distribution is obtained by noting EedEe = pedpe, and  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e± energy distribution in b decay; the deviations from the calculated  
shape are observed at low energies due to the Coulomb interaction  
between the e± and the final nucleus.   
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The chart of nuclei with marked type of decays leading to the stable nuclei (denoted  
as black points) is shown below:  
 
 
 
 
 
 
 
 
 
 
 
 

N 

Z 

a 

b 

b 

DZ=-2,DN=-2 

DZ=+1,DN=-1 

DZ=-1,DN=+1 

stable nuclei 
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The conservation of the angular momentum requires  
 
 
where Jf is the total angular momentum (spin) of the final nucleus, Jen is the  
total angular momentum of the electron-neutrino system, and Ji is the the spin of  
the initial nucleus.  
Jen  is composed of the orbital angular momentum relative to the final nucleus and the  
total spin of the electron-neutrino system:  
 
Since both electron and the neutrino are fermions of spin ½, sen = 0 or 1. In the former  
case such decays are called Fermi decays (we will denote those with F), while in the latter  

they are called Gamow-Teller decays (GT). Hence in the case of Fermi decays Jen =l,  

while in the case of Gamow-Teller decays Jen = l ± 1. The difference of spins between the  

initial and final nucleus,                     , equals the total angular momentum carried by the  
electron-neutrino system,                .   
Parity of the wave function describing a certain system determines the behaviour  
of the function under the reflection of space, r ↔ -r.  
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If we apply the parity operator on the wave function once more,  
 
 
Hence  
 
 
where the eigenvalue of the parity operator    is denoted by P.  
 
The parity in b decays is conserved.  
This is not a trivial fact, which arises from experimental observations. When discussing  
the weak interaction that causes b decays we will see that some of the most intriguing  
properties of the weak interaction arise due to the non-conservation of parity. However,  
at the energies involved in the nuclear b decays, the parity is conserved despite the  
fact that in general the weak interaction does not conserve it. The parity of the final state 
thus equals the parity of the initial state,  
 
As mentioned above the electron-neutrino system, carrying an orbital angular momentum  
l, is described by a spherical harmonics Ylm. The property of spherical harmonics is   
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The parity of the electron-neutrino system with the orbital angular momentum l is  

thus (-1)l. This represents the change in the parity between the initial and final nucleus,  
DP = Pi/Pf = (-1)l. 
 
From the discussion above we can determine a set of selection rules for the angular  
momentum and parity in b decays. For example, if the spins of the initial and final nucleus  
are equal, D J = 0, the decay can be either a Fermi decay with l =0, or Gamow-Teller  
decay with l = 1, which together with sen = 1 can give Jen  = 0.  
If furthermore the parity of the initial and final nucleus are equal, this has to be a Fermi  
decay since in this case the change of parity DP = (-1)l = 1.  
 
Following similar arguments we can build a table of selection rules shown in the next  
page.   
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|D J|=Jen DP Type 

0 no F0 

0 yes GT1 

1 yes F1 

1 no GT0 

2 no F2 

2 yes GT1 

2 no GT2 

: : : 

In the above table F and GT denotes Fermi and Gamow-Teller decays,  
respectively. The number following this notation represents l, the orbital  

angular momentum of the electron-neutrino system.  
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g decays  
 
In g decays a nucleus emits electro-magnetic radiation (photon =  
g particle) and by this de-excites from a higher to a lower, perhaps a ground energy  
level.  
 
Such decays are caused by  
the electro-magnetic interaction.  
In the decay the charge distribution as well as the distribution of the magnetic dipole  
moments  of nucleons is changed.  
 
The electro-magnetic (EM) field around a system of moving charges (nucleons in the nuclei)  
can be described by expanding it into the multipole series (see p. xx). For example, an  
oscillating classical electric dipole radiates a dipole field, with an average radiated power of  
 
                                       where  is the oscillation frequency and pe0 is the amplitude  
                                       of the electric dipole, pe0=er0.  
Higher multipoles radiate a corresponding higher multipole radiation. If the average radiated  
power is interpreted in terms of photons, the probability of radiating a photon of energy  
per unit of time is  
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g decays  
 
Multipole series:  
any function of angles f and q in sperical coordinates can be written as  
 
 
 
 
where Yl,m(q,f) are spherical harmonics.  
 
Wigner-Eckart theorem: 
irreducible tensor operator of rank k is defined as any set of 2k+1 quantities that transform  
as the spherical harmonics Yk,q under rotations;  
example: operator      (tensor of rank k=1) can be defined in terms of Y1,q  through   
 
 
 
The Wigner-Eckart theorem states that the expectation value of any component of 
an irreducible tensor operator Tk

q (q=-k, -k+1,...,k) between two angular momentum states  
|j‘,m‘> and |j,m> can be factored as  
                                                                                                                                 , where  
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g decays  
 
            is the reduced matrix element and does not depend on q, m and m‘.  
            are the appropriate Clebsch-Gordan coefficients. These coefficients equal zero unless  
m = m‘+q and |j‘-k| j  j‘+k  ! 
 
Hence also                                           , unless |j‘- l| j  j‘+ l   
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g decays 
 
Quantum-mechanically the expression is analogous with the dipole moment defined as  
 
 
A similar expression holds for the radiation of a magnetic dipole,  
 
 
 
(see sect. 1.1.4. for definitions of N , gl and gs).  Expressions for higher multipoles are  
not easy to write in a simple vector format. It suffices for the moment to know that the  
corresponding electric multipole operators have an angular dependence of Ylm(q,f) and the  
magnetic multipole operators that of l  Ylm(q,f). Why is this important? The Wigner-Eckart  

theorem  (see p. xx) tells us that in order for the expected value of an operator,  
                                                  
                                                 ,  the angular momenta of the initial and final state (Ji , Jf), and  
the multipolness of the operator (l) should obey the triangular relation 
 Jf +l ≥ Ji  ≥ |  Jf -l |. From this one can derive the selection rules for the angular momentum  
in g decays.  
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Selection rules for g decays 
 
The matrix element for a general g decay can thus be schematically written as  
 
 
The superscripts (m) and (e) denote the nature of the operator - magnetic and electric,  
respectively. For example, O1

(e) is just er.  
 
Based on the triangular relation above  the difference between the spins of the initial  
and final nuclei is related to the multipolness of the operator causing the transition,  
|  Jf -Ji|= l.  
The notation of various transitions is based on the l of the lowest multipole operator in  
the matrix element resulting in a non-zero Vfi , and on the nature of operator  
as either electric (E) or magnetic (M). Thus a transition caused by the electric dipole  
operator is denoted as E1, the transition caused by the magnetic quadrupole operator  
as M2, etc.  
 
For a given l the probability for a magnetic transition is significantly lower than the  
probability for the electric transition. This can be easily estimated for the dipole  
operators :  
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Selection rules for g decays 
 
 
 
As an approximation for the magnitude of the electric and magnetic dipole we take  
e R (with R being the “radius” of a nuclei) and N (the nuclear magneton). We get  
 
 
 
 
The ratio is even lower for higher multipole transitions.  
 
Electromagnetic interaction preserves the parity. For the electric transitions the relation  
Pf ·PYlm = Pi thus holds, where the PYlm is the parity of the Ylm spherical harmonic (since this is  
the angular dependence of the electric multipole operator), (-1)l.  The selection rule  
regarding the parity in electric transitions is thus Pf · (-1)l = Pi. 
For the magnetic operators the angular dependence is  Ylm(q,f) and hence the parity is  
(-1)l+1 (the derivatives in also change sign when space is reflected).  The selection rule for  
parity in the magnetic transitions is Pf · (-1)l+1 = Pi . A summary table of selection rules for  
g decays is given on the next page.  
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Selection rules for g decays 
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l Ji Jf Parity change Transition type 

1 

0 1 
No M1 

Yes E1 

1 0,1,2 
No M1 

Yes E1 

2 1,2,3 
No M1 

Yes E1 

3 2,3,4 
No M1 

Yes E1 

: : : : 

2 

0 2 
No E2 

Yes M2 

1 1,2,3 
No E2 

Yes M2 

2 0,1,2,3,4 
No E2 

Yes M2 

3 1,2,3,4,5 
No E2 

Yes M2 

: : : : 

: : : : : 
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J P(=±) 

maximal energy (E) 

energy of nuclear state  
(relative to the ground state) 

Eg 

decay half-time 
t1/2 =  ln2  

b - decay 132
52Te →  132

53I e- ne 

Homework 10: based on  
the selection rules for g decays  
determine which operators  
are responsible for these  
transitions!  
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decay half-time 
t1/2 = 2,5 months 

In some cases the g  decay 
from an initial to a final energy state  
can only proceed through high  
multiple transitions. In this case the  
lifetime of such a state is long and  
the state can be treated as  
quasi-stable. Such states are called  
isomers.  
 
Homework 11:  
determine which operators are  
responsible for the transition shown!  
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